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Abstract. Smart contracts exist immutably on blockchains, making
their pre-deployment correctness essential. Moreover, they exist openly
on blockchains — open for interaction with any other smart contract
and offchain entity. Interaction, for instance with off-chain oracles, can
affect the state of the smart contract, and correctness of these smart con-
tracts may depend on the trustworthiness of the data they manipulate
or events they generate which, in turn, would depend on which parties
or what information contributed to them.
In this paper, we develop and present dynamic taint analysis techniques
to enable data tainting in smart contracts. We propose an extension of
Solidity that enables labelling inputs of interaction endpoints with dy-
namic data-carrying labels that capture actionable information about the
sender. These labels can then be propagated dynamically across trans-
actions to transitively dependent data. Specifications can then refer to
such taints, for instance for ensuring that certain data could not have
been influenced through interaction by a certain party. We further allow
the use of taints as part of the language, affecting the control flow of the
smart contract. To manage the overheads of such runtime tainting we
develop sound static analysis-based techniques to prune away unneces-
sary instrumentation. We give a case study as a proof-of-concept, and
measure the overheads associated with our additions before and after
optimisation.

Keywords: taint analysis · runtime verification · static analysis.

1 Introduction

Smart contracts on blockchains are programs that promise dependability through
immutability and code transparency. However, this is not enough to ensure cor-
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rectness of the smart contracts. Formal methods have been applied for this pur-
pose, to allow for some level of security and verification of functional properties
of smart contracts, e.g., [7, 5, 1]. One interesting aspect of smart contracts is
the ability of smart contracts to interact with each other or with off-chain enti-
ties. This interaction is the only way in which smart contracts can change state,
with each (data-carrying) interaction forming part of a transaction. While the
blockchain on which smart contracts are executed is decentralised in nature, the
logic of a smart contract or data upon which it depends may not be. Consider,
for instance, a betting smart contract depending on random numbers provided
by third party oracles, or an insurance smart contract depending on reports
by experts and information provided by a user. Whenever a smart contract’s
domain extends beyond what is digital and resides on the blockchain, it must
interact with the real-world which is, by its very nature, centralised. A tempera-
ture sensor is, for instance, such a centralised point-of-trust, and, unless one goes
to great lengths to have multiple independent sensors, the readings it provides
and any logic or data which depend on them should ideally be tagged as such.

Given an event of interest (e.g., upgrading the level of a user or the violation
of a property) it is interesting to reason about the contributing causes to this
event, including any contributing interactions. However, such information is not
typically available given interactions may be separated far in time from the events
of interest to which they contribute. We observe that this kind of reasoning has
been explored in literature, to an extent, in the study of taint analysis [12].

Taint analysis is typically concerned with identifying when input to a pro-
gram can pose a security risk, e.g., if it can cause dangerous commands to be
executed. Untrustworthy input is said to be tainted, while the sensitive parts
of the program are called sinks, and the problem then is to find out whether
tainted data can enter sinks. There are two approaches to taint analysis: static
or dynamic. Identifying problems statically, pre-deployment, is ideal but having
a sound and complete analysis is, in general, impossible forcing one to resort
to over- or under-approximations — sound static analysis may identify false se-
curity risks, while a complete one may miss real ones. Dynamic taint analysis,
identifying risks at runtime can be more precise.

In a manner akin to security and privacy taint analysis, we observe that
issues of point-of-trust propagation in smart contracts (and indeed other systems
which depend on data by external parties) follow a similar pattern and can
be addressed using similar tools. We envisage trust type checking to ensure
that trust does not propagate in an unexpected manner as a primary tool for
smart contracts enforcing business process flows dependent on oracle and user
data. Furthermore, we believe that the notion of trust is core in smart contracts
and by implementing trust at the programming language level, and allowing
developers to use trust information as part of their logic can be of great benefit.
For this reason, we ensure that our trust/taint propagation semantics extend the
semantics of Solidity, and allow for dynamic execution.

Static taint analysis has been explored in the context of Solidity smart con-
tracts, e.g. [17, 10], however to the best of our knowledge dynamic taint analysis
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has not, possibly due to the associated overheads. In fact, both deploying and
executing functions of the smart contract costs gas, paid for in ether, the cur-
rency of the Ethereum blockchain. This cost can be an effective remedy against
denial-of-service attacks, and also ensures termination, but discourages the use
of dynamic analysis techniques on the blockchain. Static analysis however has
been used to attenuate the gas overheads of runtime verification (e.g., see [5]).

In this paper, we present an extension of Solidity with a notion of tainting as
a first-class concept. We present taint labels that carry data, and allow assertions
in the language to query these taints and use the associated data. We give the
semantics for a simplified version of Solidity with taints that propagates the
taints. We give several static analyses that we use to prune taint instrumentation,
and leave the remaining for runtime. As a formal basis for these analyses and
future ones, we give an abstract sound static semantics for the language.

Related Work. Static taint analysis has been applied in the context of Solidity
before. Slither [10] can classify whether a smart contract variable is dependent on
a user-controlled variable (e.g., a function parameter), or whether a function can
be entered from illegitimate entry points. [17] uses taint tracking on control-flow
graphs to identify re-entrancy. Our work instead considers using dynamic anal-
ysis, and optimises it through static analysis. Such combined analysis have been
applied in other contexts, such as web security (e.g, see [13, 16]), and Android
applications (e.g., see [16, 14]).

