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Abstract. Smart contracts present new challenges for runtime verifica-
tion techniques, due to features such as immutability of the code and the
notion of gas that must be paid for the execution of code. In this paper
we present the runtime verification tool ContractLarva and outline
its use in instrumenting monitors in smart contracts written in Solidity,
for the Ethereum blockchain-based distributed computing platform. We
discuss the challenges faced in doing so, and how some of these can be
addressed, using the ERC-20 token standard to illustrate the techniques.
We conclude by proposing a list of open challenges in smart contract and
blockchain monitoring.

1 Introduction

Although the general principles of runtime monitoring and verification are well
established [15,24,5], applying these techniques and building tool support for
new architectures frequently brings to the fore challenges in dealing with certain
aspects of the architecture. Over the past few years, the domain of blockchain and
distributed ledger technologies has increased in importance and pervasion, and
with it came an arguably new software paradigm or architecture, that of smart
contracts. Borrowing much from a multitude of existing technologies, including
distributed computing and transaction-based systems, brings forth a new set of
challenges for runtime monitoring and verification. In this paper, we expose our
runtime verification tool ContractLarva for monitoring smart contracts, and
discuss the open challenges in adapting dynamic verification for this domain.

The key novel idea behind distributed ledger technologies (DLTs), is how
to achieve an implementation of a distributed and decentralised ledger, typi-
cally guaranteeing properties such as transaction immutability3 i.e. achieving
a form of ledger synchronisation without the need for central points of trust.
Blockchain was one of the first algorithmic solutions proposed to achieve these
goals, with the underlying ledger being used to enable keeping track of transac-
tions in Bitcoin [26], the first instance of a cryptocurrency. Since then, various
extensions and variants were proposed, with one major idea being that of smart

3 In this context, one typically finds the use of the term immutability for immutability
of transactions or data written in the past, whilst still allowing for appending new
entries (in a controlled manner) to the ledger.



contracts, allowing not only the immutable storage of transactions, but also that
of logic which may perform such transactions. Smart contracts thus enable the
enforcement of complex exchanges (possibly consisting of multiple transactions)
between parties in an indisputable and immutable manner.

Smart contracts in themselves are not a new concept. They were originally
proposed by Nick Szabo in 1996 [30] as “contracts [. . . ] robust against näıve
vandalism and against sophisticated, incentive compatible breach.” Szabo’s view
was that while legal contracts typically specify ideal behaviour — the way things
should be — e.g. “The seller is obliged to deliver the ordered items on time,”
nothing stops the parties involved from behaving outside these bounds4, a smart
contract would enforce the behaviour, effectively ensuring that it is not violated
in the first place. As most eminently highlighted by Lessig, “code is law” [23]
— what code allows the parties to do or stops them from doing, effectively acts
as theoretically inviolable legislation. The smart contract thus would typically
chooses a path of action which ensures compliance with the agreement the parties
have in mind. However, nothing stops the party entrusted with executing the
code from modifying it or its behaviour, hence there remains the requirement of
4a regulatory structure to safeguard that such modifications do not occur — in
practice, simply moving the need for a legal contract one step away.

Blockchain, however, provided a means of doing away with the need for such
centralised trust in or legal agreement with the party executing the code, and the
first realisation of this notion was the Ethereum blockchain [32], which supported
smart contracts in the form of executable code running on a decentralised virtual
machine, the Ethereum Virtual Machine (EVM), on the blockchain.

For instance, consider the natural language (legal) contract regulating a pro-
curement process between a buyer and a seller, as shown in Figure 1. Clause 8
states that: “Upon placing an order, the buyer is obliged to ensure that there
is enough money in escrow to cover payment of all pending orders.” This may
be achieved in different ways. For example, this may be achieved by receiving
payment upon the creation of every new order. However, since (according to
clause 3) the buyer will already have put in escrow payment for the minimum
number of items to be ordered, one may choose to use these funds as long as
there are enough to cover the newly placed order, still satisfying clause 3. The
legal contract does not enforce either of these behaviours, but rather insists that
the overall effect is that of ensuring funds are available in escrow. In contrast,
a (deterministic) executable enforcement of the contract would have to choose
one of the behaviours to be executed.

The question as to whether specifications should be executable or not has
a long history in computer science (see [17] vs. [20]). Executable specifications
require a description of how to achieve a desired state as opposed to simply
describing what that state should look like in a declarative specification — and

4 In practice, what stops these parties from doing so is the threat to be sued for breach
of contract, which happens outside the realm of the contract itself.
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1. This contract is between 〈buyer-name〉, henceforth referred to as ‘the buyer’ and
〈seller-name〉, henceforth referred to as ‘the seller’. The contract will hold until either party
requests its termination.

2. The buyer is obliged to order at least 〈minimum-items〉, but no more than 〈maximum-items〉
items for a fixed price 〈price〉 before the termination of this contract.

3. Notwithstanding clause 1, no request for termination will be accepted before
〈contract-end-date〉. Furthermore, the seller may not terminate the contract as long
as there are pending orders.

4. Upon enactment of this contract, the buyer is obliged to place the cost of the minimum
number of items to be ordered in escrow.

5. Upon accepting this contract, the seller is obliged to place the amount of
〈performance-guarantee〉 in escrow.

6. Upon termination of the contract, the seller is guaranteed to have received payment covering
the cost of the minimum number of items to be ordered unless less than this amount is
delivered, in which case the cost of the undelivered items is not guaranteed.

7. The buyer has the right to place an order for an amount of items and a specified time-frame
as long as (i) the running number of items ordered does not exceed the maximum stipulated
in clause 2; and (ii) the time-frame must be of at least 24 hours, but may not extend beyond
the contract end date specified in clause 2.

8. Upon placing an order, the buyer is obliged to ensure that there is enough money in escrow
to cover payment of all pending orders.

9. Upon delivery, the seller receives payment of the order.
10. Upon termination of the contract, any undelivered orders are automatically cancelled, and

the seller loses the right to receive payment for these orders.
11. Upon termination of the contract, if either any orders were undelivered or more than 25% of

the orders were delivered late, the buyer has the right to receive the performance guarantee
placed in escrow according to clause 5. Otherwise, it is released back to the seller.

