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Abstract. To avoid large overheads induced by runtime monitoring, the use of
asynchronous log-based monitoring is sometimes adopted — even though this
implies that the system may proceed further despite having reached an anomalous
state. Any actions performed by the system after the error occurring are undesir-
able, since for instance, an unchecked malicious user may perform unauthorized
actions. Since stopping such actions is not feasible, in this paper we investigate
the use of compensations to enable the undoing of actions, thus enriching asyn-
chronous monitoring with the ability to restore the system to the original state
in which the anomaly occurred. Furthermore, we show how allowing the moni-
tor to adaptively synchronise and desynchronise with the system is also possible
and report on the use of the approach on an industrial case study of a financial
transaction system.

1 Introduction

The need for correctness of systems has driven research in different validation and ver-
ification techniques. One of the more attractive approaches is the use of monitors on
systems to verify their correctness at runtime. The main advantage in the use of runtime
verification over other approaches, is that it is a relatively lightweight approach and
scales up to large systems — guaranteeing the observation of abnormal behaviour.

Even though monitoring of properties is usually computationally cheap when com-
pared to the actual computation taking place, the monitors induce an additional over-
head, which is not always desirable in real-time, reactive systems. In transaction pro-
cessing systems, the additional overhead induced by each transaction can limit through-
put and can cripple the user-experience at peak times of execution. One approach usu-
ally adopted in such circumstances, is that of evaluating the monitors asynchronously
with the system, possibly on a separate address space. The overhead is reduced to the
cost of logging events of the system, which will be processed by the monitors. How-
ever, by the time the monitor has identified a problem, the system may have proceeded
further.

The problem is closely related to one found in long-lived transactions [14] — trans-
actions which may last for too long a period to allow for locking of resources, but which
could lead to an inconsistent internal state if the resources are released. To solve the

� The research work disclosed in this publication is partially funded by the Malta National Re-
search and Innovation (R&I) Programme 2008 project number 052.
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problem, typically one defines compensations, to undo partially executed transactions
if discovered to be infeasible half way through. In the case of asynchronous monitoring,
allowing the system to proceed before the monitor has completed its checks may lead
to situations where the system should have been terminated earlier. As with long-lived
transactions, we allow this run-ahead computation. We adopt the use of compensa-
tions in our setting to enable the undoing of system behaviour when an asynchronous
monitor discovers a problem late, thus enabling the system to rollback to a sane state.
Furthermore, in a setting such as transaction-processing systems, one can afford most
of the time to run the monitors in synchrony with the system, falling back to asyn-
chrony only when required due to high system load. Thus, we propose an architecture
to enable loosely-coupled execution of monitors with the system, typically running syn-
chronously, but allowing for de-synchronisation when required and re-synchronisation
when desired.

In this paper, we present a framework to enable compensation-aware monitoring
— and prove that the compensation triggering mechanism works as expected, resulting
in similar behaviour as though we had run the monitor synchronously. Furthermore,
we show that enabling the monitor to synchronise (and desynchronise) at will with
the system does not change the behaviour. We have investigated the use of this ap-
proach on an industrial case study — dealing with financial transactions, and for which
a compensation-based implementation was already in place.

The paper is organised as follows — in section 2 we present background necessary
to reason about compensations, which we use to formally characterise compensation-
aware monitoring in section 3. An architecture implementing this mode of monitoring
is presented in section 4, and we illustrate its use on an industrial case study in section
5. Finally we discuss related work in section 6.

2 Compensations

Two major changes occurred which rendered traditional databases inadequate in certain
circumstances [14, 13]: on the one hand there was the advent of the Internet, facili-
tating the participation of heterogeneous systems in a single transaction, and on the
other hand, transactions became longer in terms of duration (frequently, the latter being
a consequence of the former). These changes meant that it was possible for a travel
agency to automatically book a flight and a hotel on behalf of a customer without any
human intervention — a process which may take time (mainly due to communication
with third parties and payment confirmation) and which may fail. These issues rendered
the traditional mechanism of resource locking for the whole duration of the transaction
impractical since it may cause severe availability problems, and motivated the need for
a more flexible way of handling transactions amongst heterogeneous systems while at
the same time ensuring correctness. A possible solution is the use of compensations
[14, 13] which are able to deal with partially committed long-lived transactions with
relative ease. Taking again the example of the flight and hotel booking, if the customer
payment fails, the agency might need to reverse the bookings. This can be done by first
cancelling the hotel reservation followed by the flight cancellation, giving the impres-
sion that the bookings never occurred. Although several notations supporting compen-
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sations have been proposed [5, 4, 3, 15, 21], little work [5, 6] has been done to provide
a mathematical basis for compensations. For simplicity, in the case of compensating
CSP (cCSP) [5], to study the effect of the use of compensations, it is assumed that they
are perfect cancellations of particular actions. This leads to the idea that executing an
action followed by the execution of its compensation, is the same as if no action has
been performed at all. In practice, it is rarely the case that two operations are perfect
inverses of each other and that after their execution no trace is left. However, the notion
of cancellation is useful as a check to the correctness of the formalism.

