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ABSTRACT
Programming distributed embedded systems gives rise to
a number of challenges. The distributed nodes are typ-
ically resource constrained, requiring expert systems pro-
gramming skills to manage the limited power, communica-
tion bandwidth, and memory and computation constraints.
The challenge of raising the level of abstraction of program-
ming such systems without incurring too high of an exe-
cution performance penalty is thus an important one, and
many approaches have been explored in the literature.

In this paper we present a framework and domain spe-
cific language, to enable programming of such systems at a
global network level. Our framework, D’Artagnan, enables
the compilation, analysis, transformation and interpretation
of high-level descriptions of stream processing applications
in which information is received and processed in real-time.
D’Artagnan, is a functional macroprogramming language
embedded in Haskell, hiding where possible low-level detail,
but allowing the developer to add hints and information to
enable more efficient compilation to different target architec-
tures. We present an initial implementation of this frame-
work and show how it can be effectively used to program
devices at a high level of abstraction through a case study
of a building management system. Despite the high level
abstraction, we also show that the loss in performance is
minimal, and acceptable for many applications.
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1. INTRODUCTION
Over the past 15 years, there has been a growing trend in

embedding sensors and microprocessors in everyday objects
so they can communicate information and interact with their
environment [30]. This domain, now commonly referred to
as the Internet of Things, has experienced great advances in
technology such that reductions in the cost and size of sen-
sors has made it possible to measure and sense information
at high resolution, opening up a new dimension of appli-
cations. Environmentalists can track seabird populations
and nesting behaviours in remote areas [25]. Volcanologists
can easily deploy hundreds of sensors to detect explosions
and volcanic activity, where information is filtered at source
such that only interesting information is collected and anal-
ysed [33]. Building administrators can place motion, tem-
perature and light sensors in every room in a building, to
automatically turn off lights and cooling systems to optimise
on energy consumption [8].

Applications in this domain are often seen as stream pro-
cessing applications — a continuous flow of information is fil-
tered, aggregated and acted upon in real-time. The amount
of data and the processing involved may be non-trivial and
across a distributed network of heterogeneous resource con-
strained, unreliable, wireless nodes. Developing applications
on a network of such devices is not straightforward and the
skills of expert low-level systems programmers are required
to implement solutions. Programmers require a good under-
standing of energy consumption, distributed systems and
intra-node communication, a varied range of devices and
the heavy resource constraints imposed when using such de-
vices. Radio transmission should be switched on only when
needed, nodes need to be synchronised to communicate to-
gether and debugging these tiny devices is at times limited
to a blinking LED. The need for expert low-level systems
programming skills is somewhat slowing down progress and
creating a higher barrier to entry. Ideally, we want to make
programming of these devices more accessible to application
programmers.

One way of addressing this difficulty is through the use
of a domain specific language (DSL) [26]. By focusing on
the domain, at the expense of general purpose use, DSLs
provide a higher level of abstraction than general purpose
programming languages and are ideal to make it easier to
programme resource constrained devices quickly and effec-
tively. A DSL can be used with less effort and cost, and even
less skills. However, building a DSL may require significant
initial investment to build the right tools for application de-
velopment [16]. To overcome this, and reap the benefits of
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a DSL early on, one commonly used approach is to embed
a DSL within an existing language — creating a domain
specific embedded language (DSEL). This is a powerful con-
cept as the features of the host language become available to
the embedded language, thereby making it possible to use a
fully-fledged programming language to support the domain
specific notions in the DSL [9].

Using this technique of embedding a language, we present
a framework to describe stream processors. We chose Haskell
as the host language as it provides several features — such
as higher order functions, polymorphism and a strong type
system — to support the embedding of D’Artagnan, a
DSEL to analyse, generate, transform and interpret stream
processor descriptions. The idea of using Haskell, or other
functional languages, as a host language is not new. We take
inspiration from the work done in hardware description with
Lava [5] and in digital signal processing with Feldspar [2].
Our approach shares similarities to Flask [24] with the em-
bedding of our DSL in Haskell to generate code for resource
constrained devices. Our aim is to create a stream pro-
cessor description that can (i) have different interpretations
— simulated or translated (compiled) to low-level code; (ii)
be analysed for both functional and non-functional aspects
e.g. node placement and (iii) be optimised through transfor-
mations, such as alternative energy efficient communication
strategies.

This approach can be used effectively in real scenarios,
such as in an intelligent and energy-efficient building cooling
and lighting systems. With the use of existing C compiler
optimisation capabilities, the generated binary is compara-
ble in performance to native C hand-coded versions.

2. BACKGROUND AND RELATED WORK
A wireless sensor node is comprised of a processing unit,

a wireless communication interface, a number of sensors
and/or actuators, and a limited power source — see Fig-
ure 1. A wireless sensor network (WSN) is made up of a
number of nodes and can be considered as a distributed sys-
tem, although with a number of differences to traditional
distributed systems — the nodes and the overall network
are not as reliable, and node failure and unavailability be-
comes a normal part of the behaviour of sensor networks.
Constrained resources are an accepted fact in wireless sensor
nodes. Limited processing capability, limited memory, and
limited energy are three important constraints that have in-
fluenced how programmers implement applications for WSNs.
The typical amount of memory (RAM) is tens of kilobytes,
whereas program memory is up to 256KB. A programmer’s
focus is on writing efficient, tight code that takes advantage
of the underlying architecture. This may often result in sac-
rifices in code structure and readability. Radio transceivers
should be switched on only when needed and for short pe-
riods of time to reduce power consumption and extend ap-
plication lifetime. The same applies to sensors and other
external peripherals, as well as the microcontroller itself (by
utilising low-power sleep modes). Coupled with limited de-
bugging utilities it makes programming of such distributed
devices a significant challenge.