Fig. 1. A legal contract regulating a procurement process.

the ‘how’ is often more complex than the ‘what’5, and leaves more room for
error.

The possibility of error is a major issue. Smart contracts, being executable
artifacts, do exactly what they say they do, but that might not be what the
contract should have done. As smart contracts grow in size and complexity, this
issue becomes more worrying, and there have been well-known instances of such
smart contracts that allow for misbehaviour, for instance, on Ethereum [4]. Ide-
ally, the correctness of smart contracts is verified statically at compile time, but
using automated static analysis techniques to prove business-logic level proper-
ties of smart contracts has had limited success, with most work focussing on
classes of non-functional bugs. This leaves great scope for runtime verification
to provide guarantees over smart contracts.

In this paper, we present ContractLarva6, a tool for the runtime ver-
ification of smart contracts written in Solidity, a smart contract programming
language originally proposed for the use on Ethereum, but now also used on other
blockchain systems. We summarise the salient features of Solidity in Section 2,
and discuss the design of ContractLarva in Section 3. Given the immutable
nature of smart contracts, bugs can be a major issue since simply updating the

5 NP-complete problems are a classical case of this — although there is no known
deterministic polynomial algorithm which can find a solution to instances of any one
of these problems, a known solution to an NP-complete problem instance can be
verified in polynomial time on a deterministic machine.

6 Available from https://github.com/gordonpace/contractLarva.
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code may not be an option. We discuss how this can be addressed using dynamic
verification in Section 4. There are many other open challenges in smart con-
tract monitoring, some of which are discussed in Section 5, while in Section 6
we discuss existing work in verification of smart contracts. Finally, we conclude
in Section 7.

2 Smart Contracts and Solidity

Blockchains provide a decentralised means of a shared ledger which is tamper-
proof and verifiable. Smart contracts built on a blockchain (like Ethereum) allow
for decentralised execution of code, which could implement agreements between
different parties, similarly in a tamperproof and verifiable manner. Solidity is the
most popular language used to write Ethereum smart contracts. Solidity gets
compiled down to EVM bytecode — a 256-bit stack-based instruction set which
the Ethereum virtual machine will execute. At the bytecode execution level, the
EVM can be seen as a ‘one world computer’ — a single shared abstract com-
puter that can execute smart contract code. Once a smart contract is compiled
to EVM bytecode, the contract may be uploaded and enacted on the blockchain
having it reside at a particular address, thus allowing external entities to trigger
its behaviour through function calls — therefore a smart contract’s publicly ex-
ecutable functions represents the contract’s Application Programming Interface
(API). Functions are atomic i.e. they execute from beginning to end without
interruption, and the EVM is single threaded which implies that only one func-
tion, or rather one instruction from all smart contracts is executed at a time,
even though the EVM is distributed amongst all nodes. This implies that a long
running function, or more so a function that never terminates, would slow down
or stop all other smart contracts on the platform from executing. To prevent
this, Ethereum requires an amount of gas to be sent by the initiator to be used
to pay for the execution of code. If the gas runs out, then execution stops and
all state changed since execution initiation is reverted. This mechanism ensures
that infinite loops will eventually stop since the finite amount of gas associated
with the execution will eventually run out. Although EVM bytecode is Tur-
ing complete, this limitation creates disincentives for creating sophisticated and
resource-intensive smart contracts.

Using Solidity, the procurement legal contract from Figure 1 can be trans-
formed into a smart contract — the associated interface is shown in Listing 1.
The contract allows the seller and buyer to invoke behaviour (such as placing an
order, terminating the contract and specifying that a delivery was made).

We will now highlight Solidity’s salient features required to appreciate this
work. Solidity allows standard enumerated types (e.g. line 2 in Listing 1), and
key-value associative arrays or mappings (e.g. line 4 defines a mapping from a
16-bit unsigned integer to an Order structure used to map from the order number
to information, and line 7 of Listing 2 shows how the values can be accessed).

Functions can be defined as (i) private: can only be accessed by the smart
contract itself; (ii) internal: the contract itself and any contract extending it
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Listing 1. The interface of a smart contract regulating procurement in Solidity.

1 contract ProcurementContract {
2 enum ContractStatus {Open , Closed}
3 ContractStatus public status;
4 mapping (uint16 => Order) public orders;
5 . . .
6
7 function ProcurementContract(
8 uint _endDate , uint _price ,
9 uint _minimumItems , uint _maximumItems
10 ) public { . . . }
11
12 function acceptProcurementContract () public { . . . }
13
14 function placeOrder(
15 uint16 _orderNumber , uint _itemsOrdered ,
16 uint _timeOfDelivery
17 ) public { . . . }
18
19 function deliveryMade(
20 uint16 _orderNumber
21 ) public byBuyer { . . . }
22
23 function terminateContract () public { . . . }
24 }
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can access the function; (iii) external: can be accessed from an external call;
and (iv) public: can be called from anywhere. These access modifiers only define
from where a function can be called but not who can call such functions — a
public function could be called from anyone. As part of a contract it is important
to define which parties can initiate different contract functions.

Listing 2. Part of the implementation of the procurement smart contract.

1 modifier byBuyer {
2 require(msg.sender ==buyer);
3 _;
4 }
5
6 function deliveryMade(uint16 _orderNumber) public byBuyer {
7 Order memory order = orders[_orderNumber ];
8 // Ensure that the order exists and has
9 // not yet been delivered
10 require(
11 order.exists && order.status != OrderStatus.Delivered
12 );
13 // Order state update
14 order.status = OrderStatus.Delivered;
15 // Contract state update
16 if (order.deliveryTimeDue < now) {
17 lateOrdersCount ++;
18 } else {
19 inTimeOrdersCount ++;
20 }
21 // Sign delivery with the courier service
22 courierContract.call(
23 bytes4(keccak256("sign(uint256)")), buyer
24 );
25 // Pay the seller
26 seller.transfer(order.cost);
27
28 emit DeliveryMade(_orderNumber);
29 }
30
31 event DeliveryMade(uint16 _orderNumber);