In this section we present the necessary background notions of cancellation com-
pensations, based on [5].

2.1 Notation

To enable reasoning about system behaviour and compensations, we will be talking
about finite strings of events. Given an alphabet Σ, we will write Σ ∗ to represent the
set of all finite strings over Σ, with ε denoting the empty string. We will use variables
a, b to range over Σ, and v, w to range over Σ ∗. We will also assume action τ indicat-
ing internal system behaviour, which will be ignored when investigating the externally
visible behaviour. We will write Στ to refer to the alphabet consisting of Σ ∪ {τ}.
Definition 1. Given a string w over Στ, its external manifestation, written w−τ, is the
same string but dropping instances of τ.
Two strings v and w are said to be externally equal, written v =τ w, if their external
manifestation is identical: v−τ = w−τ. This notion is extended to sets of strings.

External equivalence is an equivalence relation, and a congruence up to string catena-
tion.

2.2 Compensations

For every event that happens in the system, we will assume that we can automatically
deduce a compensation which, in some sense, corresponds to the action to be taken
to make up for the original event. Note that executing the two in sequence will not
necessarily leave the state of the system unchanged — a typical example being that of
a person withdrawing a sum of money from a bank ATM, with its compensation being
that of returning the sum but less bank charges.

Definition 2. Corresponding to every event a in alphabet Σ, its compensation will be
denoted by a. We will write Σ to denote the set of all compensation actions. For simplic-
ity of presentation, we will assume that the set of events and that of their compensations
are disjoint3. Extending compensations to an alphabet enriched with the internal action
τ, we assume that τ = τ.

3 One may argue that the two could contain common elements — e.g. deposit can either be done
during the normal forward execution of a system, or to compensate for a withdraw action.
However, one usually would like to distinguish between actions taken during the normal for-
ward behaviour and ones performed to compensate for errors, and we would thus much rather
use redeposit as the name of the compensation of withdraw, even if it behaves just like deposit.
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We also overload the compensation operator to strings over Στ, in such a way that
the individual events are individually compensated, but in reverse order: ε

def
= ε and

aw
def
= w a. For example, abc = cba.

To check for consistency of use of compensations, the approach is typically to con-
sider an ideal setting in which executing a, immediately followed by a will be just like
doing nothing to the original state. Although not typically the case, this approach checks
for sanity of the triggering of compensations.

Definition 3. The compensation cancellation of a string simplifies its operand by (i)
dropping all internal actions τ; and (ii) removing actions followed immediately by their
compensation. We define cancel(w) to be the shortest string for which there are no
further reductions of the form cancel(w1aaw2) = cancel(w1w2).

Since the sets of normal and compensation events are disjoint, strings may change
under cancellation only if they contain symbols from both Σ and Σ. Cancellation reduc-
tion is confluent and terminates.

Definition 4. Two strings w and w′ are said to be cancellation-equivalent, written w =c

w′, if they reduce via compensation cancellation to the same string: cancel(w) = cancel(w ′).
A set of strings W is said to be included in set W ′ up-to-cancellation, written W ⊆c W′,
if for every string in W, there is a cancellation-equivalent string in W ′:

W ⊆c W′ def
= ∀w ∈ W · ∃w′ ∈ W′ · w =c w′

Two sets are said to be equal up-to-cancellation, written W =c W′, if the inclusion
relation holds in both directions.