Static analysis has been used before to prove parts of properties safe and
leave the rest of the property for runtime [4, 2, 8], and also for the pruning of
instrumentation [3], mainly in the context of Java verification. This work has
also been applied in the context of Solidity verification [5, 6]. See [11] for a more
general exposition of optimisations for monitors.

See [15] for a more general survey of formal verification techniques applied
to smart contracts.

Summary. In Sec. 2 we present an extension of the Solidity language with taints
and a semantics for it, while in Sec. 3 we present tools to statically analyse
programs in this language. We present a case study to validate the example
static analyses we give in Sec. 4. We discuss this approach in Sec. 5, while we
conclude with future work in Sec. 6.

2 Solidity with Dynamic Tainting

We present an extension of Solidity with taints at the language level, including
constructs for declaration of data-carrying taint labels, statements that taint
variables or memory locations, and extend Boolean expressions to query taints.

2.1 Simplified Solidity with Taints

The grammar of Solidity extended with taints is shown in Fig. 1, with our
additions and modification in boldface.
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TaintLabel := Label
TaintExpr := TaintLabel | TaintLabel [type Label?] | TaintExpr or TaintExpr
TaintValue := TaintLabel | TaintLabel [VarLabel | Value]
TaintDeclr := newtaint Label = TaintExpr
TaintQuery := taint-of VarLabel

BoolTaintsExpr := BoolExpr | VarLabel tainted-by [TaintValue | TaintQuery] | !BoolTaintsExpr |
BoolTaintsExpr && BoolTaintsExpr | BoolTaintsExpr || BoolTaintsExpr

CallExpr := Call Label [Values] | GuardedCall Label [Values]
Expr := Label | CallExpr | ValueExpr
Declr := type Label
TaintBy := taint VarLabel by [TaintValue]
Assign := Label ✓

= Expr | Label ×
= Expr

Assert := assert BoolTaintsExpr
Stmt := Declr | Assign | Return Expr | revert | TaintBy | Assert |

If BoolTaintsExpr then [Stmt] else [Stmt] | While BoolExpr then [Stmt]
visibility := public | private | internal | external
Func := function Label ( [type Label]) (returns [type Label?]?) { [Stmt] }
Contract := contract Label { [(Declr | StructDeclr | TaintDeclr)] [Function] }

Fig. 1. Solidity with taints.

We leave the grammar underspecified for simplicity (e.g., we do not list types,
or all possible ValueExpressions, like arithmetic combinations), so that we can
focus on the novel taint constructs (see [9] for the full Solidity language). Smart
contracts are deployed on the blockchain to certain addresses, and calls to their
functions also are initiated from addresses, however here we abstract away from
these, e.g. in CallExpr — note how a function being available from a certain
address can simply be encoded as part of the function name/label; and also
from messages (carrying some standard information about the sender and call),
which can be encoded as parameters to the function.

We define taint template expressions (TaintExpr) to be either simple la-
bels, labels with a sequence of possibly labelled data types, or disjunctions of
such labels. We specify taint values (TaintValue) as being either simple labels
(TaintLabel), or data-carrying labels (e.g., BadActor (address location) is a
taint label template that can be instantiated into taints that carry information
about the address of the bad actor). We introduce constructs to assign a taint
expression a label (TaintDeclr), and a construct to allow for the taint of a
variable to be a queried (TaintQuery).

We augment boolean expressions (BoolTaintsExpr) to be able to query the
taints of variables, e.g. v tainted-by BadActor will hold true only if the value
of v depends on some past interaction started by a specific bad actor. These can
be used in assert statements (here we do not model gas consumption, thus we
ignore require statements) and if statements.

Crucially, we add a construct (TaintBy) to allow variables to be assigned
taint values, e.g., taint v by BadActor msg.sender4. Essentially, the user can
use this construct to specify sources of taint, e.g., to taint some parameters at
the start of a function definition. Propagation of these taints to any variables
that in turn depends on tainted variables will be taken care of by the semantics.

4 msg.sender in Solidity refers to the address (a unique identifier) of the function
caller.
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Moreover, instead of the assignment symbol =, we have two kinds of assign-
ment symbols: (1) x ✓

= expr denotes that x is assigned the value of the expression
and also propagates taints of expr to x; while (2) x

×
= expr denotes that x is

only assigned the value of expr. We do not intend this to be used by the user,
but we use it to denote the instrumentation required for propagating tainting
dynamically. From the point of view of the user they will use =, which will be
interpreted as ✓

=. For our static analysis the aim is to turn as many ✓
= statements

into ×
= while preserving the semantics. We will use ∗

= to denote either ✓
= or ×

=.

2.2 Semantics

We present an operational semantics for the grammar in Fig. 1, with some pre-
liminaries first.

Preliminaries For brevity, we assume that every smart contract on the blockchain
has unique names for their global variables, function parameters, local function
variables, and function names.

The semantics given is an operational semantics, over configurations and
transitions. Configurations are given over variable valuations, a function call
stack, and the function code. The function call stack maintains a stack of the
function calls in the current transaction, and a sequence of statements with the
first statement being the next statement to execute. Instead of Solidity state-
ments, we consider tainted statements, which will be required to keep track of
taint of a certain execution, e.g., due to branching.

