
LarvaStat: Monitoring of Statistical Properties

Christian Colombo, Andrew Gauci, and Gordon J. Pace

Department of Computer Science, University of Malta, Malta.

Abstract. Execution paths expose non-functional information such as system
reliability and performance, which can be collected using runtime verification
techniques. Statistics gathering and evaluation can be very useful for processing
such information for areas ranging from performance profiling to user modelling
and intrusion detection. In this paper, we give an overview of LarvaStat— a
runtime verification tool extending Larva [2] with the ability to straightforwardly
specify real-time related statistical properties. Being automaton-based, LarvaStat
also makes explicit the overhead induced by monitoring.

1 Introduction

Runtime verification tools mainly focus on the analysis of system traces for the veri-
fication of functional aspects of the system. However, system executions are also rich
in information related to non-functional system properties, such as system security, de-
pendability and performance. LarvaStat extends the runtime verification tool Larva [2]
with the capability of collecting statistical information, and verifying non-functional
requirements based on such statistics. Taking security as an example application area,
LarvaStat allows for the characterisation of suspicious user behaviour through statistical
evaluation, which can subsequently be used to blacklist users deemed suspicious. This
mechanism has been applied to develop an intrusion detection system based on tech-
niques presented in [4] and an integrated system profiler used for measuring system
performance.
LarvaStat’s statistical constructs are based on the notionof incrementally computable
statistics[5], characterising a class of statistics which can be efficiently evaluated in
both time and space. An incrementally computable statisticinvolves (i) storing the cur-
rent statistic’s valuation, and (ii) executing an update function when a new value is to
be added to the input data set. Many statistics such as the count, average, maximum,
minimum and variance all admit incrementally computable behaviour, although others,
such as the median, do not.
All statistics LarvaStat collects are themselves exposed to the monitoring tool asstatis-
tical events— exposing the latest statistic valuation upon each update.This allows for
(i) writing specifications based on these events (such as blocking users upon the statis-
tic valuation exceeding a certain threshold); and (ii) the specification ofmultilayered
statistics— statistics over statistics, such as the mean of the maximumdownload file
size.
Moreover, it is often the case that statistics are required to be collected only for certain
subtraces. For example, a statistic intent on counting the number of bytes sent during
some communication is only interested from the moment of opening to that of closing of

2 C. Colombo and A. Gauci and G.J. Pace

a communication channel. LarvaStat allows for the specification of intervals of interest
for statistics.

2 LarvaStat

LarvaStat is an event-driven runtime verification framework, and is concerned with in-
terpreting observed event information. Parametrised events can be either observable
system actions (such as a method call), timer events, automata-generated events or a
combination thereof.

Definition 1. Given a setbasiceventof basic events (parametrised over a set of values
V) and settimer of timer variables, we define a composite parametrised eventeventas
either (i) a basic event, (ii) a timeout on a timer (overR), (iii) a choice between events
through the general choice operator

∑
, or (iv) the complement of an event (e).

event ::= basicevent| timer @ δ |
∑

2event | event

The first statistical construct is thestatistic aggregator, and is defined as (i) an initial
statistic valuation (eg. initialising the count), and (ii)an update rule (eg. incrementing
the count upon the occurrence of an event).

Definition 2. A statistical aggregator ranging overΓ is defined through (i) the initial
memory valueγ0 ∈ Γ; and (ii) the update rule entailing a parametrised event (trig-
gering the update), a condition (acting as an event filter), an update function on the
memory, and an event on which to signal the updated value. We assume that values
overΓ can be mapped to V to pass the value over the output event.

event× V → (cond× (Γ → Γ)) × event
Note thatcondstands for a condition on the system state and timer configuration.

Given a sequence of timestamps, basic events and system states (ti ,ei(vi), θi) (with i
ranging from 1 ton) and statistical aggregator with initial memoryγ0 and update action
(in, s,out), statistical events would be triggered at each point in thetrace where a basic
eventei(vi) triggersin and such that the condition is triggered —c holds, where (c,u) =
s(vi). At each such position,γ (starting with valueγ0) is updated tou(γ), with the
result being output as an event:out(u(γ)). Formal definitions of trace semantics of event
triggering are given in [2].