Cancellation equivalence is an equivalence relation, and is a congruence up to string
(and language) catenation. Furthermore, a string followed by its compensation cancels
to the empty string:

Proposition 1. The catenation of a string with its compensation is cancellation equiv-
alent to the empty string: ∀w · ww =c ε.

3 Compensations and Asynchronous Monitoring

We start by characterising synchronous and asynchronous monitoring strategies. In the
synchronous version, it is assumed that the system and monitor perform a handshake
to synchronise upon each event. In contrast, in the asynchronous approach, the events
the system produces are stored in a buffer, and consumed independently by the monitor,
which may thus lag behind the system. Based on the asynchronous semantics, we then
define a compensation-aware monitoring strategy, which monitors asynchronously, but
makes sure to undo any system behaviour which has taken place after the event which
led to failure. Finally we show how enabling synchronisation and desynchronisation at
will leaves the results intact.
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3.1 Synchronous and Asynchronous Monitoring

We will assume a labelled transition system semantics over alphabet Σ for both systems
and monitors. Given a class of system states S , we will assume the semantics −→ sys ⊆
S × Σ × S , and similarly a relation −→mon over the set of monitor states M. We also
assume a distinct 	 ∈ S identifying a stopped system, and ⊗ ∈ M denoting a monitor
which has detected failure. Both 	 and ⊗ are assumed to have no outgoing transitions.

Using standard notation, we will writeσ
a−→sys σ

′ (resp. m
a−→mon m′) as shorthand

for (σ, a, σ′) ∈ −→sys (resp. (m, a,m′) ∈ −→mon). For any transition relation
a−→X (a ∈

Σ), we will write
w
=⇒X (w ∈ Σ∗) to denote its reflexive transitive closure.

Definition 5. The transition system semantics of the synchronous composition of a sys-
tem and monitor is defined over S × M using the rules given in Fig 1. The rule Sync
defines how the system and monitor can take a step together, while SyncErr handles
the case when the monitor discovers an anomaly. A state (σ,m) is said to be (i) sus-
pended if σ = 	; (ii) faulty if m = ⊗; and (iii) sane if it is not suspended unless faulty
(σ = 	 =⇒ m = ⊗).

The set of traces generated through the synchronous composition of system σ and
monitor m, written traces‖(σ,m) is defined as follows:

traces‖(σ,m) = {w | ∃(σ′,m′) · (σ,m)
w
=⇒‖ (σ′,m′)}

Example 1. For example consider a simple system P over alphabet {a, b} and a monitor
A which consumes an alternation of a and b events starting with a i.e. abab . . . but
breaks for any other input. The synchronous composition of such system and monitor
takes a step if both the system and the monitor can take a step independently on the

given input. Therefore, if the system performs event a: (P, A)
a−→‖ (P′, A′). If system P

performs a b instead, the system would break: (P, A)
b−→‖ (	,⊗).

Proposition 2. A sequence of actions is accepted by the synchronous composition of a
system and a monitor, if and only if it is accepted by both the monitor and the system

acting independently. Provided that m ′ � ⊗, (σ,m)
w
=⇒‖ (σ′,m′), if and only if σ

w
=⇒sys

σ′ and m
w
=⇒mon m′.

In contrast to synchronous monitoring, asynchronous monitoring enables the system
and the monitor to take steps independently of each other. The state of asynchronous
monitoring also includes an intermediate buffer between the system and the monitor
so as not to lose messages emitted by the system which are not yet consumed by the
monitor.

Definition 6. The asynchronous composition of a system and a monitor, is defined over
S × Στ × M, in terms of the three rules given in Fig. 1. Rule AsyncS allows progress of
the system adding the events to the intermediate buffer, while rule AsyncM allows the
monitor to consume events from the buffer. Finally rule AsyncErr suspends the system
once the monitor detects an anomaly. Suspended, faulty and sane states are defined as
in the case of synchronous monitoring by ignoring the buffer.
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The set of traces accepted by the asynchronous composition of systemσ and monitor
m, written traces�(σ,m) is defined as follows:

traces�(σ,m) = {w | ∃(σ′,w′,m′) · (σ, ε,m)
w
=⇒� (σ′,w′,m′)}

Example 2. Taking the same example as before, upon each step of the system, an event

is added to the buffer — if the system starts with an event b: (P, ε, A)
b−→� (P′, b, A).