Function modifiers provide a convenient reusable method to define ways of
modifying the behaviour of functions in a uniform manner, such as this validation
logic. Line 1 in Listing 2 defines a byBuyer modifier which checks whether the
function invoker, retrieved using msg.sender, is indeed the buyer (the buyer’s
address would have had to be specified somewhere else in the contract), with
the underscore indicating the execution of the original code of the function being
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affected by this modifier. Solidity provides such language construct validation
guards including require which allows for testing of conditions in which case
if the condition does not hold, execution will halt and all state changes will be
reverted (this can also be done with the revert() instruction). It is worth noting
that revert bubbles up normal function calls i.e. when a function call results in
a revert, the calling function also fails and reverts. The only way to stop such
revert cascades is to explicitly invoke the called function of another contract using
the low-level addr.call(. . . ) EVM opcode which calls the function given as
parameter of the contract residing at the given address, but which returns a
boolean value stating whether the call failed or not. Line 19 triggers a signature
on a separate contract with the courier, but avoiding the delivery to fail if the
signature does not go through for whatever reason. If the call is to be made to
a function from another contract, but within the state space of the current one
(i.e. having access to the data and functions of the calling contract), a similar
opcode addr.delegatecall(. . . ) can be used.

The byBuyer modifier is used in line 6 to ensure that function deliveryMade
can only be called by the buyer. Note how the underscore at line 3 specifies that
the associated function logic (in this case deliveryMade()) should be performed
after executing line 2.

Each smart contract inherently is also an Ethereum account, allowing it to
hold Ether (Ethereum’s cryptocurrency) as well as transfer it to other accounts.
Incoming transfers are done with function calls which are tagged as payable,
which enable the caller to send funds when triggering the function. Outgoing
transfers can be done using the addr.transfer(amount) function, which sends
the specified amount of cryptocurrency to the given address. For example, line
21 in Listing 2 performs a transfer of the amount of order.cost from the smart
contract’s internal account to the seller account. Finally, Solidity smart con-
tracts can emit events that may be listened to (asynchronously) by applications
off the chain. For example, a mobile application can listen to the event defined
on line 26, and triggered on line 23 — thus notifying the seller that the buyer
has acknowledged receipt and has affected payment.

3 Runtime Verification of Solidity Smart Contracts

ContractLarva is a runtime verification tool for contracts written in Solidity.
It works at the Solidity source level of the smart contract and since once deployed,
the code of a smart contract is immutable, it is meant to be applied before
deployment. As shown in Figure 2, extra code is instrumented into the smart
contract based on a given specification, to add runtime checks ensuring that any
violation of the specification is detected and may thus be reacted upon.

The tool takes (i) a smart contract written in Solidity; and (ii) a specification
written using an automaton-based formalism based on that used in the Larva
runtime verification tool for Java [13], and produces a new smart contract which
is functionally identical to the original as long as the specification is not vio-
lated, but has additional code to (i) track the behaviour of the smart contract
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Fig. 2. Workflow using ContractLarva

with respect to the specification; and (ii) deal with violations as given in the
specification.

3.1 Runtime Points-of-Interest in Smart Contracts

In any dynamic analysis technique with temporal specifications that express
what should happen and in which order, one key element is the identification
of which points during the execution of a smart contract can be captured by
the analysis and thus analysed at runtime. These points-of-interest, or events7

typically require balancing between what is required to specify the correctness of
the system, with what can be efficiently extracted. Given that ContractLarva
works at the source level, it makes sense to annotate points in the control flow
of the smart contract in order to generate events when reached. Also of interest
are updates to the global state (variable) which may happen at different control
points e.g. the status of the procurement contract (whether it is proposed, active
or terminated) is set in different functions, even though one may want to ensure
that a terminated contract is never reactivated, thus requiring reasoning about
runtime points when the status variable is updated. For this reason, Contract-
Larva also allows the capture of data-flow points-of-interest. These are the two
types of events which can be used in ContractLarva:

1. Control-flow triggers which trigger when a function is called or control exits
that function: (a) before:function, triggers whenever function is called
and before any of the function’s code is executed; and (b) after:function,
triggers the moment function terminates successfully (i.e. not reverted). In
both cases, the value of the parameters can be accessed by being specified in
the event e.g. before:deliveryMade( orderId), but may be left out if they
are not used.

2. Data-flow triggers, trigger when an assignment on a global variable occurs
(even if the value of the variable does not change) — var@(condition)
triggers whenever variable var is assigned to (just after the assignment is
performed), with the condition holding. The condition in variable assign-
ment triggers can refer to the value of variable var before assignment using

7 The choice of the term event, frequently used in runtime verification, is unfortunately
overloaded with the notion of events in Solidity. In the rest of the paper, we use the
term to refer to runtime points-of-interest.
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LARVA previous var e.g. to trigger when the procurement contract status
goes from Closed to Open, one would use the event:

status@(
LARVA previous status==ContractStatus.Closed &&
status==ContractStatus.Open

)

It is worth remarking that all events trigger if they happen during an execu-
tion which succeeds (that is, not reverted). For instance, the control flow event
before:deliveryMade would not be triggered when deliveryMade is called with
an order number which does not exist and thus result in a revert due to a require
statement. Similarly, if deliveryMade is called with insufficient gas to execute
successfully, the event would not trigger.

3.2 Specifying Properties

In order to characterise correct and incorrect behaviour, ContractLarva uses
automaton-based specifications in the form of dynamic event automata (DEAs)
— finite state automata with symbolic state, based on dynamic automata with
timers and events (DATEs) used for specifications in Larva [13] but lacking
timers and quantification, and quantified event automata (QEAs) as used in
MarQ [29], but lacking quantification.

A DEA consists of a deterministic automaton, listening to contract event
triggers. A number of the states are annotated as bad states which, when reached,
denote that a violation has occurred, and other annotated as accepting states
denoting that when reached, the trace has been accepted and monitoring is no
longer required. DEAs thus categorise traces into three sets: rejected traces,
accepted ones and others which cannot yet be given a verdict. The automata
used are, however, symbolic automata — in that they may use and manipulate
monitoring variables. Transitions are annotated by a triple: e | c 7→ a, where (i) e
is the event which will trigger the transition, (ii) c is a condition over the state of
the smart contract and the symbolic monitoring state determining whether the
transition is to be taken, and finally (iii) a is an executable action (code) which
may have a side-effect on the monitoring state, and which will be executed if the
transition is taken. Both condition and action can be left out if the condition is
true or no action is to be taken respectively.