2.1 WSN Programming Approaches
Programming wireless sensor nodes is not done in a con-

ventional manner, and several approaches have been pro-
posed in the past two decades. The approaches can be gener-
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Figure 1: The structure of a wireless sensor node

ally grouped into two: a low-level platform-centric approach
and a high-level application-centric approach. Low-level, or
node-level, programming models focus on abstracting hard-
ware and allowing flexible control of nodes. High-level, or
network-level, programming models give a global view of
the network and focus on facilitating collaboration among
sensors [32].

2.1.1 Node-Level Programming
Low-level programming models are focused on giving fine

grain control on the behaviour of each node where compo-
nents are carefully switched on and off to optimise on en-
ergy utilisation. The level of systems programming expertise
needed for node-level programming is high. There are two
main approaches to node-level programming — operating
systems and virtual machines.

Operating Systems
A number of operating systems have emerged in the sen-

sor network community including TinyOS [21], Contiki [11],
SOS [15], Mantis OS [4], Nano-RK [12], RETOS [7] and
LiteOS [6]. TinyOS and Contiki are by far the most pop-
ular operating systems for WSNs, and have quite different
characteristics.

TinyOS uses an event-based model to support concurrency.
It is a static system so the application structure needs
to be defined at design time, offering limited reconfig-
uration capability. TinyOS is a monolithic system and
applications are compiled with the OS as a monolithic
binary. Multi-threading is possible using thread li-
braries such as TinyThread or TOSThreads. Deluge is
the standard reprogramming mechanism for TinyOS,
which due to TinyOS’s monolith approach means that
applications are loaded with the OS kernel as a full
image. The simulator of choice for TinyOS programs
is TOSSIM.

Contiki is a modular dynamic system and is more flexi-
ble than TinyOS for reprogramming as only new or
changed modules need to be loaded. Contiki has two
communication stacks: uIP — allowing the node to
communicate over the Internet; Rime — a lightweight
communication stack designed for low power radios.
Contiki supports multi-threading through the use of
protothreads. Contiki programs can be simulated in
Cooja before deployed in a real environment.

Virtual Machines
Maté [19] and ASVM [20] are interpreter-based virtual

machines that run on top of TinyOS [21]. The main aim is
to reduce the amount of data that needs to be transferred to

2



reprogram the nodes. Levis et al. [19][20] argue that users
often do not know what sensor data would look like, and
so must be able to reprogram sensor network nodes after
deployment. Once a WSN is deployed with thousands of
nodes in the field, it is impractical (or sometimes impossible)
to reprogram them with physical contact. Therefore, the
only option is to reprogram them wirelessly. Conventional
approaches of reprogramming involve transmitting the full
image to the node which consumes significant amount of
energy. Using an application specific virtual machine ap-
proach, code is highly condensed reducing RAM require-
ments, interpretation overhead and propagation cost – mak-
ing the approach highly beneficial from a reprogrammability
point of view.

2.1.2 Network-Level Programming
There are two major approaches for network-level pro-

gramming. One approach is a database abstraction, where
the network is seen as a database from where information
is gathered. The other is to provide a macro-programming
language which provides a global view of the network and
more flexibility for a wider variety of applications.

Database Query-like Languages
TinyDB [22] and Cougar [34] are two examples of a database

query style approach. This abstraction allows the user to
query the sensor network in a similar way as one would query
a database using an SQL-like language.

SELECT AVG(volume), room FROM sensors
WHERE floor=6
GROUP BY room
HAVING AVG(volume) > threshold
SAMPLE PERIOD 30s

Queries are entered by the user on the base station, and
they are optimised for energy consumption by determining
where, when and how often data is sampled. The request
is sent to the network where the nodes process the request,
gather readings and send back the result.

Macroprogramming Languages
The database abstraction is ideal for a limited range of ap-

plications — applications where the primary focus is to col-
lect and aggregate readings from a sensor network. Macro-
programming languages provide more flexibility to allow for
a wider range of applications where data may flow between
one node and another, and processed in network. Typically,
a macroprogram is compiled into different node-level code
and then loaded onto the individual nodes.

Pleiades [17] and Kairos [14] are imperative sequential lan-
guages where the programmer is provided with a centralised
view of the sensor network. The nodes in the network can
be addressed individually, and the local state on each node
can be accessed. The programmer writes a sequential set
of instructions to determine how the nodes are to interact
with each other. The higher level of abstraction removes
the complications of inter-node communication and node-
level resource management. Pleiades is implemented as an
extension of the C language, whereas Kairos is an extension
of Python. By default, a Pleiades program has a sequential
thread of control, but it introduces a language construct that
allows concurrency of execution across multiple nodes. The
Pleaides compiler analyses the code and determines node-
cuts — a unit of work that can be executed on a single node.

