
StaRVOOrS: A Tool for Combined Static and
Runtime Verification of Java

Jesús Mauricio Chimento1, Wolfgang Ahrendt1, Gordon J. Pace2, and Gerardo
Schneider3

1 Chalmers University of Technology, Sweden.
ahrendt@chalmers.se, chimento@chalmers.se

2 University of Malta, Malta.
gordon.pace@um.edu.mt

3 University of Gothenburg, Sweden.
gerardo@cse.gu.se

Abstract. In this paper we present the tool StaRVOOrS (Static and Run-
time Verification of Object-Oriented Software), which combines static and
runtime verification of Java programs. The tool automates a framework
which uses partial results extracted from static verification to optimise the
runtime monitoring process. StaRVOOrs combines the deductive theorem
prover KeY and the runtime verification tool LARVA, and uses properties
written using the ppDATE specification language which combines the
control-flow property language DATE used in the runtime verification tool
LARVA with Hoare triples assigned to states. The formalism enables KeY
to attempt verification of the Hoare triples in the specification in fully
automated mode, which often results in unfinished proofs. Through an
analysis of such partial proofs, path conditions for the (statically) incon-
clusive executions are generated, and then used to refine the Hoare triples
for runtime verification. Finally, the refined Hoare triples are translated
into the DATE formalism, coding them as a combination of replicated
automata and operationalised pre/post-conditions and LARVA is used
to instrument the resulting DATE to monitor the code. StarRVOOrS
effectiveness is demonstrated by applying it to the verification scenario
Mondex, an electronic purse application.

1 Introduction

In this paper we present StaRVOOrS, a tool for the specification and verification
of data- and control-oriented properties combining static and runtime verification
techniques. A detailed motivation for the combination along these two dimensions
(data- vs. control-oriented, and static vs. dynamic verification) has been reported
in [4, 3] and will not be repeated here. For this paper, however, it suffices to
emphasise that this combination allows us to get a richer specification language
able to express both data- and control-oriented properties, and to prove some
properties once and for all statically, letting others to be checked at runtime,
with the intended good side effect of having more efficient runtime monitors.



The tool is a fully automated implementation of the theoretical results
presented in [4, 3]. Given a property specification and the original program, a
fully automated tool chain produces a final, statically optimised monitor and
the weaved program to be monitored. This includes the automated triggering
of numerous verification attempts of the underlying static verification tool, the
analyses of resulting partial proofs, and the monitor generation, among other
steps, all to be described in the following sections.

2 The StaRVOOrS Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software) was originally proposed in [4] and its theoretical foundations
further developed in [3]. We do not present the details of the framework here but
only give a brief overview of the deductive source code verifier KeY [5], and of the
runtime monitoring tool Larva [6] on which the implementation of StaRVOOrS
heavily relies, and give an overview of the specification language ppDATE.
The static verifier KeY. KeY is a deductive verification system for data-
centric functional correctness properties of Java source code. It features (static)
verification of Java source code annotated with specifications written in the Java
Modelling Language (JML) [7]. JML allows for the specification of pre/post-
conditions of methods, and loop invariants. KeY translates the different parts of
the specification to proof obligations in Java DL. At the core of KeY is a theorem
prover for Java dynamic logic (DL), a modal logic for reasoning about programs
[5]. KeY uses a sequent calculus following the symbolic execution paradigm.
The runtime verifier Larva. Larva (Logical Automata for Runtime Verifi-
cation and Analysis) [6] is an automata-based runtime verification tool for Java
programs. As with many other runtime verifiers, Larva automatically generates a
runtime monitor from a property written in a formal language, which in the case
of Larva is an extension of timed automata called DATEs (Dynamic Automata
with Timers and Events). At their simplest level DATEs are finite state automata
whose transitions are triggered by system events and timers. Further details and
the formalisation of DATEs can be found in [6]. Given a system to be monitored
(a Java program) and a set of properties written in terms of DATEs, Larva
generates monitoring code together with AspectJ code to link the system with
the monitors.
ppDATE: A Specification Language for Data- and Control-oriented
Properties. StaRVOOrS uses ppDATEs as its property input language, which
enables the combination of data- and control-based properties in a single for-
malism. ppDates are a composition of the control-flow language DATE, and of
data-oriented specifications in the form of Hoare triples with pre-/post-conditions.