For instance, consider clause 6 of the legal contract which states that “Upon
termination of the contract, the seller is guaranteed to have received payment
covering the cost of the minimum number of items to be ordered unless less
than this amount is delivered, in which case the cost of the undelivered items is
not guaranteed.” Figure 3(a) shows how this clause may be implemented. The
DEA keeps track of (i) the number of items delivered (in a monitoring variable
delivered); and (ii) the amount of money transferred to the seller (in the variable
payment). If the contract is closed and the seller has not yet been sufficiently paid
(for the minimum number of items to be ordered less any undelivered items), the
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DEA goes to a bad state marked with a cross. On the other hand, if during the
lifetime of the contract, the seller has already received payment for the minimum
number of items to be ordered, the DEA goes to an accepting state (marked with
a checkmark) indicating that the property can no longer be violated. Note that
any events happening not matching any outgoing transition of the current state
leave the DEA in the same state.

However, runtime verification can be used to go beyond ensuring that the
smart contract really enforces the legal contract. For instance, although not part
of the legal contract, one may expect that the implementation ensures that once
the procurement contract is terminated, it cannot be reactivated, a specification
of which written using a DEA is shown in Figure 3(b).

start

X

status@(status==ContractStatus.Open) |
payment <

min(minimumItems, delivered)*costPerItem

after:addr.transfer( amount) |
addr==seller &&

payment+ amount >= minimum*costPerItem;

after:deliveryMade( orderId) 7→
delivered += orders[ orderId].orderSize;

after:addr.transfer( amount) |
addr==seller 7→ payment += amount;

start

status@(status==ContractStatus.Closed)

status@(status==ContractStatus.Open)

Fig. 3. (a) DEA encoding clause 6 of the procurement contract; and (b) Once termi-
nated, the contract cannot be reactivated.

Formally, DEAs are defined as follows:

Definition 1. A dynamic event automaton (DEA) defined over a set of mon-
itorable events or points-of-interest Σ and system states Ω, is a tuple M =
〈Q,Θ, q0, θ0, B,A, t〉, where (i) Q is a finite set of explicit monitoring states of
the DEA; (ii) Θ is a (possibly infinite) set of symbolic monitoring states of M;
(iii) q0 ∈ Q and θ0 ∈ Θ are the initial explicit and symbolic state of M; (iv)
B ⊆ Q and A ⊆ Q are respectively the bad and accepting states of the automa-
ton; and (v) t ⊆ Q × Σ × (Θ × Ω → Bool) × (Θ → Θ) × Q is the transition
relation of M.
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We will write (q, θ) 6e,ω−−→ to mean that ∀(q, e, c, a, q′) ∈ t · ¬c(θ, ω).

Informally, (q, e, c, a, q′) ∈ t denotes that if (i) the DEA is in state q; (ii) event
e occurs; and (iii) condition c holds, then action a will be executed, updating
the monitoring state from θ to a(θ), and the DEA moves to state q′. Formally
the operational semantics are defined as follows:

Definition 2. The configuration of a smart contract is a pair in Q × Θ. The
operational semantics of a DEA M is given by the labelled transition relation

over configurations such that (q, θ)
e,ω−−→ (q′, θ′) holds if and only if, upon receiving

event e ∈ Σ when the smart contract is in state ω ∈ Ω, the monitor evolves from
explicit state q and symbolic state θ to q′ and θ′:

(q, e, c, a, q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′, a(θ))

q /∈ A ∪B

(q, θ) 6e,ω−−→
(q, θ)

e,ω−−→ (q, θ)

q ∈ A ∪B
(q, θ)

e,ω−−→ (q, θ)

The relation is extended over lists of observations, and we write (q, θ)
w
=⇒ (q′, θ′)

(where w ∈ (Σ ×Ω)∗) to denote the smallest relation such that: (i) ∀q ∈ Q, θ ∈
Θ·(q, θ) ε

=⇒ (q, θ); and (ii) for all q, q′ ∈ Q, θ, θ′ ∈ Θ, e ∈ Σ, ω ∈ Ω, (q, θ)
(e,ω):w
====⇒

(q′, θ′) if and only if for some qm ∈ Q and θm ∈ Θ, (q, θ)
e,ω−−→ (qm, θm) and

(qm, θm)
w
=⇒ (q′, θ′).

The set of bad (respectively accepting) traces of a DEA M, written B(M)
(respectively A(M)) is the set of traces which lead to a bad (respectively ac-

cepting) state: B(M)
df
= {w | (q0, θ0)

w
=⇒ (qb, θ) ∧ qb ∈ B} and A(M)

df
= {w |

(q0, θ0)
w
=⇒ (qa, θ) ∧ qa ∈ A}.

3.3 Reparation Strategies

One of the major challenges with smart contracts is what to do when a violation
is detected. Runtime verification on traditional systems typically results in a
bug report being filed, and code fixes to be released if the bug is deemed serious
enough. In case of the state of the system being compromised due to the issue, the
offending actions may be rolled back or manual intervention takes place to ensure
correct future performance. In smart contracts reparation to deal with failure
which already took place is typically not possible. The (by default) immutable
nature of smart contracts means that bug fixes are not necessarily possible and
transactions written to the blockchain cannot be easily undone. Immutability
comes with caveats (we address this in Section 4) but modification of smart
contracts and past transactions goes against the very selling point of using public
blockchains: decentralised immutability of smart contracts and transactions.

We typically use dynamic analysis out of necessity when static analysis can-
not handle the verification process completely. However in this case dynamic
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analysis comes with an advantage: logic to perform actions which override smart
contract logic or past transactions can be guaranteed to trigger only when a
violation occurs, thus ensuring immutability as long as the code is working as
expected. However, the reparation logic itself is typically smart contract- and
property-specific. For instance, while a transaction which wrongly disables an
order may be fixed by reenabling it, a bug which locks the seller’s performance
guarantee in the contract (with no means to retrieve the funds) is more complex
to address — with one possible reparatory strategy being that of requiring the
buyer (or the developer of the contract) to place an amount of funds in the smart
contract as a form of insurance, returning them when the contract terminates
successfully but passed on to the seller if the performance guarantee becomes
locked.