Code is then translated into nesC [13] programs that are ex-
ecuted on the TinyOS system. Kairos provides the program-
mer with additional constructs to access a node’s one-hop
neighbours. Using these constructs, the programmer can
implicitly express the distributed data flow and distributed
control flow. The Kairos model is similar to shared-memory
based parallel programming model utilising message passing
infrastructures.

COSMOS [1] is another architecture for macroprogram-
ming heterogenous sensor networks. COSMOS is made up
of a lean operating system called mOS and an associated
programming language called mPL. A programmer can spec-
ify the aggregate system behaviour in terms of distributed
data flow and processing. Functional components, written
in a subset of the C language, are stand-alone modules that
can be re-used across applications. Through composition
of functional components, COSMOS allows direct specifi-
cation of aggregate system behaviour. Contracts are used
to affect and influence the low-level system behaviour and
performance without forfeiting the high level programming
interface for the application developer.

Wavescript [29], Regiment [28] and Flask [24] are macro-
programming functional languages. Wavescript is a domain
specific language for stream processing applications with fo-
cus on asynchronous data streams. It is an ML-like func-
tional language and uses three implementation techniques —
it is evaluated in stream dataflow graphs, uses profile-driven
compilation to enable optimisations and includes an extensi-
ble system for rewrite rules to capture and optimise algebraic
properties in specific domains. Regiment, a Haskell-like lan-
guage, is designed for spatiotemporal macroprogramming
sensor networks that translates a global program into node-
level event-driven code. The programmer sees the network
as a set of spatially distributed time-varying signals, repre-
senting individual nodes or regions. Regiment provides con-
structs for aggregating streams, defining and manipulating
regions. Compilation changes the program into an interme-
diate representation called token machines which provides
facilities for local computation, sampling and communica-
tion with other nodes.

Flask is a stream processing DSL embedded in Haskell.
Flask allows a programmer to combine stream operators
from a pre-defined and extensible library to define a stream
processing application. A Flask program is compiled into
low-level nesC code, and allows functions to be defined in
Red, a (partially) functional language, or directly in nesC
using quasiquoting [3][23]. Low-level code can be safely em-
bedded in the language and included in the compiled out-
put. Flask provides a small number of primitive operations
and powerful facilities to combine and create new first class
operations — a technique used in several domain specific
languages when embedded in a functional language. The
power of abstraction means that the programmer does not
need to worry about low-level details around how the nodes
communicate with each other, or to make efficient use of
available energy.
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3. THE D’ARTAGNAN FRAMEWORK
Traditionally, sensor networks are programmed by writ-

ing a low-level program that is compiled and installed in
each individual node. Sensor data is accessed directly and
messages are passed to neighbours over radio. In a macro-
programming model, the network is programmed as a whole
and code is automatically generated for each node in the net-
work. A higher abstraction level can make sensor network
programming more accessible to non-expert programmers.

Our aim is to push the level of abstraction in program-
ming such devices using techniques from the field of em-
bedded languages. We embed our language in Haskell —
a pure functional language which gives us several features
which have been shown to be useful for this purpose, in-
cluding higher-order functions, polymorphism and a strong
type system.

Figure 2: The D’Artagnan Framework.

Figure 2 illustrates our framework. A stream processor
description written in our DSEL is internally stored in a form
that can be (i) analysed (ii) transformed and (iii) interpreted
in different ways. This is the key feature of our approach.

A stream processor can be analysed by traversing the in-
ternal representation to determine, as an example, the num-
ber of radio messages used, the amount of power used, and
to calculate the lifetime of the network in a specific config-
uration. It can be used to suggest optimal layouts of the
distributed wireless network for optimisation on reduced ra-
dio messages.

The representation can also be transformed in different
ways, possibly by using information from the analysis stage.
For example, an automated transformation procedure might
be used to move computation across the network to optimise
the performance of power consumption by bringing compu-
tation closer to where data is sampled thus resulting in less
radio transmission. The transformations can take hints from
the programmer to transform the stream processor in such
a way that is more applicable to the application environ-
ment. For example, if the network contains a more powerful
node with a permanent, replenishable or bigger energy store,
the programmer can influence the transformation such that
more computation is done on this node.

The framework supports different interpretations of the

stream processor internal representation. A simulation in-
terpretation allows the programmer to observe the behaviour
of the stream processor under different conditions — a setup
which is harder to achieve in a real environment. The same
representation can be used to generate node-level code for
different platforms, thereby supporting the heterogeneity as-
pect of distributed embedded systems.

The ultimate goal of D’Artagnan is to allow program-
mers to write complex stream processing applications using
just a few lines of code that only refers to low-level aspects
if required.

4. OVERVIEW OF THE SYSTEM
Since D’Artagnan is embedded in Haskell, a stream pro-

cessor description is defined using plain Haskell combined
with a number of stream operators. Operators can be chained
together similar to how functions are built. For example, the
average temperature reading from three sensors uses the ad-
dition (‘.+.’) and division (‘./.’) stream operators shown by
average in Listing 1.

A stream processor works by taking readings from sen-
sors periodically — the period can be set at compile time1,
for example every 5 seconds. We use the term clock cycle
to mean the period between one evaluation of the stream
processor and the next. If we instantiate a simple average

stream processor with three input sensors (see average in
Listing 1), a new average value is calculated by taking new
readings from the three sensors with every cycle.