Definition 1 (Tainted Statements). Given a statement st and a set of taints
T , a tainted statement, written st#T , denotes that the execution of st was
tainted by T . We overload this to sequences of statements, such that (st : sts)#T

def
=

(st#T : sts#T ) and []#T
def
= []. We interpret (st#T )#T ′ as st#(T ∪ T ′).

Definition 2 (Configurations). A configuration is a triple ⟨V, calls,F⟩ where:

1. V is a valuation, a mapping from variable names to their values and taints
(we write V[x 7→ v] to update the value of variable x, and V[xtaint 7→ t] to
update the taint of x;

2. calls is a function call stack, an array modelling the current function call
stack, with values consisting of a pair of: tainted sequence of statements and
a variable (and variable taint) valuation; and

3. F is the code, a mapping from function names to sequences of statements
(we leave this implicit since, for simplicity, we do not allow it to change).

Essentially, a configuration models the state (including taint state) of a
blockchain at a given point in time. When the call stack is empty, the con-
figuration is that of the blockchain between transactions, and when it is not
empty the blockchain is in the process of a transaction.
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The semantics will propagate a taint throughout a function’s code, which
may depend on the taint of a expression, which we define as the union of the
taints of the variables mentioned in that expression.

Definition 3. The taint of a value expression expr in the context of a valuation
V, denoted by taint(expr,V), is the union of the set of taints associated with
every variable mentioned in the expression. When the valuation is clear from the
context we leave it implicit.

We also require a notion of evaluation of expressions in the context of a given
valuation of variables. We define an operator to represent this.

Definition 4. Given a valuation V and Solidity expression expr, we write expr ⇓
V to denote the value of the expression with respect to the valuation.

We can then give the operational semantics. The notation we use for the opera-
tional semantics includes naming of certain structures for more compact (width-
wise) rules, e.g., writing lcls′ := lcls[x 7→ expr ⇓ lcls] means lcls′ should be
interpreted as lcls[x 7→ expr ⇓ lcls] in the rest of the rule.

Definition 5 (Operational Semantics). The operational semantics of Solid-
ity with taints is given over configurations and transitions labelled by calls and
tainted return values, or by × (denoting an unsuccessful call). The transition
relation → is given by the rules in Fig. 2.

We use ⇒ for the transitive closure of →. We overload ⇒ so that we write

V
call(f,params)
=========⇒

res
V ′ for (V, [])

call(f,params)−−−−−−−−−→ (V, x) ⇒ (V, x′)
res−−→ (V ′, []) (with no

other labelled transitions in between).

Note that we do not define a rule for assert, instead we treat a statement
assert(e) as if(!e) revert(); else{rest of code}.

We briefly describe the semantics. Labels indicate the start of an offchain
call (OffchainCall) or the termination of such a call, either without ex-
ceptions (ReturnOffchain) or with a cancellation and revert of the trans-
action (RevertOffchain). Given a tainting expression, we taint the variable
in the valuation (UpdateTaint), while if the initiator of the call, msg.sender,
is tainted then all the assignments in the remaining statements are also tainted
(UpdateTaintSender). Given an if statement, we evaluate the condition on
the current valuation, and continue in the appropriate branch, while tagging each
branch with the taints of the condition (IfThenElseLeft, IfThenElseRight).

Given an assignment, we first consider when the right-hand side expression is
a value expression and update the value of the variable (NonCallAssignment),
and in the case the instrumented assignment, is used the taint of the variable
is also updated (NonCallAssignmentInstrumented). When there is a call,
we simply place the code of the called function on the stack (Call), note how
our assumption that all variables, parameters, and functions have unique names
ensures the valuation is updated appropriately. The output of a function is then
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used if the call ends successfully (CallReturn) and the taint possibly up-
dated (CallReturnInstrumented), or otherwise a revert is propagated up-
wards (CallRevert). This logic is modified slightly for the case of a guarded
call (GCall, GCallReturn, GCallReturnInstrumented, and GCall-
Revert), where reverts no longer propagate upwards.

2.3 Implementation

Implementing this semantics as is requires augmenting the semantics of Solidity.
Instead, here, we describe how it can be encoded in the full Solidity language.

Taints values. Taint values can be encoded with each taint label as a value in
an enum, and a wrapping struct as a template for values. For example, the dec-
laration BadActorTaint = BadActorUnknown | BadActor (address loc) can be
represented with: enum BadActorTaintLabels = {BadActorUnknown, BadActor}
and struct BadActorTaint = {BadActorTaintLabels label; address loc;}.

Variable Taints. The taint of each variable can be kept track of in a corre-
sponding taint array variable. The tainting of locations in a mapping or array
can also be kept track of in variables of the same structure. A taint expression
taint x by t, can then encoded by simply pushing taint t onto x’s taint array,
e.g., xTaint.push(t). We can have repetition in this case, i.e. xTaint is not a
set, but this does not change the semantics.

Propagating Taints. Propagating taints through instrumented assignments
can be done in two-steps. For direct assignments to a value expression, one can
simply append a statement immediately after the assignment that sets the taint
of the assigned variable to the union of the taint variables of the variables used
in the assignment expression. Assignment to the value of calls however presents
an issue. If the function called is under our control, we can simply edit it to take
parameter taints as inputs and to output also the taints of the return values.
Otherwise5, the taint semantics cannot be replicated. One approach could be to
assume that the output could be tainted by any taint, and thus have a sound
but incomplete dynamic taint analysis. For our purposes, we only consider when
called functions are under our control and then the analysis is sound.