Flexibility of reparation techniques is thus crucial, possibly even more crucial
than other domains. ContractLarva allows for custom actions (which may
access the system state) which are triggered the moment the DEA moves to a
bad or accepting state.

For instance, consider the property ensuring that the procurement contract
is not reactivated after being closed. One possible reparation is that of closing it
down immediately, which would be handled by the following ContractLarva
script:

1 violation {
2 contractStatus = ContractStatus.Closed;
3 }

This would effectively close the contract immediately to make up for its
reactivation. However, the reactivation may happen as part of a more complex
transaction (e.g. a function call which, apart from opening the procurement
contract, will also make other changes) which one may wish to abort altogether.
Using Solidity’s notion of reverted computations whose effects are effectively
never written on the blockchain, one can build a form of runtime enforcement
by effectively suppressing the call which led to the violation in the first place:

1 violation {
2 revert ();
3 }

On the other hand, more complex reparation strategies may require addi-
tional code implementing them, as in the case of the minimum order constraint
of clause 6 of the legal contract. For instance, the implementation of an insurance-
based reparation strategy may work as follows: (i) the party providing insurance
must start off by paying a stake before the contract is enabled; (ii) if the speci-
fication is violated, the insured party is given that stake; while (iii) if the spec-
ification reaches an accepting state, the insurer party gets to take their stake
back.

In order to implement this behaviour, the specification would add the follow-
ing auxiliary code to the original smart contract:
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1 function payInsurance () payable {
2 require (insuranceStatus == UNPAID);
3 require (msg.value == getInsuranceValue ());
4 require (msg.sender == getInsurer ());
5
6 insuranceStatus = PAID;
7 LARVA_EnableContract ();
8 }
9 function getInsuranceValue () { . . . }
10 function getInsurer () { . . . }

By default, ContractLarva starts off with the original smart contract dis-
abled (i.e. functions automatically revert), and it is up to the monitoring logic
to enable it. In this case, the function payInsurance() has to be called and
the insurance paid by the insurer before the original contract is enabled —
LARVA EnableContract() and LARVA DisableContract() are functions provided
by ContractLarva to enable and disable the original smart contract. Specifi-
cation satisfaction (in which case we simply return the stake to the insurer) and
violation (in which case the stake is paid to the insured party and the original
smart contract is disabled) would then be specified as follows:

1 satisfaction {
2 getInsurer ().transfer(getInsuranceValue ());
3 }
4 violation {
5 LARVA_DisableContract ();
6 getInsured ().transfer(getInsuranceValue ());
7 }

For more sophisticated ways of dealing with reparation, including compen-
sations, the reader is referred to [9].

3.4 Instrumentation

Monitor instrumentation into smart contracts can be done in different ways. For
instance, instrumentation may be performed at the virtual machine level or at
the source code level. It may be achieved by inlining verification code in the
smart contract, or by adding only event generation to the original contract, and
separate the monitoring and verification code — in the latter case, one may then
choose to perform the verification on a separate smart contract or even off-chain.
We discuss some of these options in Section 5, and focus on the approach taken
by ContractLarva here.

ContractLarva instruments specifications directly into the smart contract
at the Solidity source code level, promoting the idea that the new smart contract
with instrumented verification code still being accessible at a high level of ab-
straction. The tool takes a smart contract written in Solidity and a specification,
and creates a new smart contract with additional code to handle monitoring and
verification.
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In order to handle data-flow events, the tool adds setter functions, and re-
places all assignments to the monitored variables to use the setter instead8. Us-
ing these setter functions, instrumenting for data-flow events effectively becomes
equivalent to intercepting control-flow events on the setter function.

To instrument control-flow events, we add a modifier for each transition.
For a particular event e, we define the set of transitions triggered by it to be
t � e = {(q, e′, c, a, q′) ∈ t | e′ = e}, with which the DEA operational semantics
can be encoded. For instance, if t � before:f(x) consists of two transitions
(q1, before:f(x), c1, a1, q

′
1) and (q2, before:f(x), c2, a2, q

′
2) we define and use a

Solidity modifier to carry out these transitions before f is called:

1 modifier LARVA_before_f(uint x) {
2 if (( LARVA_STATE == q1) && c1) {
3 LARVA_STATE = q′1;
4 a1;
5 } else {
6 if (( LARVA_STATE == q2) && c2) {
7 LARVA_STATE = q′2;
8 a2;
9 }
10 }
11 _;
12 }
13
14 function f(uint _value) public LARVA_before_f(_value) { . . . }

It is worth noting that the overheads induced when a function is called are
linear in the number of transitions in the DEA which trigger on events related
to that function. In practice, however, one finds that these overheads can be rea-
sonable especially in the context of the critical nature of many smart contracts.

3.5 Runtime Overheads

Although, compared to other verification techniques, runtime verification is typ-
ically not that computationally expensive, it performs this computation at run-
time, which can affect a program’s performance. These runtime overheads can
be avoided by performing verification asynchronously, however here we consider
synchronous runtime verification since we require monitors to ensure that the
smart contract conforms to the legal contract.

Unlike traditional systems, where one looks at different dimensions of moni-
toring overheads: time, memory, communication, etc., in the case of smart con-
tracts on Ethereum, the metric for measuring overheads can be clearly quantified

8 The only case which is not covered by this approach is if the contract performs
external delegate calls (which may result in the callee changing the state of the
caller). However, this can be syntactically checked at instrumentation time.
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in terms of gas units. The main challenge is that gas is directly paid for in cryp-
tocurrency, meaning that overheads have a direct economic impact9.

When evaluating instrumented smart contracts we then can first measure the
gas cost instrumentation adds to deployment of the smart contract (this addi-
tional gas cost reflects the instrumentation logic added), and secondly evaluate
function calls to the smart contract to measure increased execution costs. We
use this approach to evaluate an application of ContractLarva in the next
section.