This section presents the features of the system starting
with basic building blocks and showing how these can be
combined through higher level abstractions to build more
complex operators.

4.1 Stream Operators
D’Artagnan contains a number of basic building blocks

to read input values from sensors and perform arithmetic
and logical operations. The stream processor moreThan50

(see Listing 1) creates a simple stream processor to deter-
mine if a reading from a temperature sensor is higher than 50
degrees Celsius, taking a stream of integers and outputting
a stream of booleans. Whenever the input exceeds 50, the
output goes high.

Throughout this section we will use a simplified fire alarm
system as an example. Such a system would be made up
of a number of temperature sensors and an alarm (e.g. a
siren). As a first version, let us build a simple fire alarm
system that alerts us when the temperature is higher than
50 degrees.

We can instantiate firealarm50 as follows:

> firealarm50 (input (device 1) (sensor 1))

This instantiates a fire alarm system using sensor 1 on
device 1 specified as parameters of the input node. How-
ever, moreThan50 and firealarm50 are too rigid — they can
only detect temperatures higher than 50. If we wanted to
have similar systems which trigger at different levels, higher
or lower temperatures, then we would need to create simi-
lar stream processors such as moreThan45, moreThan55, etc.,

1The current version of D’Artagnan allows the period to
be set at compile time. In future versions, we want to add
the ability to change during runtime.

4



Listing 1 System overview: Variants of fire alarm systems

average :: (Stream Int, Stream Int, Stream Int) -> Stream Int
average (input1, input2, input3) = (input1 .+. input2 .+. input3) ./. 3

moreThan50 :: Stream Int -> Stream Bool
moreThan50 input1 = input1 .>. 50

firealarm50 :: Stream Int -> Stream Bool
firealarm50 = moreThan50

firealarm :: Int -> Stream Int -> Stream Bool
firealarm threshold sensor1 = sensor1 .>. threshold

firealarm2 :: Int -> (Stream Int, Stream Int) -> Stream Bool
firealarm2 threshold (sensor1, sensor2) = (sensor1 .>. threshold) .||. (sensor2 .>. threshold)

firealarmNotification :: Int -> Stream Int -> Stream Bool
firealarmNotification threshold sensor1 = ((pre 0 sensor1) .<=. threshold) .&&. (sensor1 .>. threshold)

stickyAlarm threshold sensor1 = let x = (pre False x) .||. (sensor1 .>. threshold)
in x

firealarmPlus :: Int -> Stream Int -> (Stream Bool, Stream Bool)
firealarmPlus threshold sensor1 = let x = (pre False x) .||. (sensor1 .>. threshold)

y = ((pre 0 sensor1) .<=. threshold) .&&. (sensor1 .>. threshold)
in (x, y)

which is not ideal. Through a first higher level of abstrac-
tion, thresholds can be passed in as parameters to create a
more generic system such that we can set any limit that we
want at instantiation stage — see firealarm in Listing 1,
which is not a stream processor per se, but a whole family of
stream processors generated by different parameters passed
to the function.

Now consider a fire alarm system which uses two sensors,
such that the alarm will sound if any of the two sensors has
a reading higher than the threshold (see firealarm2).

Stream processor descriptions in D’Artagnan are strongly
typed. The types of our DSEL are embedded in Haskell’s
type system such that the compiler does not allow the con-
struction of wrongly typed expressions. For example, if
any of two sensors sensor1 or sensor2 is not a stream of
booleans, the expression (sensor1 .||. sensor2) would
be rejected at compilation stage due to mismatching types.
This is one of the most useful features our DSEL inherits
from Haskell. Type errors are detected at compile time,
rather than runtime, drastically improving dependability
and reliability. Internally (and invisible to the users of the
language), we make use of phantom types [18] to ensure
strong typing.

4.2 Memory Capabilities
A stream processor is evaluated once with every clock cy-

cle. Without the ability to use readings or calculated out-
puts from previous cycles, the stream processor can only
make use of readings taken during the current cycle. For
most applications, this is too restrictive. There are situa-
tions where we would want to use a previous sensor reading
to compare it to the current. For example, consider an en-
hanced fire alarm system which sends an alert the moment
that the temperature exceeds a specific value, rather than
continuously when the reading exceeds the threshold. Such
a system requires access to previous readings in order to
compare them to new ones. In our DSEL, the pre operator
allows the use of a value from a previous clock cycle.

A fire alarm notification, using pre for memory capability
is shown by firealarmNotification in Listing 1. A visual
representation of the same system is shown in Figure 3.

Figure 3: A fire-alarm notification system

Memory capability is particularly useful when combined
with feedback loops, where the output of the stream proces-
sor is required in the following clock cycle. For instance, a
system that outputs whether an input stream has, at any
point in the past, exceeded a threshold, will output False

for as long as the reading is less than the threshold, but
outputs True from the point the reading is higher than the
threshold onwards until the system is reset — even if a new
reading is eventually below the threshold. This is illustrated
in the definition of stickyAlarm in Listing 1 and Figure 4.
Note that the apparently unbounded recursion when defin-
ing the feedback loop is internally handled using Haskell’s
lazy evaluation to unroll it only until a cycle is detected
using observable sharing [10].