This approach to the implementation can however make the smart contract very
costly (note how checking a taint query requires iterating over an array which
does not have a bounded size). We tackle this through static analysis.

3 Static Analysis

When developing smart contracts one generally aims to reduce the amount of
code and the amount of computation performed. This is due to the notion of gas,
5 If we do not know the code behind a function call we cannot determine the possible

taint of return values.
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(V, [])
call(f,params)−−−−−−−−−−→ (V, [(F(f), params ∪ V)])

OffchainCall

V′ = V[v 7→ lcls(v)]

(V, ((return expr : sts)#T, lcls))
(expr⇓lcls,T∪taint(expr))−−−−−−−−−−−−−−−−−→ (V′, [])

ReturnOffchain

(V, ((revert : sts)#T, lcls))
×−→ (V, [])

RevertOffchain

lcls′ := lcls[xtaint 7→ taintExpr ⇓ lcls]

(V, ((taint x by taintExpr) : sts)#T, lcls) : rest) → (V, (sts#T, lcls′) : rest)
UpdateTaint

T ′ := taintExpr ⇓ lcls

(V, (((taint msg.sender by taintExpr) : sts)#T, lcls) : rest) → (V, (sts#T ′, lcls) : rest)
UpdateTaintSender

c ⇓ lcls

(V, (((if c then sts1 else sts2) : sts)#T, lcls) : rest) → (V, ((sts1#(taint(c)) ++ sts)#T, lcls) : rest)
IfThenElseLeft

¬c ⇓ lcls

(V, ((if c then sts1 else sts2) : sts#T, lcls) : rest) → (V, ((sts2#(taint(c)) ++ sts)#T, lcls) : rest)
IfThenElseRight

c ⇓ lcls

(V, (((while c {sts′}) : sts)#T, lcls) : rest) → (V, (sts′#(taint(c)) ++ (while c {sts′} : sts))#T, lcls) : rest)
WhileEntry

¬c ⇓ lcls

(V, (((while c {sts′}) : sts)#T, lcls) : rest) → (V, (sts#T, lcls) : rest)
WhileExit

lcls′ := lcls[x 7→ expr ⇓ lcls]

(V, (((x
×
= expr) : sts)#T, lcls) : rest) → (V, (sts#T, lcls′) : rest)

NonCallAssignment

lcls′ := lcls[x 7→ expr ⇓ lcls][xtaint 7→ T ∪ taint(expr)]

(V, (((x
✓
= expr) : sts)#T, lcls) : rest) → (V, (sts#T, lcls′) : rest)

NonCallAssignmentInstrumented

calls := (((x
∗
= Call(f ′, params′)) : sts)#T, lcls : rest)

(V, calls) → (V, ((F(f ′)#T, params′ ∪ params′taints ∪ lcls) : calls))
Call

calls := (((x
×
= Call(f ′, params′)) : sts)#T, lcls′) : rest

lcls′′ := lcls[v ̸∈ dom(V) 7→ lcls′(v)][x 7→ expr ⇓ lcls′]

(V, ((return expr : sts′)#T ′, lcls) : calls) → (V, (sts#T, lcls′′) : rest)
CallReturn

calls := (((x
✓
= Call(f ′, params′)) : sts)#T, lcls′) : rest

lcls′′ := lcls[v ̸∈ dom(V) 7→ lcls′(v)][x 7→ expr ⇓ lcls′][xtaint 7→ T ∪ T ′ ∪ taint(expr)]

(V, ((return expr : sts′)#T ′, lcls) : calls) → (V, (sts#T, lcls′′) : rest)
CallReturnInstrumented

calls := (((x
∗
= Call(f ′, params′)) : sts)#T, lcls′ : rest)

(V, ((revert : sts)#T ′, lcls) : calls) → (V, (sts#T, lcls′) : rest′)
CallRevert

calls := (((success, x)
∗
= (guardedcall(f ′, params′)) : sts)#T, lcls : rest)

(V, calls) → (V, ((F(f ′)#T, params′ ∪ lcls) : calls))
GCall

calls := (((success, x)
×
= (guardedcall(f ′, params′)) : sts)#T, lcls′) : rest

lcls′′ := lcls[v ∈ dom(V) 7→ lcls′(v)][x 7→ expr ⇓ lcls′][success 7→ true]

(V, ((return expr : sts′)#T ′, lcls) : calls) → (V, (sts#T, lcls′′) : rest)
GCallReturn

calls := (((success, x)
✓
= (guardedcall(f ′, params′)) : sts)#T, lcls′) : rest

lcls′′ := lcls[v ∈ dom(V) 7→ lcls′(v)][x 7→ expr ⇓ lcls′][xtaint 7→ T ∪ T ′ ∪ taint(expr)][success 7→ true]

(V, ((return expr : sts′)#T ′, lcls) : calls) → (V, (sts#T, lcls′′) : rest)
GCallReturnInstrumented

calls := (((success, x)
∗
= (guardedcall(f ′, params′)) : sts)#T, lcls′) : rest

lcls′′ := lcls′[success 7→ false]

(V, (((revert) : sts)#T ′, lcls) : calls) → (V, (sts#T, lcls′′) : rest)
GCallRevert

Fig. 2. Semantics of grammar in Fig. 1.
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wherein both placing code on the blockchain and executing it has costs. Our de-
scribed implementation, however, requires adding substantial instrumentation:
(1) a taint variable for every variable; and (2) assignment to these taint vari-
ables after every assignment to associated variables. These can add significant
overheads, as we see later in Sec. 4. Yet, not all this instrumentation is required
and tainting is only relevant to the smart contract’s execution when it affects
the flow or output of the smart contract, otherwise it has no impact.

