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1 Introduction

Runtime verification techniques are concerned with the monitoring of software, providing
guarantees that observed runs comply with specified properties. These methods are strong in
analysing systems of a complexity that is difficult to address by static verification, like systems
with numerous interacting sub-units, heavy usage of mainstream libraries, real (as opposed to
abstract) data, and real world deployments. On the other hand, the major drawbacks of runtime
verification are the impossibility to extrapolate correct observations to all possible executions,
and that monitoring introduces runtime overheads. In the work we present here, the authors
address these downsides by combining runtime verification with static verification, such that:
(i) Static verification attempts to ‘resolve’ those parts of the properties which can be confirmed
statically with low overhead (like, e.g. fully automatically); (ii) the static results, even if only
partial (see below), are used to change the property specification such that generated monitors
will not check dynamically what was confirmed statically.

In addition to combining static and runtime verification, we propose a specification language,
and an according verification methodology, that captures both control-oriented properties (like
the DATE language used in the runtime verification tool Larva [4]) and data-oriented properties
(like the Java Modelling Language JML [3, 5]).

2 The StaRVOOrS Framework

Below we show an abstract view of the framework, which was initially sketched in [1].
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Given a Java program P and a specification π of the properties to be verified (given in the
language ppDATE, see Sec. 3), these are transformed into suitable input for the Deductive
Verifier module which, in principle, might statically fully verify the properties related to pre/post-
conditions. What is not proved statically will then be left to be proven at runtime. Here, not
only the completed but also the partial proofs will be used by the Partial Specification Evaluator
module in order to rewrite the original π into π′ which triggers runtime checks for the parts
which were not possible to prove statically. To achieve this, the original pre-conditions from π
are refined to express also path conditions for not statically verified executions.

In order to use aspects, the program P is subject to Code Instrumentation and π′ is modified
according to this instrumentation. Next, the modified π′ specification is transformed into a
specification suitable for the runtime verifier by Model Transformation. The instrumented
program, together with the previously obtained specification, is given to the Monitor Generator,
which uses aspect-oriented programming techniques to capture relevant system events. Later on,
the generated aspects are weaved (Weaving Code) into the instrumented version of P . The final
step in the work-flow is the actual runtime verification, which executes the weaved program P ′

in parallel with the resulting monitor. Suitable forms of reporting and analysing the results of
runtime verification, in certain cases including error recovery mechanisms, are natural extensions
of the framework.

To realise the StaRVOOrS framework, we combine, initially, the use of the deductive source
code verifier KeY [2] and the runtime monitoring tool Larva [4]. KeY is a deductive verification
system for data-centric functional correctness properties of Java source code, which generates
proof obligations in dynamic logic (DL), a modal logic for reasoning about programs. Larva1 is
an automata-based runtime verification tool for Java programs which automatically generates a
runtime monitor from a property written in the formal language DATE. Larva transforms the
set of properties into monitoring code together with AspectJ code to link the system with the
monitors.

3 A Specification Language for Static and Runtime Veri-
fication of Data and Control Properties

Due to the fact that we want to specify both control-oriented and data-oriented properties in a
single language, we are in the need of formalizing a language which supports both.

For data-oriented property specification, KeY supports the Java Modelling Language (JML)
[5]. JML allows for the specification of pre- and post-conditions of method calls, and class
invariants.

The control-oriented specification language of Larva is called Dynamic Automata with
Timers and Events (DATEs). DATEs are essentially an extension of timed automata. At their
simplest level, they are finite state automata, whose transitions are triggered by system events
(primarily entry points f↓ and exit points f↑ of methods) and timers, but augmented with: (i)
A symbolic state which may be used as conditions to guard transitions and can be modified
via actions also specified on the transition; (ii) Replication of automata, through which a new
automaton is created for each discovered instance of an object; (iii) Communication between
automata using standard CCS-like channels with c! acting as a broadcast on channel c and
which can be read by another automaton matching on event c?.

Hence, we want that our specification language allow us to generate, from a specification
written on it, suitable artifacts for both JML and DATE. With this idea in mind we have

1Logical Automata for Runtime Verification and Analysis.
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formalized the language ppDATE, which is essentially an extension of DATEs with Hoare-triples

on states. Therefore, in addition to transitions of the form q
event|condition7→action−−−−−−−−−−−−−−−−→M q′, the

ppDATE automaton has a mapping τ associating sets of Hoare-triples {pre} event {post} to
states. Intuitively, while in a state q with {pre} event {post} ∈ τ(q), any invocation of event
satisfying precondition pre on entry, should satisfy postcondition post upon exit.

4 Ongoing and Future Work

We have formalised the language for combining (partial) static and (optimised) runtime veri-
fication, which we called ppDATE, and we have applied our framework to two small real-life
scenarios: a login management system, and an implementation of binary semaphores. In both
cases, we analyse properties which should be guaranteed by the respective implementations, and
we demonstrate how these properties can be partly statically, partly dynamically verified using
our framework.

We will continue this work as follows: (i) Prove soundness of ppDATEs transformation.
(ii) Implement ppDATE as a script language. (iii) Automate the usage of KeY, the analysis
of its (partial) proofs, and the integration of the result in optimised ppDATEs. Towards this
direction, we have so far implemented a facility which given a Java program annotated with JML
specifications, returns an .xml file that shows which specifications hold, which specifications do
not hold and, in case of a branching, which branches were closed, which branches remain as
open goals and which was the condition that produced the branching. (iv) Integrate KeY and
Larva. (v) Address the automation of the ‘operationalisation’ of pre/post-conditions containing
algorithmic content. (vi) Apply our framework to case studies.
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