4.3 Communication Operators
Applications deployed on WSNs make use of intra-node

radio communication to achieve the desired application goals.
Instructions, readings and calculated values may be passed
between one node and another. We support two forms of
point-to-point communication — Pull and Push (see Fig-
ure 5). Pull is based on a request and response pair of mes-
sages, and makes use of two radio messages. On the other
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Figure 4: A sticky alarm system — once triggered, remains
ON until system is reset.

hand, Push uses one radio message as there is no request
message and information is sent preemptively at regular in-
tervals. The choice between pull and push depends on the
application needs. In situations where information needs to
be passed from one node to another continuously on a peri-
odical basis, then push is the preferred option as it will use
one radio message and therefore less energy is consumed.
Pull is used in all other situations as it provides fine grain
control on triggering radio communication between nodes,
and no radio messages are wasted when information may
not be required or is discarded.

Figure 5: Point-to-point communication models

D’Artagnan allows the programmer to define a stream
processor without the need to explicitly specify how commu-
nication is to be done between nodes. This approach makes
it easier for the programmer to reason about stream proces-
sors. By default, as part of an automatic transformation,
D’Artagnan introduces pull as a communication operator
when information is passed between two nodes. Unless ex-
plicitly changed, processing is done on the start node and
the communication between nodes is left until the latest pos-
sible point of interaction. The programmer can give explicit
instructions, by using push and pull, to move computation
on to different nodes — possibly closer to where readings are
taken so as to reduce communication and therefore reduce
energy consumption.

input1 = input (device 1) (sensor 1)
input2 = input (device 2) (sensor 1)
input3 = input (device 2) (sensor 2)
sp = input1 .+. (push (device 2) (input2 .*. input3))

In the example above for stream processor sp, input2 and
input3 are on the same device — so rather than having
readings from the different sensors transmitted in separate

messages, the programmer can indicate that the computa-
tion input2 .*. input3 should be processed on device 2

and only the result is pushed out to device 1.
In the future, we would like to introduce different strate-

gies such that communication operators are inserted opti-
mally into the stream processor to minimise communication.

4.4 Stream Tuples
For most stream processing applications, having just one

output stream is often too restrictive to build interesting
applications. For example, in our fire alarm system earlier
on, we needed to choose between one of two actions — either
sound an alarm or else send a notification. We would like
our system to do both. One way of addressing this is by
extending our DSEL with tuples of streams, for example
(stream1, stream2).

We can combine the stream processors firealarmNotifi-
cation and stickyAlarm into one as shown by firealarm-

Plus in Listing 1.
The output of firealarmPlus is a pair of streams. The

first element of the pair represents the sound siren and the
second is the alert notification. Table 1 shows an example
scenario with input and output values.

Time Sensor1 Output (Siren, Notify)
t 45 (False, False)
t+1 48 (False, False)
t+2 55 (True, True)
t+3 56 (True, False)
t+4 57 (True, False)

Table 1: Example (firealarmPlus) with output tuple of
streams

5. INTERPRETATIONS
One of the strengths of our approach is that the same

stream processor description can have multiple interpreta-
tions. These interpretations perform stream processor anal-
yses such as simulation to calculate the output of a stream
processor given certain input values, and generation of low-
level code to be loaded on devices.

Figure 6: Different interpretations of a stream processor
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Listing 2 Code listing

doubleUp :: ((Stream Int, Stream Int) -> Stream Int) -> (Stream Int, Stream Int) -> Stream Int
doubleUp f (sensor1, sensor2) = let x = f (sensor1, sensor2)

in x .+. x

doubleUp2 :: ((Stream Int, Stream Int) -> Stream Int) -> (Stream Int, Stream Int) -> Stream Int
doubleUp2 f (sensor1, sensor2) = f (sensor1, sensor2) .+. f (sensor1, sensor2)

5.1 Simulator
D’Artagnan provides a simulator interpretation that cal-

culates the output of a stream processor given input values
whilst still in the Haskell environment. This is useful in that
it allows the developer to check and test that the behaviour
of the simulator is as intended under certain test conditions
— something which is harder to achieve when the applica-
tion is running in a real environment due to the difficulty of
setting environment parameters.

We simulate the behaviour of the firealarmPlus stream
processor by providing concrete inputs coming from sen-

sor1. Such inputs are given in the form of a list of values
with values corresponding to sensor readings for every clock
tick i.e. [v0, v1, v2, . . . ].

> simulate firealarmPlus [45,48,55,56,57]
[(False, False),(False, False),(True, True),

(True, False),(True, False)]

5.2 Intermediate Code
One of the main aims of our system is to be able to gen-

erate code that can be readily uploaded onto devices. We
do this generation in a 2-stage approach — we first gener-
ate intermediate code, effectively an abstract representation
of the stream processor, from which we specialise this to
device-specific code. This approach has several advantages.
First of all, the operating systems of WSNs typically sup-
port the C programming language or a WSN-specific dialect
(e.g. nesC for TinyOS) [27]. Our intermediate code allows
us to have one common language for different devices so that
we can separate the syntax from the semantics. Secondly,
it makes our approach more extensible, in that generators
for other languages can be easily added on. This 2-staged
approach has also been used in Feldspar [2] and Regiment
[28].