Subsequently, the system may either continue further, or the monitor can consume the

event from the buffer and fail: (P ′, b, A)
τ−→� (P′, ε,⊗). At this stage the system can

still progress further until it is stopped by the rule AsyncErr.

Proposition 3. The system can always proceed independently when asynchronously
monitored, adding events to the buffer, while the monitor can also proceed indepen-

dently, consuming events from the buffer: (i) if σ
w
=⇒sys σ

′, then (σ,w′,m)
w
=⇒�

(σ′,w′w,m); and (ii) if m
w
=⇒mon m′, then (σ,ww′,m)

τ∗
=⇒� (σ,w′,m′).

Synchronous Monitoring

Sync
σ

a−→sys σ
′, m

a−→mon m′

(σ,m)
a−→‖ (σ′,m′)

m � ⊗ SyncErr
σ

a−→sys σ
′, m

a−→mon ⊗
(σ,m)

a−→‖ (	,⊗)

Asynchronous Monitoring

AsyncS
σ

a−→sys σ
′

(σ,w,m)
a−→� (σ′,wa,m)

AsyncM
m

a−→mon m′

(σ, aw,m)
τ−→� (σ,w,m′)

AsyncErr
(σ,w,⊗)

τ−→� (	,w,⊗)
σ � 	

Compensation-Aware Monitoring

Comp
(	,wa,⊗)

a−→C (	,w,⊗)

Adaptive Monitoring

ReSync
(σ, ε,m)

τ−→A (σ,m)
DeSync

(σ,m)
τ−→A (σ, ε,m)

Fig. 1. Semantics of different monitoring schemas
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3.2 Compensation-Aware Monitoring

The main problem with asynchronous monitoring is that the system can proceed beyond
an anomaly before the monitor detects the problem and stops the system. We enrich
asynchronous monitoring with compensation handling so as to ‘undo’ actions which
the system has performed after an error is detected.

Definition 7. Compensation-aware monitoring uses the asynchronous monitoring rules,
together with an additional one Comp which performs a compensation action of actions
still lying in the buffer once the monitor detects an anomaly. The rule is shown in Fig.
1.

The set of traces generated through the compensation-aware composition of system
σ and monitor m, written traces C(σ,m), is defined as follows:

traces C(σ,m) = {w | ∃(σ′,m′) · (σ, ε,m)
w
=⇒C (σ′, ε,m′)}

Sane, suspended and faulty states are defined as in asynchronous monitoring.

Example 3. Consider the previous example with:

(P, ε, A)
b−→C (P′, b, A)

b−→C (P′′, bb, A)
τ−→C (P′′, b,⊗)

a−→C (P′′′, ba,⊗)
τ−→C (	, ba,⊗)

At this stage, compensation actions are executed for the actions remaining in the
buffer in reverse order:

(	, ba,⊗)
a−→C (	, b,⊗)

b−→C (	, ε,⊗)

Proposition 4. States reachable (under synchronous, asynchronous and compensation-
aware monitoring) from a sane state are themselves sane. Similarly, for suspended and
faulty states.

Strings accepted by compensation-aware monitoring follow a regular pattern.

Lemma 1. For an unsuspended state (σ, ε,m), if (σ, ε,m)
w
=⇒C (	, v,⊗), then there

exist some w1,w2 ∈ Σ∗ such that the following three properties hold: (i) w =τ w1vw2w2;

(ii) m
w1
=⇒mon ⊗; (iii) ∃σ′′ · σ w1vw2

=⇒ sys σ
′′.

Similarly, for an unsuspended state (σ, ε,m), if (σ, ε,m)
w
=⇒C (σ′, v,m′) (with σ′ �

	), then there exists w1 ∈ Σ∗ such that the following three properties hold: (i) w =τ w1v;

(ii) m
w1
=⇒mon m′; (iii) σ

w1v
=⇒sys σ

′.

Proof. The proof of the lemma is by induction on the derivation string w.
For the base case, with w = ε, we consider the two possible cases separately:

– Given that (σ, ε,m)
ε
=⇒C (	, v,⊗), it follows immediately that σ = 	, v = ε and

m = ⊗. By taking w1 = w2 = ε, all three statements follow immediately.

– Alternatively, if (σ, ε,m)
ε
=⇒C (σ′, v,m′), it follows immediately that σ = σ′, v = ε

and m = m′. By taking w1 = ε, all three statements follow immediately.