Example 1.A statistical aggregator counting the number of bytes sent requires memory
storage containing the current amount, and is initialised to 0. The statistic is updated on
each basic evensend(v)(v represents the number of bytes sent), with the update action
defined as: (send, λv.(λx.true, λn.n+ v), result).

See Fig. 1(a) for an examplepoint statisticwritten in LarvaStat, specifying a statistic
aggregator for counting the number of successful user logins.
LarvaStat also supports statistics evaluated over intervals of interest, defined as a statis-
tic aggregator and an interval characterisation. This interval dictates which system trace
subsequence is relevant to the specified statistic aggregator. Intervals are characterised

LarvaStat: Runtime Verification of Statistical Properties 3

by identifying the opening and closing events (eg. an interval specifying the opening
and closing of a connection channel). Through the use of timers, one can use this ap-
proach to define intervals by giving the opening event and theduration of time during
which to calculate the statistic (eg. a statistic counting the number of user downloads in
the first thirty minutes of logging in).

Definition 3. Statistics aggregation over an interval of interest is defined as (i) a statis-
tic aggregator; (ii) the event and condition marking the interval openingevent× V →
cond; and (iii) the event and condition marking the interval closing V→ (event×V →
cond).

Note that the closing event is also parametrised by the parameter given to the opening
event. Every time an opening event (satisfying the condition) is triggered, a new statistic
aggregator is created and initialised, which continues calculating the value until the
closing event appears.

Example 2.A statistical aggregator over interval of interest evaluating the number of
bytes sent on a per connection basis is defined through (i) thestatistic aggregator de-
fined in example 1, (ii) interval opening(openConnection,λport.true), and (iii) interval
closingλport0.(closeConnection, λport1.port0 = port1). Note that it is assumed that
bothopenConnectionandcloseConnectionare parametrised by the port number.

See Fig. 1(b) for an exampleinterval statisticwritten in LarvaStat, specifying the statis-
tic aggregator over interval of interest defined above (ignoring port number to simplify
presentation).

3 Case Study

LarvaStat has been used for implementing a probabilistic intrusion detection and inte-
grated system profiler sitting above an ftpd server implemented in Java1. The system
profiler is responsible for quantifying system performance, whereas the intrusion de-
tection system observes user behaviour, with the aim of capturing suspicious behaviour
through the use of misuse detection and anomaly detection techniques [4]. Moreover,
given that the monitoring of users is expensive, an additional mechanism has been im-
plemented for the probabilistic choice of users to monitor.This choice is dependent
on two parameters:user risk factorandsystem load. Both parameters are extrapolated
from statistical information collected by LarvaStat.
System profiling is carried out by quantifying the current system load (assuming that
the server’s performance is tightly bound to bandwidth usage and the current count
of logged in users), and analysing system load history for predictive purposes. For
example, counting the number of currently logged in users isspecified through three
statistics, as seen in Fig. 1(a).UsersLoggedIncounts the number of user logins,User-
sLoggedOutcounts the number of log out events, whileCurrentUserCountis a layered
statistic which listens to the previous two statistics.

1 http://www.anomic.de/AnomicFTPServer

4 C. Colombo and A. Gauci and G.J. Pace

The intrusion detection uses various techniques, (i) a Markov chain analysing the user’s
command sequence, with each ftpd command being related to a risk factor, and mark-
ing the user as suspicious if the command sequence exceeds a threshold; and (ii) the
use of statistical moments for the characterisation of abnormal user behaviour, moni-
toring each user’s download and upload behaviour patterns,and assuming a statistically
predictable pattern.