5.3 Device level code: Contiki
Translation from intermediate code, which is already in

the form of imperative sequences of assignments, to device
specific code is relatively straightforward. It is a matter of
getting the correct syntax for the sequence of abstract state-
ments. In our current implementation, we generate code for
Contiki as an example. Even with Contiki, different de-
vices may require slightly different syntax — for example,
the use of a different type of temperature sensor, or possibly
a slightly different version of Contiki. Our current frame-
work generates two types of Contiki; one for the WSN430
nodes at the FIT IoT-LAB2 test bed and another one for
the AdvanticSys CM5000. Other C variants can be added
with relative ease.

2https://www.iot-lab.info

6. USE CASE: INTELLIGENT COOLING
AND LIGHTING SYSTEMS

In order to illustrate the effectiveness of D’Artagnan
at higher levels of abstraction, we present an application
for smart buildings, building upon the stream operators de-
scribed in Section 4 to construct higher level components.
These components are used at a level of abstraction which
omits internal embedded system details altogether.

We present a generic solution for smart building manage-
ment which can be instantiated for any given room layout
plan — supporting automatic switching on and off of lights
and cooling systems when motion is detected in a neigh-
bouring room. Further, the lights are only switched on if
there is not enough natural light, and cooling systems are
only turned on if the room temperature is too high. The
solution takes room layout information — which rooms are
adjacent to which rooms — and, assuming three types of
sensors in every room for motion, light and temperature
detection, creates a specific building stream processor tai-
lored to the specified room layout. Using sensors’ readings
as inputs, the building stream processor can generate code
to control lights, cooling systems, etc (see Figure 7). The
system can support multiple device and sensors of the same
type in the same room, such that more reliable readings are
taken. In this example, we use sensor readings from rooms,
such that whenever motion detection sensors in a room are
triggered, lights are switched on in the room and neighbour-
ing ones. Figure 8 illustrates internal detail of the building
stream processor — a room stream processor.

Figure 7: Inputs and outputs of a building stream processor

6.1 Stream Handling Components
Higher level stream handling components are needed to

transform sensor readings into application specific meaning-
ful information. Listing 3 shows the definition of four stream
handlers that will be used in building the application.

When there is more than one sensor in a room, we use av-

erage to combine sensors with numeric output (e.g. temper-
ature, light-level sensors) to obtain a more reliable reading
for that room. Similarly we use anyOf to combine sensors
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Figure 8: Internals of a room stream processor

Listing 3 Higher level functions

average :: [Stream Float] -> Stream Float
average ss = sum ss ./. consStream (length ss)

anyInput :: [Stream Bool] -> Stream Bool
anyInput ss = foldl1 (\x y -> x .||. y) ss

minControl :: Min -> Stream Float -> Stream Bool
minControl min s = s .<=. consStream min

maxControl :: Max -> Stream Float -> Stream Bool
maxControl max s = s .>=. consStream max

with boolean readings (e.g. motion detection sensors placed
in the same room). Other such agglomeration combinators
can also be defined e.g. a median or majority combinator
can be more effective if some of the devices are known to fail
regularly, hence allowing us to ignore outlier values.

The threshold functions minControl and maxControl are
used to determine whether to switch on or off lighting and
cooling systems based on whether the combined values fall
below or above certain thresholds — in other words, a be-
haviour similar to a thermostat.

6.2 Room Layout Representation
In order to describe the particularities of a building to

generate the code for all the devices in the different rooms,
we provide data structures to represent which sensors are in
which rooms and also room adjacency. Consider one partic-
ular room layout shown in Figure 9, which includes infor-
mation about devices with on-board sensors in the rooms.
Every device is equipped with three types of sensors — mo-
tion, light and temperature — and some rooms have more
than one device. Having multiple devices in the same room
increases the reliability of the application.

The building topology is represented by a graph using the
data types Plan and Room — see Listing 4. Plan is an adja-
cency list of rooms (represented as a list of pairs of rooms),
while Room stores information about the room: its name,
and references to the motion, light and temperature sensors
in that room. The instantiation of the example shown in
Figure 9 is given in Listing 5.

In this specific room layout, when motion is detected in
Room 1, lights and cooling in Rooms 1 and 2 will be switched

Room 1 Room 2

Room 3 Room 4

1

2

3

4

5

6

7

Figure 9: Room layout with device placement.

on — if there is not enough natural light, and/or tempera-
ture is too high. As a person walks into Room 2, the lights
and cooling for Room 3 will automatically switch on (if light
and/or temperature conditions are met) — lights and cool-
ing in Rooms 1 and 2 will remain on, as they have already
been switched on. As the person walks into Room 3, lights
and cooling in Room 1 are turned off and those in Room 4
are turned on.

Listing 4 Building data types

type Plan = [(Room, Room)] -- list of rooms
data Room = Room {

name :: String,
motionS :: [MotionSensor],
lightS :: [LightSensor],
tempS :: [TempSensor]}

deriving (Eq, Show)

6.3 Application Implementation
Typically, one would program the devices for a partic-

ular building, with a particular topology. However, any
changes in sensor deployment would require reprogramming
from scratch. Similarly, given a new building requires repro-
gramming the devices for that building from scratch. How-
ever, with D’Artagnan we can abstract up, and program
a generic solution which works for any given building topol-
ogy. If a new device is added to a room, one simply changes
the building description passed on to the generic solution
and automatically obtain code which is to be deployed on
the devices. The implementation of such a generic solution
can be given in just 10 lines of code — see Listing 6.