In this section, we give a sound abstract semantics to the language which we
use as the basis for static analysis that is able to modify instrumentation safely
(e.g., transform ✓

= into ×
=), and that can be used to determine the possible value

of conditions on taint at locations of a smart contract.

3.1 Abstract Semantics

Here we define a sound method of propagating taints in a Solidity smart contract,
while abstracting away the values of variables.

In the static context we do not have taint values when the taint is data-
carrying, instead we abstract them by their corresponding taint expression, e.g.,
BadActor(msg.sender) is abstracted by the expression BadActor address. In
this section, we then use these taint expressions as our taints.

Definition 6 (Abstract Taints). The abstraction of a taint tag t, denoted
abs(t), is t itself in the case of a non-data-carrying labels, and the corresponding
taint expression with values replaced by their types for data-carrying labels. We
overload abs to also range over sets of taints, i.e., abs(T ) def

= {abs(t) | t ∈ T}.

We will also require a notion of projecting concrete valuations and return
values onto their original variable value parts and the taint parts.

Definition 7 (Valuation and Return Value Projection). V|vars projects
V onto its variable domain, ignoring tainting. ret|vars is similar, while × re-
mains ×. Similarly, |taints projects V and ret onto taint variables.

A remaining issue is branching in the code as caused by an if-then-else, where
the taint at runtime depends on which branch is taken. Statically we have to
consider both branches, since we want to handle every possible case. Since we
will be dealing with each function on its own, and Solidity smart contracts have
a tendency to be small (due to gas costs), here we will deal with this simply by
non-deterministically branching. In other contexts this may not be ideal, since
this may incur a degree of repetition which may worsen the state space explosion.

We re-use the # and taint operators here, appropriately re-interpreted for
this abstract context (i.e. # instruments with abstract taints, and taint returns
the abstract taints of an expression).

The semantics we give is over abstract configurations, which only maintain
information about the next statement to execute and an abstract taint function.

Definition 8 (Abstract Configurations). An abstract configuration is a
pair ⟨calls, tnts,F⟩ with:
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1. calls is an abstract call stack, with elements as abstractly tainted statements;
2. tnts is an abstract taint valuation; and
3. F, being the code, a mapping from function names to the function’s list of

statements (left implicit).

We can then give our abstract operational semantics.

Definition 9 (Abstract Operational Semantics). The abstract operational
semantics of Solidity with taints is given over abstract configurations. The tran-
sition relation →, is given by the rules in Fig. 3, with ⇛ as its transitive closure.

Every rule given is a direct counterpart of the similarly named rules in Fig. 2,
with some rules combined into one here.

We can prove that this abstract semantics soundly abstracts the concrete
semantics of the language, i.e., that when a call produces a return value with
a certain concrete taint in the concrete semantics, then there is a path in the
abstract semantics that produces an abstract version of the concrete taint.

Theorem 1. (V, [])
call(f,params)
==========⇒
(expr⇓V ′,T )

V′ implies ∃sts, T ′, tnts′ ·(F(f),V|taints) ⇛

((return expr : sts)#T ′, tnts′) ∧ abs(T ) = T ′ ∪ taint(expr, tnts′).

3.2 Analysis and Optimisation

The abstract semantics we gave can be the formal basis of different static anal-
yses. Here we characterise when a static analysis reduces instrumentation in a
correct manner. However, instead of working with the code, for static analysis it
is often more useful to make the control-flow between statements explicit. Stan-
dard techniques can be used to transform Solidity code into a graph and back
(e.g., as supported by existing tools [6, 5]).

Definition 10 (Function Control-flow Graph). The control-flow graph of
a function F is a tuple CF = ⟨S, label, s0, Ret, Rev,→⟩, with S being a set of
states, label : S → Stmt associating each state with a statement, s0 being the
initial state, Ret being the set of states associated with return statements, and
Rev being the set of states associated with revert statements. →: S × S is a
transition relation denoting the control-flow between the statements.

We can then augment the control-flow graph by considering its abstract ex-
ecution with the abstract semantics. The states in the graph then become pairs
of statements and abstract taint functions.

