LarvaStat: Monitoring of Statistical Properties

Christian Colombo, Andrew Gauci, and Gordon J. Pace

Department of Computer Science, University of Malta, Malta.

Abstract. Execution paths expose non-functional information such as system
reliability and performance, which can be collected using runtime verificatio
techniques. Statistics gathering and evaluation can be very usefubfoegzing
such information for areas ranging from performance profiling to osmlelling

and intrusion detection. In this paper, we give an overview of LarvaStat
runtime verification tool extendingarva [2] with the ability to straightforwardly
specify real-time related statistical properties. Being automaton-baasd $tat
also makes explicit the overhead induced by monitoring.

1 Introduction

Runtime verification tools mainly focus on the analysis dadteyn traces for the veri-
fication of functional aspects of the system. However, spsgecutions are also rich
in information related to non-functional system propestguch as system security, de-
pendability and performance. LarvaStat extends the runtienification tool Larva [2]
with the capability of collecting statistical informatipand verifying non-functional
requirements based on such statistics. Taking security axample application area,
LarvaStat allows for the characterisation of suspicioes behaviour through statistical
evaluation, which can subsequently be used to blacklissudeemed suspicious. This
mechanism has been applied to develop an intrusion detesyistem based on tech-
niques presented in [4] and an integrated system profiladt fmemeasuring system
performance.

LarvaStat's statistical constructs are based on the nafigncrementally computable
statistics[5], characterising a class of statistics which can fieiently evaluated in
both time and space. An incrementally computable stafistmlves (i) storing the cur-
rent statistic’s valuation, and (ii) executing an updatecfion when a new value is to
be added to the input data set. Many statistics such as the, @erage, maximum,
minimum and variance all admit incrementally computableawéour, although others,
such as the median, do not.

All statistics LarvaStat collects are themselves exposéldd monitoring tool astatis-
tical events— exposing the latest statistic valuation upon each upddis. allows for
(i) writing specifications based on these events (such akinlg users upon the statis-
tic valuation exceeding a certain threshold); and (ii) thec#fication ofmultilayered
statistics— statistics over statistics, such as the mean of the maxichumnload file
size.

Moreover, it is often the case that statistics are requivduktcollected only for certain
subtraces. For example, a statistic intent on counting timber of bytes sent during
some communication is only interested from the moment ohimjagto that of closing of

2 C. Colombo and A. Gauci and G.J. Pace

a communication channel. LarvaStat allows for the spetidfinaf intervals of interest
for statistics.

2 LarvaStat

LarvaStat is an event-driven runtime verification framdwand is concerned with in-
terpreting observed event information. Parametrisedtsvesin be either observable
system actions (such as a method call), timer events, atdegeserated events or a
combination thereof.

Definition 1. Given a sebasicevenbf basic events (parametrised over a set of values
V) and setimer of timer variables, we define a composite parametrised exatitas
either (i) a basic event, (ii) a timeout on a timer (oY, (iii) a choice between events
through the general choice operatd}, or (iv) the complement of an eveie (

event := basicevent timer @6 | 3 2€Ve| event

The first statistical construct is thetatistic aggregatarand is defined as (i) an initial
statistic valuation (eg. initialising the count), and @i update rule (eg. incrementing
the count upon the occurrence of an event).

Definition 2. A statistical aggregator ranging over is defined through (i) the initial
memory valuey € I'; and (ii) the update rule entailing a parametrised eventgir
gering the update), a condition (acting as an event filter),update function on the
memory, and an event on which to signal the updated value.sdlenze that values
overI" can be mapped to V to pass the value over the output event.

eventx V — (condx (I" — I')) x event
Note thatcondstands for a condition on the system state and timer configura

Given a sequence of timestamps, basic events and systess §tag(v;), 6;) (with i
ranging from 1 tan) and statistical aggregator with initial memaoryand update action
(in, s, out), statistical events would be triggered at each point irtithee where a basic
evente (v) triggersin and such that the condition is triggerede-holds, whereg, u) =
s(v;). At each such positiony (starting with valueyp) is updated tau(y), with the
result being output as an eveatit(u(y)). Formal definitions of trace semantics of event
triggering are given in [2].