The inputs and outputs of the application vary depending
on the topology used. The inputs are linked to the number of
devices present in the rooms — in the example layout shown
in Figure 9 with seven devices in four rooms, the application
has 21 inputs — three types of sensors for each device. The
number of outputs of the application is determined by the
number of rooms in the Plan — in the example, the output
is made up of eight boolean streams, one for each of light and
cooling controllers in each of the four rooms. These outputs
need to be connected to the light and cooling controllers for
each respective room.

In the simulation interpretation, it is possible to test the
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Listing 5 Instantiation of system

room1 = Room {name="room1", motionS=[motionSensor1, motionSensor2], lightS=[lightSensor1, lightSensor2],
tempS=[tempSensor1, tempSensor2]}

room2 = Room {name="room2", motionS=[motionSensor3], lightS=[lightSensor3],
tempS=[tempSensor3]}

room3 = Room {name="room3", motionS=[motionSensor4, motionSensor5], lightS=[lightSensor4, lightSensor5],
tempS=[tempSensor4, tempSensor5]}

room4 = Room {name="room4", motionS=[motionSensor6, motionSensor7], lightS=[lightSensor6, lightSensor7],
tempS=[tempSensor6, tempSensor7]}

plan = [(room1, room2), (room2, room3), (room3, room4)]

Listing 6 Main application

automation :: Plan -> [(Stream Bool, Stream Bool)]
automation plan = map (roomAutomation plan) (getRooms plan)

roomAutomation :: Plan -> Room -> (Stream Bool, Stream Bool)
roomAutomation plan room = (autoMinControl motionSensors lightSensors 50, autoMaxControl motionSensors tempSensors 25)

where
adjacentRooms = adjacent plan room
motionSensors = msToStream $ getMotionSensors adjacentRooms
lightSensors = lsToStream $ getLightSensors adjacentRooms
tempSensors = tsToStream $ getTempSensors adjacentRooms

behaviour of the application under different input values.

> simulate (automation plan) simulatedValues

Where simulatedValues is a list of input values for all
sensors. In simulation mode, the output of the application is
a list of tuples for the different lighting and cooling switches
in each room. In this example with four rooms, there will
be four tuples made up of two boolean streams — reflecting
whether lighting and cooling is on or off in the respective
room.

-- Output format is [(roomN_light, roomN_cooling), ...]
Output at T1 = [(True,True),(True,True),

(False,False),(False,False)]
Output at T2 = [(True,True),(True,True),

(True,True),(False,False)]

At T1, motion was detected in Room 1. The lights and
cooling systems for Room 1 and Room 2 are turned on —
output at T1. At T2, motion was detected in Room 2 so the
lights and cooling of Room 3 are also turned on — output
at T2.

In a Contiki interpretation, the source code is generated
uniquely for every device. The generated code takes care of
communication between the devices as one device requests
information from another. In this example, since a com-
munication type is not explicitly defined, the Pull model is
used.

6.4 Discussion
As presented, D’Artagnan is a high level DSL that makes

it easier to build applications for IoT-devices. In this section,
we evaluate how an application written in D’Artagnan
compares to an equivalent application hand-coded in C for
Contiki. In order to evaluate the performance of the two
variants, we performed experimentation on the FIT IoT-
LAB test bed — a platform suitable for testing small wire-
less devices in a real environment.

Lines of Code: As one would expect, significantly fewer
lines of code are required using our framework and DSL, as

D’Artagnan Hand Coded
Lines of Code 10 516
Radio Messages 36 36

Table 2: Comparison of DSL generated versus hand-coded

compared to a hand-coded version — plus we have a more
general solution. In this example application, 10 lines of
D’Artagnan code3 are enough to create a generic intelli-
gent and energy efficient cooling and lighting system. The
code does not need to change if different room layouts and
additional sensors are introduced. The room plan (Listing 5)
is updated to reflect the exact layout, and passed in as input
to the application and node-level code is generated automat-
ically to reflect the layout. On the other hand, 516 lines of
code are required to implement the system directly in C
for the current configuration. For different layouts, or addi-
tional WSNs, the C code may need to be modified and size
will increase linearly with the number of rooms and nodes
introduced.

Radio Messages: The two implementations generate the
same amount of radio traffic. This is partly due to following
the same design concept, in that point-to-point communica-
tion is used with a request/response pattern and a separate
message for every reading. It is however possible to reduce
the number of messages from 36 to 6, where each node trans-
mits its own three readings (motion, light and temperature)
periodically to the master node in one message. Chang-
ing from Pull to Push reduces the 36 messages by half, to
18. Sending the three readings in one message will further
reduce the 18 messages to 6. This improvement can be im-
plemented for both versions — although the current version
of D’Artagnan does not support three readings in one mes-
sage although this is planned to be added to a future version
of the language.

3This includes type declarations which can be deduced by
the Haskell compiler and are thus unnecessary.
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7. PERFORMANCE EVALUATION
In this section we compare different implementations of a

processing intensive task to be able to assess performance
penalties induced by our approach versus a hand-coded im-
plementation. We use an audio sound soft-clipping algo-
rithm, which for the limitations of wireless sensor nodes can
be considered a processing intensive task.