Consider the ppDATE shown in Fig. 1. The structure of the automaton,
less the information given in the states, provides the control-flow aspect of the
property in the form of a DATE, in which transitions are tagged with triples:
e | c 7→ a — indicating that (i) they are triggered when event e occurs and
condition c holds; (ii) and apart from changing the state of the property, action



q : {true}transferFile(f){bytes == old(bytes)}start

q′ :
{true}transferFile(f){bytes == old(bytes) + size(f)}
{write ∈ rights(f)}rename(f, n){name(f) == n}

bad

login↑ | sessionIsOpen() 7→ c = 0

transferFile↓ | c > 10 7→

transferFile↓ | c ≤ 10 7→ c ++

logout↓ | 7→

Fig. 1. A ppDATE limiting file transfers

a is executed. For instance, the reflexive transition on the middle state is tagged:
transferFile↓ | c ≤ 10 7→ c++, means that if the automaton is in the middle
state when the system enters the function named transferFile and counter
variable c does not exceed 10, then the counter is incremented by 1. Some states
are also identified as bad states, denoted using a double-outline in the figure (see
the bottom state), and used to indicate that if and when reached, the system
has violated the property in question. The property represented in Fig. 1 can
thus be understood to ensure that no more than 10 file transfers take place in a
single login session.

The data-oriented features of the specification appear in ppDATEs in the
states. A state may have a number of Hoare triples assigned to it. Intuitively,
if Hoare triple {π}f{π′} appears in state q, the property ensures that: if the
system enters code block f while the monitor lies in state q and precondition
π holds, upon reaching the corresponding exit from f, postcondition π′ should
hold. Pre-/post-conditions in Hoare triples are expressed using JML boolean
expression syntax [7], which is designed to be easily usable by Java programmers.

For instance, the Hoare triple appearing in the top state of the property given
in Fig. 1, ensures that any attempted file transfer when in the top state (when
logged out), should not change the byte-transfer count. Similarly, while logged in
(in the middle state of the property) (i) the number of bytes transferred increases
when a file transfer is done while logged in; and (ii) renaming a file does indeed
change the filename as expected if the user has the sufficient rights.

To ensure efficient execution of monitors, ppDATEs are assumed to be de-
terministic by giving an ordering in which transitions are executed. A complete
formalisation of ppDATEs can be found in [3].

3 The StaRVOOrS Tool Implementation

StaRVOOrS takes three arguments: (i) The Java files to be verified (the path
to the main folder), (ii) A description of the ppDATE as a script (a file with
extension .ppd), and (iii) The path of the output folder. The output of the tool
is the runtime monitor (this file is placed in the output folder together with an
instrumented version of the Java files).



q q′

add entry↓ | users.contains(o,key) < 0 7→ •

q contains ‘{size < capacity && key > 0} add {post}’
post ≡ (∃ int i; i ≥ 0 && i < capacity ; h[i] == o)

Fig. 2. ppDATE specification for adding a user.

To describe our implementation, we use as working example a login scenario,
where users attempt to login into a system. The set of logged users is implemented
as a HashTable object, whose class represents an open addressing hash table
with linear probing as collision resolution. The method add, which is used to
add objects into the hash table, first tries to put the corresponding object at
the position of the computed hash code. However, if that index is occupied then
add searches upwards (modulo the array length) for the nearest following index
which is free. Within the hash table object, users are stored into a fixed array h,
meaning that the set has a capacity limited by the length of h. In order to have
an easy way of checking whether or not the capacity of h is reached, a field size

keeps track of the number of stored objects and a field capacity represent the
total amount of objects that can be added into the hash table.

In a nutshell, the tool works following these steps: (1) A property is written
using our script language for ppDATEs; (2) Hoare triples are extracted from the
specification of the property, are translated into JML contracts to be added to
the Java files; (3) KeY attempts to verify all JML contracts, generating (partial)
proofs, the analysis of which results in an XML file, (4) The ppDATE is refined
based on the XML file; (5) Declarative pre/post-conditions are operationalised;
(6) The code is instrumented with auxiliary information for the runtime verifier;
(7) The ppDATE specification is encoded into DATEs; (8) The Larva compiler
generates a runtime monitor. We will now describe some of the above steps in
more detail by describing them using our running example.

3.1 ppDATE Property: Adding a User

For simplicity we do not present the full specification for the login example but
rather focus on the operation of adding a user to the hash table. Fig. 2 depicts
the ppDATE specification. The property is written as the following script.