Example 1.A statistical aggregator counting the number of bytes smqiires memory
storage containing the current amount, and is initialise@l fThe statistic is updated on
each basic evesend(v)Vv represents the number of bytes sent), with the update action
defined as:gend Av.(Ax.true, An.n + V), resuld).

See Fig. 1(a) for an exampjmint statisticwritten in LarvaStat, specifying a statistic
aggregator for counting the number of successful user $ogin

LarvaStat also supports statistics evaluated over inteofanterest, defined as a statis-
tic aggregator and an interval characterisation. Thigvalalictates which system trace
subsequence is relevant to the specified statistic aggredyatervals are characterised

LarvaStat: Runtime Verification of Statistical Properties 3

by identifying the opening and closing events (eg. an irtespecifying the opening
and closing of a connection channel). Through the use ofrip@e can use this ap-
proach to define intervals by giving the opening event andlthration of time during
which to calculate the statistic (eg. a statistic countmggriumber of user downloads in
the first thirty minutes of logging in).

Definition 3. Statistics aggregation over an interval of interest is dedias (i) a statis-
tic aggregator; (ii) the event and condition marking theeintal openingeventx V. —
cond and (iii) the event and condition marking the interval dliggV — (eventx V —
cond)

Note that the closing event is also parametrised by the pateargiven to the opening
event. Every time an opening event (satisfying the conaljfiotriggered, a new statistic
aggregator is created and initialised, which continuesutaling the value until the
closing event appears.

Example 2.A statistical aggregator over interval of interest evah@the number of
bytes sent on a per connection basis is defined through (Btiistic aggregator de-
fined in example 1, (ii) interval openin@penConnectionporttrue), and (iii) interval
closing Aporty.(closeConnectianiport;.port; = port;). Note that it is assumed that
bothopenConnectioandcloseConnectioare parametrised by the port number.

See Fig. 1(b) for an exampileterval statisticwritten in LarvaStat, specifying the statis-
tic aggregator over interval of interest defined above (igrgoport number to simplify
presentation).

3 Case Study

LarvaStat has been used for implementing a probabilistiasion detection and inte-
grated system profiler sitting above an ftpd server impleéeeim Javad The system
profiler is responsible for quantifying system performanghkereas the intrusion de-
tection system observes user behaviour, with the aim oficiagt suspicious behaviour
through the use of misuse detection and anomaly detectabmigues [4]. Moreover,
given that the monitoring of users is expensive, an additiarechanism has been im-
plemented for the probabilistic choice of users to monitdris choice is dependent
on two parametersiser risk factorandsystem loadBoth parameters are extrapolated
from statistical information collected by LarvaStat.

System profiling is carried out by quantifying the currensteyn load (assuming that
the server’s performance is tightly bound to bandwidth esagd the current count
of logged in users), and analysing system load history fedistive purposes. For
example, counting the number of currently logged in usespeified through three
statistics, as seen in Fig. 1(&JsersLoggedIirtounts the number of user logiridser-
sLoggedOutounts the number of log out events, whtarrentUserCounts a layered
statistic which listens to the previous two statistics.

1 httpy/www.anomic.dgAnomicFTPServer

4 C. Colombo and A. Gauci and G.J. Pace

The intrusion detection uses various techniques, (i) a Backain analysing the user’s
command sequence, with each ftpd command being relatedsk tactor, and mark-
ing the user as suspicious if the command sequence excebdsshdld; and (ii) the
use of statistical moments for the characterisation of ababuser behaviour, moni-
toring each user’s download and upload behaviour pattantsassuming a statistically
predictable pattern.

POINTSTAT UsersLoggedIn : Integer { INTERVALSTAT byteCount : Integer {
INIT {UsersLoggedIn.setValue(new Integer(0));} INIT{byteCount
EVENTS {successfullogin()} .setValue(new Integer(0));}
UPDATE {UsersLoggedIn.setValue(EVENTS{sendInfo}
UsersLoggedIn.getValue() + 1);} CONDITION{ }
} INTERVAL {
POINTSTAT UsersLoggedOut : Integer {...} OPEN [downloadStarting]
POINTSTAT CurrentUserCount : Integer { CLOSE [downloadComplete]
INIT{CurrentUserCount.setValue(}
new Integer(0));} UPDATE{ byteCount.setValue(
EVENTS{ UsersLoggedIn_Event | byteCount.getValue()
UsersLoggedOut_Event } + bufferSize); }}

UPDATE{ CurrentUserCount.setValue(
UsersLoggedIn.getValue() -
UsersLoggedOut.getValue()); }}

Fig. 1. LarvaStat statistic construct examples (a) and (b).