Assume the property holds for a string w, we proceed to prove that it holds for a string
wa.
By analysis of the transition rules, there are four possible ways in which the final tran-
sition can be produced:
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(a) Using the rule AsyncErr: (σ, ε,m)
w
=⇒C (σ′, v,⊗)

τ−→C (	, v,⊗).

(b) Using the rule CompB: (σ, ε,m)
w
=⇒C (	, va,⊗)

a−→C (	, v,⊗).

(c) Using the rule AsyncS : (σ, ε,m)
w
=⇒C (σ′′, v,m′)

a−→C (σ′, va,m′).
(d) Using the rule AsyncM: (σ, ε,m)

w
=⇒C (σ′, av,m′′)

τ−→C (σ′, v,m′).

The proofs of the four possibilities proceed similarly. Consider the possibility (b):

(σ, ε,m)
w
=⇒C (	, va,⊗)

a−→C (	, v,⊗)
By the inductive hypothesis, it follows that there exist w′1 and w′2 such that (i) w =τ

w′1vaw′2w′2; (ii) m
w′1
=⇒mon ⊗; (iii) ∃σ′′ · σ w′1vaw′2

=⇒ sys σ
′′.

We require to prove that there exist w1 and w2 such that: (i) wa =τ w1vw2w2; (ii)

m
w1
=⇒mon ⊗; (iii) ∃σ′′ · σ w1vaw2

=⇒ sys σ
′′.

Taking w1 = w′1 and w2 = aw′2 statement (i) can be proved as follows:

wa
=τ { by statement (i) of the inductive hypothesis }

w′1vaw′2w
′
2a

= { by definition of compensation of strings }
w′1vaw′2aw′2

= { by choice of w1 and w2 }
w1vw2w2

Statement (ii) follows immediately from the statement (ii) of the inductive hypothesis
and the fact that w1 = w′1. Similarly, from statement (iii) of the inductive hypothesis,

σ
w′1vaw′2
=⇒ sys σ

′, if follows by definition of w1 and w2, that σ
w1vw2
=⇒ sys σ

′.
The proofs of the other possibilities follow in a similar manner.

We can now prove that synchronous monitoring is equivalent to compensation-
aware monitoring with perfect compensations. This result ensures the sanity of com-
pensation triggering as defined in the semantics.

Theorem 1. Given a sane system and monitor pair (σ,m), the set of traces produced by
synchronous monitoring is cancellation-equivalent to the set of traces produced through
compensation-aware monitoring: traces‖(σ,m) =c traces C(σ,m).

Proof. To prove that traces‖(σ,m) ⊆c traces C(σ,m), we note that every synchronous

transition (σ′,m)
a−→‖ (σ′′,m′′), can be emulated in two steps by the compensation-

aware transitions (σ′, v,m)
aτ
=⇒C (σ′′, v,m′′), leaving the buffer intact. Using this fact,

and induction on string w, one can show that if (σ,m)
w
=⇒‖ (σ′,m′), then (σ, ε,m)

v
=⇒C

(σ′, ε,m′), with w = v−τ. Hence, traces‖(σ,m) ⊆c traces C(σ,m).
Proving it in the opposite direction (traces C(σ,m) ⊆c traces‖(σ,m)) is more intricate.

By definition, if w ∈ traces C(σ,m), then (σ, ε,m)
w
=⇒C (σ′, ε,m′). We separately con-

sider the two cases of (i) σ′ = 	 and (ii) σ′ � 	.

– When the final state is suspended (σ′ = 	):
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(σ, ε,m)
w
=⇒C (	, ε,m′)

=⇒ { by sanity of initial state and proposition 4 }
(σ, ε,m)

w
=⇒C (	, ε,⊗)

=⇒ { by lemma 1 }
∃w1,w2 · w =τ w1w2w2 ∧m

w1
=⇒mon ⊗′ ∧ ∃σ′′ · σ

w1
=⇒sys σ

′′

=⇒ { by proposition 2 }
∃w1,w2 · w =τ w1w2w2 ∧ ∃σ′′ · (σ,m)

w1
=⇒‖ (σ′′,⊗)

=⇒ { by definition of traces‖ }
∃w1,w2 · w =τ w1w2w2 ∧ w1 ∈ traces‖(σ,m)