Moreover, we consider a special abstract taint expression ∗ that denotes vari-
ables could be tainted by any taint set; we will be using this to be able to reason
about each function intraprocedurally, by starting with an abstract taint function
that assigns ∗ to every variable: initTnt, s.t. initTnt(v) = ∗.
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(((taint x by T ) : sts)#T ′, tnts) → (sts#T ′, tnts[x 7→ T ∪ T ′])
AUpdateTaint

(((taint msg.sender by T ) : sts)#T ′, tnts) → (sts#(T ∪ T ′), tnts)
AUpdateTaintSender

(((x
×
= expr) : sts)#T, tnts) → (sts#T, tnts)

ANonCallAssignment

tnts′ = tnts[xtaint 7→ T ∪ taints(expr)]

(((x
✓
= expr) : sts)#T, tnts) → (sts#T, tnts′)

ANonCallAssignmentInstrumented

(((if c then sts1 else sts2) : sts)#T, tnts) → ((sts1#taint(c) ++ sts)#T, tnts)
(((if c then sts1 else sts2) : sts)#T, tnts) → ((sts2#taint(c) ++ sts)#T, tnts)

AIfThenElse

(((while c {sts′}) : sts)#T, tnts) → (((sts′#taint(c) ++ ((while c {sts′}) : sts))#T, tnts)
(((while c {sts′}) : sts)#T, tnts) → (sts#T, tnts)

AWhile

call := (((x
×
= Call(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((return expr : sts)#T ′, tnts′)

call → (sts#T, tnts′)
ACallReturn

call := (((x
✓
= Call(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((return expr : sts)#T ′, tnts′)

call → (sts#T, tnts′[x 7→ T ∪ T ′ ∪ tnts(expr)])
ACallReturnInstrumented

call := (((x
∗
= Call(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((revert : sts)#T ′, tnts′)

call → (revert#T, tnts′)
ACallRevert

call := ((((success, x)
×
= GuardedCall(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((return expr : sts)#T ′, tnts′)

call → (sts#T, tnts′)
AGCallReturn

call := ((((success, x)
✓
= GuardedCall(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((return expr : sts)#T ′, tnts′)

call → (sts#T, tnts′[x 7→ T ∪ T ′ ∪ tnts′(expr)])
AGCallReturnInstrumented

call := (((x
∗
= Call(f ′, params′)) : sts)#T, tnts)

(F(f ′)#T, tnts) → ((revert : sts)#T ′, tnts′)

call → (sts#T, tnts′)
AGCallRevert

Fig. 3. Abstract static semantics of grammar in Fig. 1.



12 S. Azzopardi et al.

Definition 11 (Tainted Function Control-flow Graph). The tainted control-
flow graph of a function F is a tuple t(CF ) = ⟨S, tlabel, s0, Ret, Rev,→⟩, defined
as before, but with tlabel : S → Stmt × Vtaints associating each state with a
statement and an abstract taint function.

The construction proceeds by associating the initial state with the most ab-
stract taint function, tlabel(s0) = (st0, initTnt), and when for states s and s′,
s → s′ in CF , then if tlabel(s) = (label(s), tnt) and (label(s) : [label(s′)], tnt) →
(label(s′), tnt′) (in the abstract semantics), we set tlabel(s′) = (label(s′), tnt′).

Note how we have a finite amount of abstract taints and statements, and
thus applying the abstract semantics will terminate, if there is no recursive call.
In the case of a recursive call we have several options, e.g., tainting with ∗, or
running the call until a fixed point of taints is reached.

Our static analysis will involve transformation of the instrumentation of a
function while retaining the same semantics, which we characterise below.

Definition 12 (Instrumentation Reduction). Given functions F and F ′,
F ′ is said to be an instrumentation reduction of a function F , in the context of
a set of functions F, written F ′ ≤t F iff (1) F and F ′ only differ on the use
of ✓

= or ×
=, or on the presence of taint by expressions; (2) replacing a call to F

with one to F ′ does not change the values of variables, but may associate less
(but not different) taints to variables, formally:

For an arbitrary n, consider any arbitrary sequence of n function calls (to
functions from F), ci, any initial valuation V0, and the corresponding n valu-
ations Vi+1 and return values reti+1, such that Vi

ci====⇒
reti+1

Vi+1. If, for some

index j, cj is a call to F , then replacing cj with c′j, a call to F ′ but with the
same parameters and message, induces n − j new valuations and return values

V′
j+1, ...,V

′
n+1 and ret′j+1, ..., ret

′
n+1 such that Vj

c′j
====⇒
ret′j+1

V′
j+1 (and so on),

then for all indices k bigger than j the corresponding valuations and return val-
ues with taints projected out, are equivalent: Vk|vars = V′

k|vars and retk|vars =
ret′k|vars , while the taint projected parts in the reduced version are contained in
the other: ∀v ·V′

k|taints(v) ⊆ Vk|taints(v) and ret′k|taints ⊆ retk|taints.

We then describe informally several instrumentation reducing analyses that
can be performed on the set of tainted control-flow graphs of a smart contract.
Removing Irrelevant Instrumentation Given a function F ∈ F, we can
identify statements in that function whose evaluation depends on the taint of
some variable, generally either conditional or return statements. For each such
statement, we can do a transitive backwards analysis to determine the set of
taints and the set of variables that are relevant.

Then, collecting all this information from all the functions in F, we can
identify the taint instrumentation nodes that set the taint of a variable such
that the variable and its taint may be relevant to some conditional statement in
the smart contract. Irrelevant taint instrumentation nodes can be removed.
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For example, where T and T ′ are distinct concrete taint labels:

taint v by T’; x
✓
= v;

assert(x tainted-by T);
≤t

x
×
= v; assert(x tainted-by

T);

On the left-hand side, x is relevant to the conditional on the third line, but
it is only relevant to it when x is tainted by T . Thus, barring any other need for
knowing about the taint of v or x with T ′, the right-hand is equivalent to the
above modulo the assert statement.