7.1 Clipping
In audio, when the output from an amplifier exceeds the

noise levels supported by a speaker, the end result is hard-
clipping — the top portion of an audio waveform is clipped.
The abrupt juncture between the normal waveform and the
horizontal clipped line generates high harmonic frequencies
which create a harsh unpleasant sound — see Figure 10.

Soft-clipping is used to reduce the harshness of clipping,
by creating a smoother transition from the waveform to the
clipped section. The junction between the normal wave and
the clipped horizontal line will be slightly curved, rather
than at an abrupt angle. Although there is still distortion,
less high-pitched harmonics are created causing the output
to be much smoother.

2

1

−1

−2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

2

1

−1

−2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Figure 10: Sine wave (top) and hard-clipped sine wave (bot-
tom)

7.2 Implementation
We have implemented three versions of the soft-clipping

algorithm. The first implementation is hard-coded in C and
makes use of our small math library with an implementa-
tion of an arctan approximation used in soft-clipping cal-
culations. The second implementation makes use of the
same math library, but the main algorithm is written in
D’Artagnan. The aim of this implementation is to as-
sess any penalties introduced by using the DSEL code gen-
eration. The third implementation is written completely
in D’Artagnan, including the mathematical functions for
arctan approximations. This last approach can be used on
platforms that do not have native implementations avail-
able, and has the advantage that the implementation can
be translated to any platform which D’Artagnan supports
without the need to re-implement the math library.

7.3 Evaluation
For our experiments, we use Contiki on an AdvanticSys

CM5000, which is equipped with an MSP430F1611 Texas
Instruments micro-controller and 48KB of program flash.
All three implementations were compiled using the MSP430
GCC (version 4.6.3) with different optimisation levels to
study how compiler optimisations interact with our code
generation. Optimisation levels range from level 0 (-O0),
which disables all code optimisations, to level 3 (-O3), with
most code optimisations including function inlining, opti-
mised nonlinear parallelised assembly and global-algorithm
register allocation.

Optimisation Level
-O0 -O1 -O2 -O3

Implementation 1: Hand-coded C version
Bytes Programmed 41522 28570 27928 39084
Avg Duration (s) 114.44 55.94 55.86 55.84

Implementation 2: D’Artagnan with C Math library
Bytes Programmed 41634 28578 27936 39096
Avg Duration (s) 116.56 56.12 56.02 56.10
% Diff with Impl 1 1.85% 0.32% 0.29% 0.47%

Implementation 3: Full D’Artagnan
Bytes Programmed 44936 28396 27784 38958
Avg Duration (s) 225.76 56.12 56.08 56.18
% Diff with Impl 1 97.27% 0.32% 0.39% 0.61%

Table 3: Results for different implementations

The results in Table 3 indicate that, as expected, with
no compiler optimisations (-O0), Implementation 3 — Full
D’Artagnan— is significantly more inefficient, with the du-
ration of the test nearly double that of the other two imple-
mentations. The footprint (code size) is also the largest of
the three implementations.

The results also show that any inefficiencies introduced
by D’Artagnan during automatic code generation are com-
pletely cancelled out when any level of compiler optimisation
is used. This gives us confidence in that our approach, cou-
pled with standard compiler optimisations, will still produce
compact and efficient binaries — a much desired outcome
when programming resource constrained devices.

One observation that comes to light from this exercise is
the need to make the language extensible with native func-
tions — for example, trigonometric functions which may be
optimised for the device compared to the DSEL generated
code.

8. CONCLUSIONS AND FUTURE WORK
We have described D’Artagnan, an embedded DSL frame-

work that brings functional programming to distributed em-
bedded systems. By using an internal representation of a
stream processor description, we can analyse, transform and
interpret in different ways. D’Artagnan allows the pro-
grammer to use the power of functional programming to
build sensor network applications. We have shown through
examples that any overheads introduced by D’Artagnan
are adequately compensated for by C compiler optimisations
and that the framework can be extended to add even more
higher layers of abstraction. Libraries can be created for
specific application domains to make writing of applications
even more easy.

10



The system which is closest to D’Artagnan is Flask —
a stream processing DSL embedded in Haskell. However,
Flask makes use of Red, a restricted subset of Haskell which
lacks support for type classes, disallows recursive data-types
and functions, and closures cannot be allocated. D’Artagnan
is different in that it inherits all the features and function-
ality from Haskell, providing greater expressiveness to the
programmer. Also, Flask makes use of quasiquoting to al-
low code to be written in nesC and used directly in code
generation. In a similar manner to Regiment and Feldspar,
D’Artagnan makes use of an intermediate representation
to convert to low-level device code.

We envisage various directions for D’Artagnan. Firstly,
we want to enhance the language with hints, such that the
programmer can influence transformations based on his/her
expertise and knowledge on how the application is going to
be used in a real environment. We also want to make the
framework more extensible by allowing easier pluggability of
node-native functions, new language constructs and trans-
lation to new target platforms. We also intend to explore
over-the-air programming and an interpreter-based compila-
tion to minimise footprint for new code transfers. We believe
it is also possible to combine different applications, written
by different programmers, to be loaded onto the same sensor
network. Finally, D’Artagnan raises interesting questions
in how high can we raise the abstraction level of program-
ming such systems. From the smart building example, it is
evident that there is much to be gained with compositional
systems — an observation which coincides with similar lan-
guages which have been defined for other domains [31].
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