4 Safe Mutability of Smart Contracts

An important aspect of smart contracts in Ethereum is that they are immutable
(once deployed the smart contract’s code cannot be changed). This ensures that
no one can change the behaviour of the smart contract, protecting users from ma-
licious changes. On the other hand immutability does not ensure this completely,
given that smart contracts can call other smart contracts — any change in the
target address of such calls changes the control-flow behaviour of the calling
smart contract. Previous work shows that at least two out of five smart con-
tracts are not control-flow immutable [16], and thus users cannot be completely
sure that the behaviour will not be changed to their detriment and without
notice.

4.1 Mutable Smart Contracts

Not allowing such external calls in contracts is not an option, since it is essential
to support code reuse and to combine services. Moreover, since smart contracts
are programs, they will have bugs, which must be repaired, thus some level of
mutability allowing at least bug correction to occur is essential. Here we discuss
an approach we proposed in [9] that allows safe mutability of a smart contract
through the monitoring of a behavioural contract.

As a case study we consider the ERC-2010 token standard [31]. This standard,
which is adhered to by over 100,000 smart contracts11, is used by smart contracts
which implement tokens — virtual assets which may be owned and transferred.
Such tokens implement the Ethereum interface shown in Listing 3. Other, less
widely used token standards exist, but they all carry out similar functionality
and are thus amenable to roughly the same specification we use here.

9 Although in traditional systems, overheads in space, time and communication are
still paid for financially (more memory, more CPU power or more bandwidth), the
cost is indirect and the perception is that is a matter of efficiency, and not cost
management.

10 ERC stands for Ethereum Request for Comment, with 20 being the number that was
assigned to the request.

11 As reported by Etherscan (see www.etherscan.io/tokens) in July 2018. The number
of active, and trustworthy token implementations is, however, much lower than this
figure.
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Listing 3. ERC-20 token interface standard [31].

1 interface ERC20 {
2 function totalSupply () public constant returns (uint);
3
4 function balanceOf(address tokenOwner) public constant
5 returns (uint balance);
6
7 function allowance(address tokenOwner , address spender)
8 public constant
9 returns (uint remaining);
10
11 function transfer(address to, uint tokens) public
12 returns (bool success);
13
14 function approve(address spender , uint tokens) public
15 returns (bool success);
16
17 function transferFrom(address from , address to, uint tokens)
18 public
19 returns (bool success);
20 }

An implementation of this standard may allow for possible updates to occur
by introducing a proxy or hub-spoke pattern — a design pattern consisting of
a hub (or proxy) contract that serves as the entry-point, which delegates the
business logic to another contract. This common pattern allows one to deal
with versioning in Ethereum (by allowing the implementation to be dynamically
changed simply by updating the address to where the current version of the
implementation resides), but does not provide any security to the user, since
it allows the owner to change the behaviour unilaterally (e.g. the owner can
change the implementation to one that steals commissions from token transfers).
To provide the user with more guarantees, we propose the use of behavioural
contracts that specify the behaviour the user can expect out when using this
smart contract (i.e. the hub), which moreover we monitor for at runtime to
revert any illicit behaviour.

As our hub or proxy, we create a smart contract that respects the interface in
Listing 3, but which contains no logic except that it passes function calls to the
implementation residing in another smart contract which contains the current
version of the business logic:

1 ERC20 implementation;
2
3 function totalSupply () constant returns (uint){
4 return implementation.totalSupply ();
5 }
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In order to update versions, one can add simple logic to the hub or proxy
that allows the owner to update the implementation to one residing at a new
address:

1 address owner;
2
3 function updateImplementation(address newImplementation)

public {
4 require(msg.sender == owner);
5 implementation = ERC20(newImplementation);
6 }

The ERC-20 standard also comes with behavioural constraints, described
informally in [31]. We can specify these using DEAs (see Figures 4, 5 and 6). For
specification legibility, we will use the condition denoted by an asterisk (*) to
denote an else branch for the relevant event i.e. e | ∗ 7→ a will trigger if and only
if event e is detected, but no other outgoing transition from the current state is
triggered.

In order to ensure that updates to the implementation do not result in spu-
rious, buggy or, even worse, malicious code, we instrument runtime checks to
ensure that the effect of the ERC-20 functions on the state of the smart contract
are as expected e.g. upon a call to the transfer function the balance of the
sender and the recipient of the token value is stored, and this is used to check
that the exact amount of tokens is transferred appropriately from the sender to
the recipient (if the sender has enough tokens).

Thus, by instrumenting the entry-point (or hub) smart contract with this
behavioural contract we ensure detection when smart contract mutability results
in unexpected or wrong behaviour. If any non-conformant behaviour is detected,
a bad state is reached and the transaction is reverted, thus protecting the user
from malicious behaviour.

We give some examples of allowed and disallowed traces, using natural num-
bers as addresses, i.e. 0.transfer(1, 10) denotes the address 0 calling the trans-
fer function that sends ten tokens to address 1. Consider that balanceOf(1) == 0
holds then the trace 0.transfer(1, 100);1.transfer(2, 101); fails, due to Fig-
ure 4, while 0.transfer(1, 100);1.transfer(2, 100); succeeds. For Figure 6,
0.approve(1, 100);1.transferFrom(0, 1, 50); is successful, but extending it
with 1.transferFrom(0, 1, 51); fails, given that after spending fifty tokens
user 1 is only allowed to spend a further fifty tokens.