Moreover, consider that a variable is tainted twice in a function with such
a label, and between these two locations there is no point where the first taint
of the variable is used. Then we can just discard the first instrumentation, and
keep the last one, since the first one is unused and later overwritten.

For example (assume the only conditional statement is the visible assert):

uint v, x, y;
...

x
✓
= v;

...

x
✓
= 7*y;

assert(x tainted-by T);

≤t

uint v, x, y;
...

x
×
= v;

...

x
✓
= 7*y;

assert(x tainted-by T);

Here, if y does not also depend previously on x, we can simply turn off the
first tainting of x, since it will later be overwritten.
Push Forward Instrumentation Instrumentation points can set the taint
of a variable v to that of another variable v′. We observe that sometimes the
taint of variable v′ is only relevant because it is relevant for v. However, if
the taint instrumentation in question is in the same function we simply replace
the reference to the taint of v′ in the instrumentation of v by the concrete
taint instrumentation of v′. Then the tainting of v′ can be removed as in the
previous optimisation. This concretisation can be performed easily, without any
restrictions, for non-data-carrying labels. However, in the case of data-carrying
labels we need to also make sure that the label does not contain references to
variables that are modified in the flow between v′ and v.
For example:

taint par by T;
uint v, v';

v'
✓
= /* an operation on par */;

v
✓
= /* an operation on v' */;

assert(v tainted-by T);

≤t

uint v, v';

v'
×
= /* an operation on par */;

v
×
= /* an operation on v' */;

taint v by T;
assert(v tainted-by T);

If the left-hand side is the whole body of a function, or we know that the
parameter par and v′ are not relevant to any other conditional statement, then
simply removing their tainting instrumentation, and simply tainting v will be
an appropriate reduction.
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Table 1. Results, with costs in gas and increases in percentage w.r.t. to original costs.

Costs Original Tainted Optimised
gas gas % gas %

Deployment 1276798 2213484 +73% 1694698 +32%
recordGrapeProductionFarmer Call 131783 312792 +137% 176743 +34%
recordGrapeProductionLab Call 152570 299379 +96% 242388 +58%
updateGrapeProductionLab Call 106448 121014 +13% 115372 +8%
Average Business Flow 225814 445715 +97% 300747 +33%

These two optimisations can be performed on the smart contract until a
fixpoint is reached. We next consider the savings these give with a case study.

4 Case Study

We consider a smart contract which can be used to record and authenticate
the provenance, quality, and use of grapes for the production of wine. Fig. 4
illustrates a selection of the functions of this smart contract, along with taint
annotations in our language, in boldface. Note that for simplicity in this case
study a variable can only have one taint.

This contract allows a farmer to record a grape production on the smart con-
tract, which is given a certain unique identifier (recordGrapeProductionFarmer).
We also allow accredited labs to either register a grape production themselves,
or update the farmer record, which we do not show here since they are similar
to the recordGrapeProductionFarmer function. Sale of grapes to another person
is also recorded on the blockchain (recordSale). The owner of a certain grape
production can then record the bottling of wine produced from grapes they own
(RecordBottling), while official certification providers can give a certain certifi-
cation to the grapes, depending on the location they are produced in.

In this smart contract, we are interested in specifying that the right kind of
accredited lab was involved in determining the recording of a grape production
involved in making a wine, depending on whether the wine involves multiple
grape sources or just one (see the asserts over taints in recordDOK). It bears
to note that the benefit of taints here is that propagation of taints is done
automatically, while a manual ad hoc approach is open for errors.

In Fig. 5 we report the recordGrapeProductionFarmer function with the
encoding in Solidity described in Sec. 2.3. After the optimisations described in
Sec. 3.2, the result is shown in Fig. 6, a significant reduction.

We evaluated this smart contract to identify the gas costs when there are no
taints, to when the taint instrumentation is performed, and after it is optimised.
The results are shown in Table. 1. We report the results for each individual func-
tion given expected input, and for the average gas cost given a set of randomly
generated expected (i.e., non-reverting) flows. One can see optimisation through
the presented static analyses reduces costs significantly, up to around two thirds
in the case of an average flow, validating the viability of the approach.
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newtaint Taint = Farmer [address,uint] | Lab [address sender, uint]

function recordGrapeProductionFarmer(uint varietyOfGrapes, uint date, Location productionLoc,
GrapeQuality calldata qualityParameters) public returns(uint){

taint msg.sender by Farmer(msg.sender, block.timestamp)
require(!accredFullAnalysisLabs[msg.sender] && !accredSimpleAnalysisLabs[msg.sender]);
grapeIdCounter++;

GrapeProduction memory grapeProduction =
GrapeProduction(varietyOfGrapes,

msg.sender,
date,
productionLoc,
address(0),
qualityParameters,
0);

grapeProd[grapeIdCounter] = grapeProduction;
grapeToOwner[grapeIdCounter] = grapeProd[grapeIdCounter].farmer;
return grapeIdCounter;

}

function recordSale(uint grapeid, address newOwner) public
only(grapeToOwner[grapeid]){
grapeToOwner[grapeid] = newOwner;

}

function recordBottling(uint[] calldata grapeids) public{
wineIdCounter++;
for(uint i = 0; i < grapeids.length; i++){

assert(grapeToOwner[grapeids[i]] == msg.sender);
wineToGrape[wineIdCounter].push(grapeids[i]);