=⇒ { by proposition 1 }
∃w1 · w =c w1 ∧ w1 ∈ traces‖(σ,m)

– When the final state is not suspended (σ ′ � 	):

(σ, ε,m)
w
=⇒C (σ′, ε,m′)

=⇒ { by lemma 1 }
∃w1 · w =τ w1 ∧ m

w1
=⇒mon m′ ∧ σ w1

=⇒sys σ
′

=⇒ { by proposition 2 }
∃w1 · w =τ w1 ∧ (σ,m)

w1
=⇒‖ (σ′,m′)

=⇒ { by definition of traces‖ }
∃w1 · w =τ w1 ∧ w1 ∈ traces‖(σ,m)

=⇒ { by the alphabet of synchronous monitoring }
∃w1 · w =c w1 ∧ w1 ∈ traces‖(σ,m)

Hence, in both cases it follows that:
w ∈ traces C(σ,m) =⇒ ∃w1 · w =c w1 ∧ w1 ∈ traces‖(σ,m)

From which we can conclude that:
traces C(σ,m) ⊆c traces‖(σ,m)

3.3 Desynchronising and Resynchronising

Despite compensation-awareness, in some systems it may be desirable to run monitor-
ing synchronously with the system during critical sections of the code, only to desyn-
chronise the system from the monitor again once control leaves the critical code section.
In this section, we investigate a monitoring strategy which can run both synchronously
or asynchronously in a non-deterministic manner. Any heuristic used to decide when to
switch between modes corresponds to a refinement of this approach.

Definition 8. The adaptive monitoring of a system, is defined in terms of the two addi-
tional (over and above synchronous and asynchronous monitoring) rules given in Fig.
1. Rule ReSync allows the system to synchronise once the buffer is empty, while rule
DeSync allows the monitor to be released asynchronously. By also including the com-
pensation rule Comp, we obtain adaptive compensation-aware monitoring (−→ AC).

The set of traces generated through the adaptive composition of system σ and mon-
itor m, written traces A(σ,m), is defined as follows:

traces A(σ,m)
def
= {w | ∃(σ′,w′,m′) · (σ,m)

w
=⇒A (σ′,w′,m′) ∨ (σ,m)

w
=⇒A (σ′,m′)}
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The traces for compensation-aware adaptive composition traces AC(σ,m) can be
similarly defined.

Theorem 2. Asynchronous and adaptive monitoring are indistinguishable up to traces:
traces A(σ,m) = traces�(σ,m). Compensation-aware adaptive monitoring is also in-
distinguishable from compensation-aware monitoring up to traces: traces AC(σ,m) =
traces C(σ,m).

The theorems can be easily proved based on transition-relation inclusion. An im-
mediate corollary of this last result, is that compensation-aware adaptive monitoring is
cancellation-equivalent to synchronous monitoring.

It is important to note that the results hold about trace equivalence. In the case
of adaptive monitoring, we are increasing the set of diverging configurations — since
every state can diverge through repeatedly desynchronising and resynchronising. One
would be required to enforce fairness constraints on desynchronising and resynchronis-
ing rules to ensure achieving progress in the monitored systems.

4 A Compensation-Aware Monitoring Architecture

Larva [9] is a synchronous runtime verification architecture supporting DATEs [8] as
a specification language. A user wishing to monitor a system using Larva must supply
a system (a Java program) and a set of specifications in the form of a Larva script
— a textual representation of DATEs. Using the Larva compiler, the specification is
transformed into the equivalent monitoring code together with a number of aspects
which extract events from the system. Aspects are generated in AspectJ, an aspect-
oriented implementation for Java, enabling automatic code injection without directly
altering the actual code of the system. When a system is monitored by Larva generated
code, the system waits for the monitor before continuing further execution.

We propose an asynchronous compensation-aware monitoring architecture, cLarva,
with a controlled synchronous element. In cLarva, control is continually under the ju-
risdiction of the system — never of the monitor. However, the system exposes two
interfaces to the monitor: (i) an interface for the monitor to communicate the fact that
a problem has been detected and the system should stop; and (ii) an interface for the
monitor to indicate which actions should be compensated. Note that these correspond
directly to rules AsyncErr and Comp respectively. Therefore, the actual time of stop-
ping and how the indicated actions are compensated are left for the system to decide.