EVENTS {

add_entry(Object o, int key) = {HashTable users.add(o, key)}

add_exit(Object o, int key) = {HashTable users.add(o, key)uponReturning()}

}

PROPERTY add {



STATES { NORMAL{q’;} STARTING{q (add_ok);} }

TRANSITIONS { q -> q’ [add_entry\users.contains(o, key) < 0\] }

}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0 }

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]}}

}

Invariants (section CINVARIANTS) are described by class name {invariant}.
Section CONTRACTS lists named Hoare triples (CONTRACT). The predicate in the
post-condition follows JML-like syntax and pragmatics. The second semicolon is
semantically an ‘and’, but conveys a certain pragmatics. It separates the ‘range
predicate’ (i >= 0 && i < capacity) from the desired property of integers in
that ‘range’, (h[i] = o). The constraint add ok specifies that, if there is room
for an object o in the hash table and the received key is positive, then after
adding that object into the hash table it is found in one of the entries of the array
h. Finally, the PROPERTY section represents the entire automata, which in this
tiny example has only two states, q and q’, the second being initial (STARTING).
The syntax q (add ok) assigns the Hoare triple add ok to q.

3.2 Proof Construction and Partial Proof Analysis

The first step in our work-flow is to annotate the Java sources with JML contracts
extracted from the Hoare triples specified in the ppDATE. We automatically
generate such JML annotations and insert them just before the corresponding
method declaration. Once the JML annotations are in place, the tool performs
static analysis, checking whether, or to which extent, the various JML contracts
(each corresponding to a Hoare triple in ppDATE) can be statically verified. KeY
is used to generate proof obligations in Java DL for each contract, and attempts
to prove them automatically. Although we could have allowed for user interaction
(using KeY’s elaborate support for interactive theorem proving), we chose to use
KeY in auto-mode, as StaRVOOrS targets users untrained in theorem proving.

For each contract, KeY’s verification attempt will result in either a full proof,
where all goals are closed, or a partial proof, where some goals are open while
typically some others are closed. After the (partial) proofs are constructed,
they are analysed by our tool, and results are collected in an XML file. Most



importantly, this file contains, for each contract, path conditions for each goal of
the (partial) proof, together with the open/closed-status of the corresponding
goal. These path conditions are additional assumptions on the pre-state which
guide the proof to the respective goal.

3.3 ppDATE Transformation: Hoare Triple Refinement

Our tool uses the output of our previous step for refining, in the ppDATE, all
Hoare triples based on what was proved/unproved. Hoare triples whose JML
translation was fully verified by KeY are deleted entirely. On the other hand,
each Hoare triple not fully proved by KeY is refined. The new precondition
is a conjunction (&&) of the old precondition and a disjunction of those path
conditions corresponding to open goals.

In our example, the pre-condition of add ok will be strengthened with the
path condition for the one goal not closed by KeY, !(h[hash function(key)]

== null). The Hoare triple will thus be refined as follows:

CONTRACT add_ok {

PRE {size < capacity && key > 0

&& !(h[hash_function(key)] == null)}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]} }

Once all Hoare triples in the original ppDATE are refined this way, reflecting
the results from static verification, the tool will translate the resulting ppDATE
into the pure DATE formalism, to be processed by Larva further on.

3.4 Translation to DATE and Monitor Generation with Larva

Once the refinement is done, the tool syntactically analyses the specification
for declarative assertions in pre/post-conditions which may need to be “opera-
tionalised” — that is, transformed into algorithmic procedures. This includes, for
instance, transforming existential and universal quantification into loops. The
next step in the work-flow is to instrument the source code by adding identifiers
to each method definition and additional code to get fresh identifiers. These
identifiers will be used to distinguish between different calls to the method.

After these modifications to the Java code base, the statically refined (see
section 3.3) ppDATE specification is translated into the pure DATE formalism,
enabling monitor generation by Larva. The control part of the ppDATE is
already in automaton form, and can be interpreted directly as a DATE, but we
still have to encode the Hoare triples into DATE. We refer to [3] for details of
this translation.

The final step is the generation of the monitor by the Larva compiler,
taking as input the DATE obtained in the previous step. The compiler not only
generates the monitor but also generates aspects, and weaves the code with the
Java programs subject to verification. See [6] for further explanation on Larva.



4 Case study: Mondex

Mondex is an electronic purse application for smart cards products [1]. We
consider a variant of the original presentation, strongly inspired by the JML
formalisation given in [8]. One of the main differences w.r.t. the the original
presentation is that we consider a Java implementation working on a desktop
instead of the Java Card one for smart cards. The full specification and code of
this case study can be found from [2].