Note this still has some limitations, namely in terms of securing state, e.g.
the owner can still update the implementation that behaviourally respects our
contracts but that changes the token values assigned to certain users. To handle
this, we can separate the business logic from storage, keeping them in different
smart contracts. In this manner, we can allow version updates to the business
logic but not to the storage smart contract. In other cases, it may be useful to
allow the owner to change the state in special circumstances (e.g. to remedy a
mistaken transfer). We do not consider this further here.
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start

before: transfer(to, tokens) 7→
preFrom = balanceOf(msg.sender);
preTo = balanceOf(to);

after: transfer(to, tokens) |
preFrom >= tokens &&

(balanceOf(msg.sender)
!= preFrom - tokens ||

balanceOf(to) != preTo - tokens)

after: transfer(to, tokens) | *

after: transfer(to, tokens) |
preFrom < tokens &&

(balanceOf(msg.sender) != preFrom ||
balanceOf(to) != preTo)

Fig. 4. Calling transfer (i) moves the amount requested if there are enough funds;
but (ii) has no effect otherwise.

start

before: approve(spender, tokens)

after: approve(spender, tokens) |
allowance(msg.sender, spender) != tokens

after: approve(spender, tokens) |
allowance(msg.sender, spender) == tokens

Fig. 5. Calling approve changes the allowance to the specified amount.

start

before:
transferFrom(from, to, tokens) 7→

preFrom = balanceOf(from);
preTo = balanceOf(to);
preAllowance = allowance(msg.sender, from);

after: transferFrom(from, to, tokens) |
(preFrom >= tokens &&

preAllowance >= tokens) &&
(balanceOf(from) != preFrom - tokens ||
balanceOf(to) != preTo - tokens ||
allowance(msg.sender, from)

!= preAllowance - tokens))

after: transferFrom(from, to, tokens) | *

after: transferFrom(from, to, tokens) |
(preFrom < tokens ||

preAllowance < tokens) &&
(balanceOf(from) != preFrom ||
balanceOf(to) != preTo ||
allowance(msg.sender, from) != preAllowance))

Fig. 6. Calling the transferFrom (i) moves the amount requested and reduces the
allowance if there are enough funds and the caller has enough of an allowance; but (ii)
has no effect otherwise.
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4.2 Evaluation

We evaluated the overheads induced by this approach12 to safe mutability by
measuring the associated increase in gas. We measure this in two stages. First
we compare the overheads associated with adding versioning (and logic in the
spoke to only allow the hub to use the spoke) against the simple case of just using
the implementation directly. Secondly we compare the overheads associated with
adding monitoring of the behavioural contracts on top of the versioning hub. We
also consider some example traces that are

Table 1. Overheads associated with adding a behavioural interface to an ERC20 token.

Overheads when adding Overheads when adding Total
only versioning behavioural contracts

Transactions Gas Units Percentage Gas Units Percentage Gas Units Percentage

Setting up 1711984 65.11% 973794 37.03% 2685778 102.14%

totalSupply 4186 18.24% 734 3.2% 4920 21.44%

balanceOf 4494 18.71% 734 3.06% 5228 21.77%

allowance 4678 18.00% 756 2.91% 5434 20.91%

transferFrom 5324 5.78% 93320 101.34% 98644 107.12%

transfer 35362 71.47% 76152 153.92% 111514 225.39%

approve 5668 8.39% 43462 64.31% 49130 72.70%

The magnitude of these overheads are shown in Table 1, along with the total
overheads added when doing both. Note how both introducing a hub-spoke pat-
tern and monitoring introduces substantial overheads. Setting up versioning in-
creases gas costs by up to 65.11%, given the creation of a new smart contract and
adding logic to the implementation to only be used by the hub. Moreover, there
is a substantial increased cost to using the transfer function given it implicitly
depends on the msg.sender which with versioning must be passed on directly
from the hub (otherwise upon a call from the hub the implementation will see
the hub’s address for msg.sender, not the actual transaction initiator’s address).
When adding monitoring, calling transfer, transferFrom, and approve experi-
ence a significant increase in gas costs, which is to be expected given each call
to these functions checks at least two monitor transitions. However, it is worth
noting that the overhead induced is constant no matter how complex the token
logic is. For the sake of this analysis, we used a trivial token implementation, but
typically, tokens include more complex (i.e. more expensive) logic, thus reducing
the percentage overhead for each call.

Furthermore, the major selling point of smart contracts has been that of
guaranteed performance without the need for centralised trust (e.g. in a server),
and yet there have been all too many cases of bugs in smart contracts which

12 The case study can be found at: https://github.com/shaunazzopardi/
safely-mutable-ERC-20-interface.
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result in behaviour which resulted in losses of the equivalent of millions of dol-
lars. Immutability (i.e. non-updatable code) results in bugs and exploits also
being immutably present — the guaranteed performance is on the implemented
behaviour, though possibly not the originally intended one. Unbridled version
updates by the contract owner or developer, result in reintroducing the party
who can update the code as a central point of trust, thus questioning the need
for a smart contract in the first place. The need for controlled code updates
is thus a real one, and the cost can be justified due to the immense potential
losses. However, it is still a major question as to how these overheads can be
significantly reduced.

5 Open Challenges

In this section we outline a number of research challenges and directions which
are still to be addressed for smart contract monitoring.

5.1 Dealing with Failure

In many domains, failure to perform a subtask is handled within the normal
execution of the systems, either through return values denoting failure or through
exceptions. In either case, the side effects of the computation, both those leading
to the failure and its handling can be monitored. In contrast, on Ethereum and
Solidity, one can trigger failure through the use of revert which rolls back the
prefix computation before the failure as though it never happened (apart from
the fact that there was a reverted call). Although there has been some related
work with runtime monitoring of rollback and compensation computation [10,11],
in the context of smart contracts the notion of reverted execution goes beyond
simply that of a computation which did not go through. With the view that
smart contracts are effectively self-enforced contracts, a legal right such as ‘The
seller has the right to request an extension of the delivery deadline of an order’
goes beyond having a function requestDeadlineExtension(), since if every call
to the function by the seller is reverted, the right is not really being respected.

The only way to handle reverted computation on the chain (on Ethereum)
is by making the function calls from another contract, which allow capturing
a revert within the logic of the (calling) smart contract, and we have already
started experimenting with a variant of ContractLarva which handles an ad-
ditional event modality failure such that the event failure:f triggers when
function f is called but fails due to an explicit revert (or instances of the com-
mand hidden in syntactic sugar such as in require) [9]. If the cause for the
failure is lack of gas, however, monitor execution cannot be carried out, which
thus leaves the option of violating rights through excessive gas use.

Factoring in gas usage in monitoring for failures is a major challenge. Whether
it is through the use of worst-case gas consumption analysis to statically reject
monitored functions which may have a gas leak, or whether to leave sufficient gas
to deal with monitoring upon a failure, static analysis could support these forms
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of violations. Some static analysis techniques to deal with potential gas attacks
have already started being investigated [18]. Other options may use dynamic
analysis to monitor gas usage for this form of denial-of-right attack.