POINTSTAT UsersLoggedIn : Integer {

INIT {UsersLoggedIn.setValue(new Integer(0));}

EVENTS {successfulLogin()}

UPDATE {UsersLoggedIn.setValue(

UsersLoggedIn.getValue() + 1);}

}

POINTSTAT UsersLoggedOut : Integer {...}

POINTSTAT CurrentUserCount : Integer {

INIT{CurrentUserCount.setValue(

new Integer(0));}

EVENTS{ UsersLoggedIn_Event |

UsersLoggedOut_Event }

UPDATE{ CurrentUserCount.setValue(

UsersLoggedIn.getValue() -

UsersLoggedOut.getValue()); }}

INTERVALSTAT byteCount : Integer {

INIT{byteCount

.setValue(new Integer(0));}

EVENTS{sendInfo}

CONDITION{ }

INTERVAL {

OPEN [downloadStarting]

CLOSE [downloadComplete]

}

UPDATE{ byteCount.setValue(

byteCount.getValue()

+ bufferSize); }}

Fig. 1.LarvaStat statistic construct examples (a) and (b).

Fig. 2 shows automata (which are processed by Larva) which are automatically gen-
erated by LarvaStat to calculate the statisticsUsersLoggedInandbyteCountfrom the
description in Fig. 1. Transitions are tagged by the event which fires them, the event
which they fire, and the action to update the statistic. The initial state is tagged with
the action to initialise the statistic. LarvaStat does not extend Larva’s expressivity, but
rather is a syntactic sugar for the intuitive high-level specification of statistical proper-
ties.

usersLoggedInEvents,u1)

S0 S1

UsersLoggedIn.setValue(new Integer(0))

S0

(downloadStarting,φ,skip)

(downloadComplete,φ,skip)

(sendInfo,byteCountEvent,u2)

byteCount.setValue(new Integer(0))

(successfulLogin,

Fig. 2. DATEs executing statistical constructs (a) and (b).

The case study contains the specification of twenty statistics, some of which are evalu-
ated on the system, whereas others are evaluated on a per userbasis. All statistics are
incrementally computable and intuitively defined, while also being implemented with-
out altering a line of the underlying ftpd system code.
System overhead was measured by simulating multiple users logging in concurrently
and exhibiting varied download and upload behaviour patterns. This setting was run

LarvaStat: Runtime Verification of Statistical Properties 5

multiple times with and without the additional intrusion detection system, whereby the
system on average exhibited approximately a 9% processing overhead while being mon-
itored.

4 Related Work and Conclusions

Three existing related approaches have been identified. Theapproach in [5] specifies
a framework focusing on the asynchronous collection of statistics over runtime execu-
tions. This is achieved by presenting a Linear Temporal Logic extension focused on
evaluating numerical queries on the trace, and admits a tractable evaluation strategy
given complete trace knowledge. Lola [3] is another tool, and presents a functional
stream computation language allowing for the expression ofsystem properties, numer-
ical queries as well as guaranteeing bounded memory requirements. EAGLE [1] is a
third approach, whose use of meta operators allows for the encoding of multiple for-
malisms such as interval temporal logics, finite state automata, as well as logics for the
expression of numerical queries. Our approach supports real-time related statistics col-
lection, and enables interval masking over traces. The automaton-based approach, also
makes explicit the overhead induced by monitoring over and above that due to statistics
state storage and update.
LarvaStat shows the potential of applying runtime verification techniques for the col-
lection of non-functional metrics about the system being monitored, which can then be
used to verify properties over these metrics. By extending an existing runtime verifi-
cation tool, the resulting framework is able to both collectstatistics over system exe-
cutions, as well as monitoring system properties quantifiedthrough statistical queries.
The ftpd case study, shows the applicability of the approach, by adding probabilistic
intrusion detection and a system profiler to an existing tool.

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-basedruntime verification. In
5th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), volume 2937 ofLNCS, pages 44–57. Springer, 2004.

2. C. Colombo, G. Pace, and G. Schneider. Dynamic event-based runtime monitoring of real-
time and contextual properties. In13th International Workshop on Formal Methods for In-
dustrial Critical Systems (FMICS), volume 5596 ofLNCS, pages 135–149. Springer, 2008.

3. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchronous systems. In12th
International Symposium on Temporal Representation and Reasoning (TIME), pages 166–
174, 2005.

4. D. E. Denning. An intrusion-detection model.IEEE Transactions on Software Engineering,
13:222–232, 1987.

5. B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics over runtime
executions.Electr. Notes Theor. Comput. Sci., 70(4):36–55, 2002.