Mondex essentially provides a financial transaction system supporting transfer-
ring of funds between accounts, or ‘purses’. We focus on analysing the transactions
taking place between these purses, which follow a multi-step message exchange
protocol: whenever a transaction between two purses is to take place, (i) the
source and destination purses should (independently) register with the central
fund transferring manager; (ii) then a request to deduct funds from the source
purse may arrive, followed by (iii) a request to add the funds to the destination
purse; and (iv) finally, there should be an acknowledgement that the transfer
took place, before the transaction ends.

Besides specifying the protocol, one has to specify the behaviour of the involved
methods, which obviously changes together with the status of the protocol. For
instance, transfer of funds from a purse to another should succeed once both
purses have been registered, but should fail if attempted before registration or if
an attempt is made to perform the transfer multiple times. This behaviour is
encoded by different Hoare triples assigned to different S states.

The control-oriented properties ensure that the message exchange goes as
expected. In contrast, the pre/post-conditions (in total, there are 26 Hoare triples
in the states of the ppDATE) ensure the well-behaviour of the individual steps.

We feed StaRVOOrS with the above ppDATE and the source code of
Mondex. Our tool automatically produces a runtime monitor which is then run
in parallel with the application. We only summarise here some key aspects of the
verification process; the analysis of the verification result is given in next section.

Initially, the ppDATE automaton consisted on only one automaton with 10
states and 25 transitions. Except for two Hoare triples related to the initialisation
and termination of a transaction which were fully proven by KeY, all the other 24
triples are only partially verified by KeY. The automated analysis of these proofs
leads to a refined ppDATE as explained in section 3.3. Besides, it is necessary to
deal with the operationalisation of the JML operator \old. This is done by adding
a fresh variable at the automaton level, saving the value of the variable annotated
with \old before the method (associated to its Hoare triple) is executed. Then,
when analysing the postcondition, if the value of the variable has changed, it
can be compared with its previous value store in the automaton level variable.
The obtained DATE (following the procedure explained in section 3.4) consists
on 25 automata, one automaton to control the main property and 24 replicated
automata to control postconditions, with 106 states and 196 transitions in total.
Also, due to the operationalisation of \old, it were added four new variables at
automata level in the main automaton.



The whole process to generate the monitor for Mondex took our tool 2.5
minutes on PC Pentium Core i7, where most time is used in KeY’s static
analysis of the Hoare triples (2.15 minutes). Our original implementation of
Mondex weighted 23.5 kB. After, running the tool, the total weight of all the
new generated files related to the implementation of the monitor is 177.8 kB.

We summarise below the experimental results of applying our tool to the
Mondex case study. In particular, we compare execution times of (a) the un-
monitored implementation, (b) the monitored implementation using the original
specification S, and (c) the monitored implementation using specification S′,
obtained from S via application of StaRVOOrS. The table below shows the
execution time, on a PC Pentium Core i7, for these three scenarios when the
system is run performing different numbers of transactions.

Transactions (a) no monitoring (b) monitoring S (c) monitoring S′

10 8 ms 120 ms 15 ms
100 50 ms 3500 ms 90 ms
1000 250 ms 330000 ms 375 ms

As expected, the addition of a monitor causes an overhead on the execution
time (b), as compared to unmonitored execution (a). However, this overhead is
substantially reduced by using our approach (c). The entire saving comes from
only triggering post-condition checks in states satisfying path conditions from
open goals in KeY proofs.

5 Conclusions

In this paper we have presented an implementation of the StaRVOOrS frame-
work combining (partial) static and (optimised) runtime verification. A key
contribution is that everything is done fully automatic: StaRVOOrS is a push-
button technology taking as input a specification and a Java program and given
as output a partially verified program running in parallel with a runtime monitor.

The specification of the property is given as a ppDATE [3] which allows us
to arbitrarily combine control-oriented (based on automata with event triggered
transitions) and data-oriented (relating final and initial data values) properties
in a single formalism, and thereby to describe a larger variety of applications.
Another aspect of this combination is that data-oriented properties formulated
in a pre/post style can be made dependent on the history of previous events.

To illustrate how this framework works, we have applied it to a variant of
the Mondex case study [9, 8]. We have analysed the behaviour of the transaction
protocol for transferring money between electronic purses, and have demonstrated
how this protocol can be verified using our framework. We have also applied our
framework to a login system (see [2] for the sources of this case study).