5.2 Dealing with Monitoring Overheads

Over the past few years, much work has been done applying static analysis to
make runtime verification cheaper, including [8,1,14,7]. In the domain of smart
contracts, we believe that many of these approaches will perform better, and can
be specialised to yield more optimisations. Although smart contract platforms
such as Ethereum provide Turing-complete programming capabilities, in prac-
tice, few smart contracts use general recursion or loops other than using fixed
patterns e.g. iteration through an array. This means that many static analy-
sis techniques, such as abstraction or symbolic execution can yield much more
precise results and hence are more effective in reducing runtime verification over-
heads.

In ContractLarva, we perform all monitoring and verification online and
on-chain. Other alternative approaches could include pushing parts of the veri-
fication computation off-chain. For instance, for cases where the verification al-
gorithms can be particularly expensive, one may simply log the relevant events
(or even use the information written on the blockchain to extract it), and let the
parties involved in the smart contract to perform verification, allowing progress
only if they agree on the outcome of the verification e.g. using an external oracle,
or via a voting mechanism or by all parties having to submit a hashed state of
the verifying algorithm. The challenge in designing such an approach is to ensure
that a smart contract is not stalled when things are detrimental to some party.
Similarly, one may allow for asynchronous monitoring to avoid bottlenecks and
enforce synchronisation only when critical situations are reached [12].

Another aspect is that on-chain stateful monitoring is simply impossible on
DLTs which have stateless smart contracts, such as Ardor13. However, in the case
of Ardor, only the relevant parties to a transaction execute the smart contract,
and one may consider adding verification modules to clients in order to verify
transactions before they are written to the blockchain.

5.3 Beyond Monitoring of Simple Smart Contracts

There are various other open challenges in the field. Our approach focusses on
the behaviour of a single smart contract, even though they execute in a context.
One may have properties across multiple interacting smart contracts e.g. the pro-
curement smart contract may directly invoke and use a contract with a courier
service to deliver the goods. If all the contracts are instrumented with monitor-
ing code, the challenges are similar to those encountered in the monitoring of
distributed systems e.g. where there should be a central monitoring orchestra-
tor, or whether monitoring should be split and choreographed across contracts.

13 See https://www.ardorplatform.org/.
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If a contract cannot be instrumented with monitoring code, techniques such as
assume-guarantee reasoning may need to be adopted to allow for compositional
monitoring without being able to monitor within each component.

Although we have focussed on the monitoring of smart contracts, one may
look at incorporating monitoring at the level of the DLT itself, beyond the
effects of transactions, to include behaviour of miners and the data on the ledger
itself. For instance, on Ethereum the order in which transactions are applied and
recorded on a new block depends on the miners, which gives rise to a number
of vulnerabilities due to a set of miners acting as malicious schedulers. Dynamic
analysis of miner activity could be investigated to identify such behaviour.

6 Related Work

In this paper we have considered a runtime monitoring approach to the verifica-
tion of smart contracts, however proving smart contracts safe before deployment
is preferable, when possible. Although in their infancy, such approaches to formal
verification in Ethereum exist. For instance, the approach proposed in [2] uses
deductive analysis to verify business-logic properties of smart contracts at the
Solidity level. In contrast, ZEUS [22] uses an abstraction of Solidity code that
is translated to LLVM bitcode, allowing for conservative verification of safety
properties expressed in a quantifier-free first order logic. This approach however
does not soundly abstract all Solidity instructions, given lack of clear counter-
parts in LLVM, in fact reverting a program state is handled just as a program
exit. Moreover external function calls are handled non-deterministically given
that the target smart contract of such calls may change at runtime. The same
behaviour for external calls is taken by other tools, e.g. [19]. In [19] the sound
static analysis tool EtherTrust is used to show that an external call cannot call
again the smart contract and reach another external call (then possibly caus-
ing an infinite loop that exhausts all gas). Given the external smart contract is
not available, this depends on having appropriate logic preventing this in the
smart contract. This is a good use case for runtime monitoring tools such as
ContractLarva, that can be used to add this safety logic around external
calls.

Other work, e.g. [21,28,3], translates EVM bytecode into established lan-
guages that amenable to theorem provers, however working at this low-level
of bytecode abstracts away some valuable information (e.g. loops). Theorem
provers also largely require interaction for full proofs, whereas we are interested
in automated verification. Symbolic execution engines also exist for EVM byte-
code, that allow for analysis of a smart contract in the context of the rest of the
blockchain, e.g. [27,25]. [6] is an example of an approach capable of working at
the level of Solidity code, where it translates this to F∗ code, making it amenable
to the languages typechecking.

All this work has been recent and is not yet mature. Runtime verification,
on the other hand, is simpler to implement, and gives precise results, unlike
the tools we described whose precision varies. On these tools maturing runtime
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verification still has value, where it can be used as the tool of last resort —
where other techniques only succeed in proving part of a property safe, runtime
verification can be employed to prove the rest of the property, as in [1].

7 Conclusions

We have considered smart contracts and motivated the need for their verification,
while illustrating the ContractLarva approach to monitoring Ethereum smart
contracts by instrumenting smart contracts with event triggering and monitoring
logic. Interestingly, this context allows the blocking of violating behaviour at the
level of the smart contracting language, while ContractLarva further allows
the specification of further flexible reparation strategies in case of violation. We
have applied this approach to limit the mutability of a smart contract’s behaviour
once it is deployed to the blockchain, allowing updates to its logic while ensuring
the behaviour is bounded by an immutable behavioural contract monitor. This
allows more dependable services to be provided from the blockchain, and limiting
the negative effect of bugs before they are corrected.

There are many open challenges left in smart contract verification. Partic-
ularly outstanding is the question of how to handle failure of a transaction.
Considering an implementation of a legal contract, a failure of a transaction can
have legal implications and verification methods can be used to detect such fail-
ures, assign blame, and enforce reparations. The role of off-chain analysis is also
discussed, as are avenues for marrying this with on-chain enforcement. Monitor-
ing also presents some challenges given it adds the need for more gas, possibly
causing the failure of a transaction due to insufficient gas.
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