Fig. 2 shows the four components of cLarva and the communication links between
them. The monitor receives system events through the events player from the log, while
the system can continue unhindered. If the monitor detects a fault, it communicates with
the system so that the latter stops. Depending on the actions the system carried out since
the actual occurrence of the fault, the monitor indicates these actions for compensation.
It is important to point out that the monitor can only compensate for actions of which
it is aware — the monitor can never alert the system to compensate actions which have
not been logged.

To support switching between synchrony and asynchrony, a synchronisation man-
ager component is added as shown in Fig. 3. All connectors in the diagram are syn-
chronous with the system not proceeding after relaying an event until it receives control
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     Monitor

                   Stop

                      Compensate
     System

 Events Player
        Log

Fig. 2. The asynchronous architecture with compensations cLarva.

Compensate

     Manager
Events

SynDes

Stop/Cont
System  Monitor

Events

Stop/Cont

Fig. 3. The asynchronous architecture with synchronisation and desynchronisation controls.

from the manager. The following code snippet shows the logic of the synchronisation
manager:

c = ok ;set default control to ok
while (c != stop)
if (synch_mode)
e = in_event() ;read event from system
c = out_event(e) ;forward to monitor and get its resulting state
out_control(c) ;relay control to system

else
par ;parallel execution
e1 = in_event() ;read from system
addToBuffer(e1) ;store in buffer
out_control(c) ;return control to system

with
e2 = readFromBuffer() ;read from buffer
c = out_event(e2) ;forward to monitor and get its resulting state

end

The behaviour in which this architecture differs from cLarva is that it can operate in
both synchronous and asynchronous modes and can switch between modes. Switching
from synchronous to asynchronous is trivial. The opposite requires that the manager
waits for the monitor to consume all the events in the buffer and then allowing the sys-
tem to proceed further. So far this has not been implemented, but we aim to implement
it in the future as an improvement on cLarva.

In real-life scenarios it is usually undesirable to stop a whole system if an error
is found. However, in many cases it is not difficult to delineate parts of the system to
ensure that only the relevant parts of the system are stopped. For example, consider
the case where a transaction is carried out without necessary rights. In such a case, the
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Fig. 4. The lifecycle property.

transaction should be stopped and compensated. However, if a user has managed to
illegally login and start a session, then user operations during that session should be
stopped and compensated.

5 Case Study

We have applied cLarva on Entropay, an online prepaid payment service offered by
Ixaris Systems Ltd4. Entropay users deposit funds through funding instruments (such
as their own personal credit card or through a bank transfer mechanism) and spend such
funds through spending instruments (such as a virtual VISA card or a Plastic Master-
card). The service is used worldwide and thousands of transactions are processed on a
daily basis.

The advantage of applying the proposed architecture to EntroPay is that the latter
already incorporates compensations in its implementation. The case study is further
simplified by the fact that properties are not monitored globally but rather on a per user
or per credit card basis. Therefore, when a problem is found with a particular user or
card, only the compensations for that particular entity need to be triggered.

The case study implementation closely follows the architecture described above
with two control connections: one with an interface for stopping EntroPay with respect
to a particular user and another to the compensation interface of EntroPay, through
which the monitor can cause the system to execute compensations.

In what follows, we give a classification of properties which were monitored suc-
cessfully and how these are compensated in case of a violation detection.

Life cycle A lot of properties in Entropay depend on which phase of the life-cycle an
entity is in. Fig. 4 is an illustration of the user life-cycle, starting with registration
and activation, allowing the user to login and logout (possibly carrying out a series
of operations in between), and finally, the possibility of freezing/unfreezing/delet-
ing a user in case of inactivity.
Implicitly, such a property checks that for a user to perform a particular operation
and reach a particular state, the user must be in an appropriate state. If a life cycle
property is violated, the user actions carried out after the violation is compensated

4 www.ixaris.com
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and the user state is corrected. For example, if a user did not login and managed to
carry out a transfer, then as soon as the monitor detects the violation, any ongoing
user operations are stopped and the illegal transfer is compensated.

Real-time Several properties in Entropay, have a real-time element. For example, a
user account which is inactive for more than six months is frozen. If freezing does
not take place, then, upon detection, the monitor issues a compensation for any
actions carried out after the expected freezing and freezes the user account.