}
}

function recordDOK(uint wineID, DOKType dok, bool mixedWine) public{
require(certificationProviders[msg.sender]);

uint[] memory grapeSources = wineToGrape[wineID];

if(mixedWine){
assert(grapeSources.length > 1);
for(uint i = 0; i < grapeSources.length; i++){
assert(accredFullAnalysisLabs[taint-of(grapeProdTaints[grapeSources[i]])).sender]);
}

} else {
for(uint i = 0; i < grapeSources.length; i++) {
assert(accredFullAnalysisLabs[taint-of(grapeProdTaints[grapeSources[i]])).sender] ||

accredSimpleAnalysisLabs[taint-of(grapeProdTaints[grapeSources[i]])).sender]);
}

}

wineBatchCertified[wineID] = dok;
}

Fig. 4. Extract from case study smart contract (the.
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function recordGrapeProductionFarmer(uint varietyOfGrapes, uint date, Location productionLoc,
GrapeQuality calldata qualityParameters) public returns(uint){

require(!accredFullAnalysisLabs[msg.sender] && !accredSimpleAnalysisLabs[msg.sender]);
senderTaint[msg.sender] = Taint(constructors.Farmer, msg.sender, block.timestamp);

grapeIdCounter++;
grapeIdCounterTaint = senderTaint[msg.sender];

GrapeProduction memory grapeProduction =
GrapeProduction(varietyOfGrapes,

msg.sender,
date,
productionLoc,
address(0),
qualityParameters,
0);

Taint memory grapeProductionTaint = senderTaint[msg.sender];

grapeProd[grapeIdCounter] = grapeProduction;
grapeProdTaints[grapeIdCounter] = grapeProductionTaint;

grapeToOwner[grapeIdCounter] = grapeProd[grapeIdCounter].farmer;
grapeToOwnerTaints[grapeIdCounter] = grapeProdTaints[grapeIdCounter];
return grapeIdCounter;

}

Fig. 5. Encoding of taint propagation in recordGrapeProductionFarmer.

function recordGrapeProductionFarmer(uint varietyOfGrapes, uint date, Location productionLoc,
GrapeQuality calldata qualityParameters) public returns(uint){

require(!accredFullAnalysisLabs[msg.sender] && !accredSimpleAnalysisLabs[msg.sender]);

grapeIdCounter++;

GrapeProduction memory grapeProduction =
GrapeProduction(varietyOfGrapes,

msg.sender,
date,
productionLoc,
address(0),
qualityParameters,
0);

grapeProd[grapeIdCounter] = grapeProduction;
grapeProdTaints[grapeIdCounter] = Taint(constructors.Farmer, msg.sender, block.timestamp);

grapeToOwner[grapeIdCounter] = grapeProd[grapeIdCounter].farmer;
return grapeIdCounter;

}

Fig. 6. recordGrapeProductionFarmer after optimisation of taint propagation.
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5 Discussion

The taints we have added here are different from the usual taints considered in
taint analysis. Usually, something is considered as tainted or not tainted, while
here tainting can be with different labels, even sets of labels. This is a more
powerful concept, since it allows to talk about all the contributing actors to a
value, rather that simply talk about whether something is a security risk or not
(without identifying what caused that security risk). That we integrate queries
about these taints into a language, allowing branching in the program due to
taints, is also novel to the best of our knowledge, since standard taint analysis
simply is concerned with preventing certain data from reaching certain sinks.

These queries allow the developer to make decisions based on whether they
trust the source of some data or not. For example in the case study the devel-
oper requires that information comes from a certain kind of lab when the wine
is of a certain kind. This can certainly be implemented in an ad hoc manner
without taints, but we believe that this kind of reasoning about trust at the
top-level can be very useful due to the immutability of smart contracts and their
public accessibility. A high-level approach gives certain guarantees that ad hoc
implementations do not give, while static analysis tackles issues of gas.

Moreover, allowing taint queries at the level of if-then-else constructs opens
up the possibility to modify branching at runtime depending on the trust level
one has towards sources of taints. This can be used not just to prevent untrust-
worthy data to have an effect on the smart contract, but also to keep track of
bad flows and perform actions that sanitise such data or to sanction their source.

6 Conclusions

A smart contract on a blockchain is open for interaction, with input coming
from different, possibly untrustworthy sources. Keeping track of the sources of
some data can be useful, for example when an event of interest happens we can
then query the source of the event and contributing smart contract state, and
make decisions based on that. In this paper, we have incorporated dynamic taint
analysis for Solidity smart contracts through an extension of the language with
a formal semantics, while we have described how this can be implemented in
Solidity. We have also introduced a way to perform static tainting, which we use
to prune away some of the instrumentation judged inconsequential for dynamic
tainting. Evaluation on a case study, validates the static analysis as potentially
eliminating a significant amount of overhead.

Future Work. In our abstract semantics we abstract taints by their correspond-
ing taint type expression. In the future we want to consider also adding some
information in the abstract taints to be able to relate them together, for example
adding information about the line of code where the taint is created. Moreover,
we do not do any analysis of variable values at the static level, however we
intend to use techniques and tooling from [5, 6] to enable some abstraction of
these, which would allow more fine-grained static taint analysis.
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