Our current experiments are encouraging as we do improve the time complexity
of the runtime verifier Larva. As for memory complexity, we are aware that
more work should be done to optimise the size of our generated monitors as the



current translation of ppDATE into DATE generates many replicated automata.
We plan to apply heuristics to reduce the size of such automata.

Both the efficiency gain for monitoring and the confidence gain can only
increase along with future improvements in the static verifier used. For instance,
if ongoing work on loop invariant generation in KeY leads to closing some more
branches in typical proofs, this will have an immediate effect that is proportional
to the frequency of executing those loop at runtime.

References

1. MasterCard International Inc. Mondex. www.mondexusa.com/.
2. StaRVOOrS. www.cse.chalmers.se/~chimento/starvoors/files.html.
3. W. Ahrendt, J. M. Chimento, G. Pace, and G. Schneider. A specification language

for static and runtime verification of data and control properties. In Formal Methods
(FM’15), LNCS. Springer-Verlag, 2015. To appear. Available online at http://www.

cse.chalmers.se/~chimento/starvoors/publications.html.
4. W. Ahrendt, G. Pace, and G. Schneider. A Unified Approach for Static and Runtime

Verification: Framework and Applications. In ISOLA’12, LNCS 7609. Springer-Verlag,
2012.

5. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

6. C. Colombo, G. J. Pace, and G. Schneider. LARVA - A Tool for Runtime Monitoring
of Java Programs. In SEFM’09, pages 33–37. IEEE Computer Society, 2009.

7. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
and P. Chalin. JML Reference Manual. Draft 1.200, 2007.

8. I. Tonin. Verifying the Mondex case study. The KeY approach. Technical Report
2007-4, Universität Karlsruhe, 2007.

9. J. Woodcock. First Steps in the Verified Software Grand Challenge. In SEW’06,
pages 203–206. IEEE Computer Society, 2006.



A Tool Demonstration Script

In this appendix we describe a demonstration on how to use the StaRVOOrS
tool, using a working example. The files of the example can be found in www.

cse.chalmers.se/~chimento/starvoors/files.html under the name Login
example files.

A.1 Running StaRVOOrS

In order to run StaRVOOrS, as it is illustrated in Fig. 3, the following input
should be provided: the address of the source code to be analysed (Example/Login),
the address of the ppDATE specification describing the property to be verified
(Example/prop add.ppd), and an output directory where the files generated by
the tool are going to be placed (Example).

Fig. 3. Runnig StaRVOOrS

A ppDATE specification is described on a file with extention .ppd. This file
consists4 in 5 sections:

– Imports: Lists any packages (or files) which will be used in any of the other
sections. At least there should be an import of a package of the system to be
monitored.

– Global: Describes the automaton (events, automata variables, transitions,
states, etc).

– CInvariants: Class invariants are described in this section.
– Contracts: Lists named Hoare triples.

4 Not all sections are mandatory.



– Methods: Definition of methods to avoid having a lot of code on the transi-
tions of the automaton.

Fig.4 illustrates an example of such a file. We will use it as running example
for this demonstration.

A.2 StaRVOOrS ouput

Fig.5 illustrates all the files generated by StaRVOOrS when it is used to analise
the Login example. This output consists of: the monitor files generated by Larva
(folder aspects and folder larva), the files generated by StaRVOOrS to runtime
verify partially proven contracts (folder partialInfo), an instrumented version of
the source code (folder Login), the xml file used by StaRVOOrS to optimise
the ppDATE specification (out.xml), a report explaining the content of the .xml
file (report.txt) and the DATE specification obtained as a result of translating
the (optimised) ppDATE.

A.3 StaRVOOrS execution insights

StaRVOOrS is a fully automated tool. However, in order to have a better
understanding on what happens behind the scenes, we will explain it in three
stages.

The first stage is the static verification of the Hoare triples using KeY. Fig. 6
shows the output produced by the tool on the terminal during this stage. At first,
KeY (taclet) options are set, which tell KeY how it should proceed during the
verification process. For the time being, we are just using the standard options.
Then, the KeY prover attempts verifying all the contracts (i.e. the Hoare triples),
one by one.

Every time a proof attempt is saturated, some information related to this
analysis is given as output in the terminal. Fig. 7 illustrates an example of such
a situation for the contract add full.