Rights User rights are a very important aspect of Entropay’s security. A number of
transactions require the user to have the appropriate rights before a transaction is
permitted. If a transaction is carried out without the necessary rights, it is compen-
sated.

Amounts There are various limits (for security reasons) on the frequency of certain
transactions and the total amount of money which these transactions constitute. If
a user is found to have carried out more transactions than allowed, then the excess
transactions are compensated. Similarly, transaction amounts which go beyond the
allowed threshold are compensated for.

The case study was successfully executed on a database of 300,000 users with
around a million credit cards. A number of issues have been detected through the moni-
toring system: (i) certain logs were missing; (ii) some users were found to be in a wrong
state, eg. should be in a frozen state but still active; (iii) the limit of the amount of money
a user can spend was in some cases exceeded. Monitoring of the logs performed asyn-
chronously ensured the identification of issues, and through the compensation mecha-
nism, identification of actions to be taken to rollback the system to the point where the
violation occurred. At that point, one can then either notify the operator of the issue, or
trigger the system’s own exception handling mechanism.

Although the current properties being monitored on Entropay are relatively light-
weight and monitoring can be done relatively seamlessly, due to security issues, running
the monitor synchronously is not an option — avoiding changes in the architecture of
Entropay. The monitors are linked to the database of log entries to enable asynchronous
monitoring, but giving feedback and compensation actions upon discovering issues.

6 Related Work

In principle, any algorithm used for synchronous monitoring can be used for asyn-
chronous monitoring as long as all the information available at runtime is still available
asynchronously to the monitor through some form of buffer. The inverse, however, is
not always true because monitoring algorithms such as [19] require that the complete
trace is available at the time of checking. In our case, this was not an option since our
monitor has to support desynchronisation and resynchronisation at any time during the
processing of the trace.

There are numerous algorithms and tools [2, 7, 1, 19, 20, 12, 16, 11] which support
asynchronous monitoring — sometimes also known as trace checking or offline moni-
toring. A number of these tools and algorithms [2, 7, 1, 19] support only asynchrony un-
like our approach which supports both synchronous and asynchronous approaches. Fur-
thermore, although a number of approaches [12, 16, 20, 11] support both synchronous
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and asynchronous monitoring, no monitoring approach of which we are aware is able to
switch between synchronous and asynchronous monitoring during a single execution.

Although the idea of using rollbacks (or perfect compensations) as a means of syn-
chronisation might be new in the area of runtime verification, this is not the case in the
area of distributed games [17, 18, 10]. The problem of distributed games is to minimise
the effects on the playing experience due to network latencies. Two general approaches
taken are pessimistic and optimistic synchronisation mechanisms. The former waits for
all parties to be ready before anyone can progress while the latter allows each party to
progress and resolve any conflicts later through rollbacks.

The problem which we have addressed in this work is a simplified version of the
distributed game problem with only two players: the system and the monitor. In a similar
fashion to game synchronisation algorithms, the system rolls-back (or compensates) to
revert to a state which is consistent with the monitor.

7 Conclusions and Future Work

In this paper, we have presented an adaptive compensation-aware monitoring architec-
ture, and an implementation cLarva. Combined with the notion of compensations where
actions of a system can be ‘undone’ to somewhat restore a previous state, we reduce the
effect of errors detected late (due to asynchronous monitoring) by compensating for
additional events which the system may have performed in the meantime. We have
demonstrated the use of this approach on a financial transaction handling software. The
advantage of this case study is that compensations were already a well-defined concept
from the developers perspective.

At the moment we are investigating the use of heuristics for desynchronisation and
resynchronisation of the system and monitor. At the simplest level, one can simply trig-
ger asynchronous monitoring when the system load reaches a certain level, and switch
back to synchronous monitoring when it falls below the threshold. It would be interest-
ing to explore further the development of smarter heuristics for this purpose — taking
into account other issues, such as the trust in (or lack thereof) parties involved in the
transaction and its monetary value.

A significant limitation of our work is the assumption that compensations are asso-
ciated to individual actions. Apart from the fact that this might not always be the case,
this approach is highly inflexible as one cannot simultaneously compensate for several
actions, or commit a series of actions such that they cannot be compensated. In the
future, we aim to lift this limitation by introducing a structured approach to compensa-
tions.
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