Fig. 2 shows automata (which are processed lvh) which are automatically gen-
erated by LarvaStat to calculate the statistitsersLoggedlirand byteCountfrom the
description in Fig. 1. Transitions are tagged by the eventhvfires them, the event
which they fire, and the action to update the statistic. Tlitg&lirstate is tagged with
the action to initialise the statistic. LarvaStat does nd¢ed Larva’s expressivity, but
rather is a syntactic sugar for the intuitive high-leveld@fpeation of statistical proper-
ties.

UsersLoggedIn.setValue(new Integer(0)) byteCount.setValue(new Integer(0))
(downloadStarting,skip)
S [s
(downloadComplete,skip)

(successfulLogin,
usersLoggedlrEvents,y) (sendInfo,byteCounEvent,)

Fig. 2. DATEs executing statistical constructs (a) and (b).

The case study contains the specification of twenty stadistome of which are evalu-
ated on the system, whereas others are evaluated on a pdrasgerAll statistics are
incrementally computable and intuitively defined, while@mbeing implemented with-
out altering a line of the underlying ftpd system code.

System overhead was measured by simulating multiple usggsrig in concurrently

and exhibiting varied download and upload behaviour pasgterhis setting was run

LarvaStat: Runtime Verification of Statistical Properties 5

multiple times with and without the additional intrusiorteletion system, whereby the
system on average exhibited approximately a 9% processargead while being mon-
itored.

4 Related Work and Conclusions

Three existing related approaches have been identifiedappeoach in [5] specifies
a framework focusing on the asynchronous collection ofstte$ over runtime execu-
tions. This is achieved by presenting a Linear Temporal t@gitension focused on
evaluating numerical queries on the trace, and admits #abtecevaluation strategy
given complete trace knowledge. Lola [3] is another tool] anesents a functional
stream computation language allowing for the expressi@ystem properties, numer-
ical queries as well as guaranteeing bounded memory regeires. EAGLE [1] is a
third approach, whose use of meta operators allows for thedéng of multiple for-
malisms such as interval temporal logics, finite state aatanas well as logics for the
expression of numerical queries. Our approach supportsinearelated statistics col-
lection, and enables interval masking over traces. Thengatton-based approach, also
makes explicit the overhead induced by monitoring over dmya that due to statistics
state storage and update.

LarvaStat shows the potential of applying runtime verifaratechniques for the col-
lection of non-functional metrics about the system beingitooed, which can then be
used to verify properties over these metrics. By extendm@sting runtime verifi-
cation tool, the resulting framework is able to both collsttistics over system exe-
cutions, as well as monitoring system properties quanttfiecugh statistical queries.
The ftpd case study, shows the applicability of the apprpbghadding probabilistic
intrusion detection and a system profiler to an existing.tool

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-basetime verification. In
5th International Conference on Verification, Model Checking and Abstinterpretation
(VMCAI), volume 2937 of NCS pages 44-57. Springer, 2004.

2. C. Colombo, G. Pace, and G. Schneider. Dynamic event-basgcheumonitoring of real-
time and contextual properties. Ii8th International Workshop on Formal Methods for In-
dustrial Critical Systems (FMICSyolume 5596 o NCS pages 135-149. Springer, 2008.

3. B. D’Angelo, S. Sankaranarayanan, Gnghez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchrongstesns. Inl12th
International Symposium on Temporal Representation and ReasonlikE), pages 166—
174, 2005.

4. D. E. Denning. An intrusion-detection mod¢EEE Transactions on Software Engineering
13:222-232, 1987.

5. B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Colledttigties over runtime
executionsElectr. Notes Theor. Comput. S&0(4):36-55, 2002.