All the information given as output in the terminal is sum up in the generated
file out.xml. This file is not intended for the user, it is used by StaRVOOrS to
optimise the ppDATE specification for runtime checking. However, in order to
give to the user some understandable feedback about what happened during the
static verification of the contracts, StaRVOOrS generates a file report.txt which
briefly explains the content of the .xml file.

The second stage correspond to the previously mentioned optimization. On
this stage, all the contracts which were proven are removed from the ppDATE
specification and those which were only partially proven are modified to include
the conditions which lead to unclosed path on a proof.

When analysing the specification shown in Fig. 4, KeY fully verifies the
contracts add full and hashfun ok, but it only partially proves the contract add ok.
Fig. 9 illustrates how the ppDATE specification introduced in Fig. 4 would look
like after the previous optimization. Note that in the section CONTRACTS
only add ok remains and that its precondition is strengthened with the predicate



IMPORTS { import main.HashTable; }

GLOBAL {

EVENTS {

add_entry(Object u,int key)={HashTable hasht.add(u, key)}

add_exit(Object u,int key)={HashTable hasht.add(u, key)uponReturning()}

hfun_entry(int val)={HashTable hasht.hash_function(val)}

hfun_exit(int val,int ret)={HashTable hasht.hash_function(val)uponReturning(ret)}

}

PROPERTY add {

STATES

{

NORMAL { q2 ; }

STARTING { q (add_ok, add_full,hashfun_ok) ; }

}

TRANSITIONS {

q -> q2 [add_entry\hasht.contains(u, key) < 0\]

}}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == u)}

ASSIGNABLE {size, h[*]}

}

CONTRACT add_full {

PRE {size >= capacity}

METHOD {HashTable.add}

POST {(\forall int j; j >= 0 && j < capacity; h[j] == \old(h)[j])}

ASSIGNABLE {\nothing}

}

CONTRACT hashfun_ok {

PRE {val > 0}

METHOD {HashTable.hash_function}

POST {\result >= 0 && \result < capacity}

ASSIGNABLE {\nothing}

}

}

Fig. 4. ppDATE description of a property



Fig. 5. StaRVOOrS output

Fig. 6. Initiating Static Verification



Fig. 7. Output shown on the terminal during static verification

Fig. 8. Optimization and files generation after static verification

!(h[hash function(key)]== null) (as it is stated in the file report.txt) and
that in the list of properties to be verified in the starting state q the name of the
proved Hoare triples were removed.

StaRVOOrS instruments the source code by adding a new parameter to the
method(s) associated to the contract(s), to be used for runtime verification. This
new parameter is used to distinguish different executions of the same method. This
change is introduced in the ppDATE specification too. Besides, StaRVOOrS
generates two files (both within a folder named ppArtifacts): Contracts.java
and Id.java. The former contains methods which operationalise the pre-/post-
conditions of contracts, which will be use by the monitor when verifying the
corresponding contract. The latter will be used to generate unique values to be



IMPORTS { import main.HashTable; }

GLOBAL {

EVENTS {

add_entry(Object u,int key)={HashTable hasht.add(u, key)}

add_exit(Object u,int key)={HashTable hasht.add(u, key)uponReturning()}

hfun_entry(int val)={HashTable hasht.hash_function(val)}

hfun_exit(int val,int ret)={HashTable hasht.hash_function(val)uponReturning(ret)}

}

PROPERTY add {

STATES

{

NORMAL { q2 ; }

STARTING { q (add_ok) ; }

}

TRANSITIONS {

q -> q2 [add_entry\hasht.contains(u, key) < 0\]

}}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0 && !(h[hash_function(key)] == null)}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == u)}

ASSIGNABLE {size, h[*]}

}

}

Fig. 9. ppDATE description of a property



given as new parameters added to the methods. After that, the terminal will look
like Fig. 8.

The third stage corresponds to the generation of the monitor files. In order
to do so, the ppDATE specification is translated by StaRVOOrS to a DATE
specification. Then, it is used Larva to generate the monitor files from the
previous DATE. When the execution of Larva is completed, which means that
StaRVOOrS execution is completed too, the terminal will reflect the output
illustrated in Fig. 10.

Fig. 10. Monitor Generation

A.4 Running the application with the generated monitor

Once StaRVOOrS finishes its execution, in order to run the application together
with the generated monitor the instrumented files have to replace they old
version (i.e. none instrumented) in the source code, the folders aspects, larva and
ppArtifacts have to be copied in the main folder where the source code is placed
and finally all these files must be compiled using an AspectJ compiler (e.g. ajc).


