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Abstract: Over these past years, formal reasoning about contracts between parties has been increasingly explored in the
literature. There has been a shift of view from that viewing contracts simply as properties to be satisfied by the
parties to contracts as first class syntactic objects which can be reasoned about independently of the parties’
behaviour. In this paper, we present a real-time deontic contract calculus, Themulus, to reason about contracts,
abstracting the parties’ behaviour through the use of a simulation relation. In doing so, we can compare
real-time deontic contracts in terms of their strictness over permissions, prohibitions and obligations.

1 Introduction

The need for formal techniques for reasoning
about contracts is becoming increasingly important as
software systems interact more frequently with other
systems and with our everyday life. Although for
many applications a property-based approach suffices
— specifying pre-/post-conditions, invariants, tempo-
ral properties, etc. — other applications require a
first class notion of contracts which property-based
approaches do not address sufficiently well. De-
ontic logics [Georg Henrik Von Wright, 1951] have
been developed precisely to deal with such a need
to talk about ideal behaviour of a system, possibly
also including exceptional situations when the sys-
tem deviates from such behaviour. For instance, con-
sider a contract which specifies that a party is to per-
form a particular action, but if they fail to do so,
they will incur an additional charge (which they are
obliged to pay) and prohibited from taking certain
actions until they do so. Such contracts, typically
using a deontic logic, have been referred to as to-
tal contracts and have been argued to be more in-
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formative (with the right abstractions) than simple
properties [Fenech et al., 2009]. The opportunity to
move from seeing specifications simply as expres-
sions in a logic which must hold to the higher level
view of them being a form of contract goes back to
Khosla [Khosla, 1988]. By looking at contracts as
first-class entities which can be reasoned about, ma-
nipulated, etc., one can perform contract analysis in-
dependent of the systems the contract will regulate,
e.g., one can analyze contracts for potential conflicts,
or to evaluate which is the stricter one.

Different approaches to contract analysis have
been reported in the literature, with most ap-
proaches focusing on the violation semantics of
contracts, thus enabling the characterization of
agreements between parties or agents regulating
their behaviour. In systems with interacting parties,
contracts play an even more important role since
an agent’s behaviour (or non-behaviour) directly
impacts other agents. Surprisingly, many contract
logics reason about deontic modalities such as
obligations and permissions without specifying
agents, and the literature addressing reasoning
about directed deontic modalities is relatively sparse
(e.g. Modal Action Logic [Jeremaes et al., 1986],
deontic STIT logic [Belnap and Perloff, 1993,
Horty, 2001], Business Contract Lan-
guage [Governatori and Milosevic, 2005], contract



automata [Pace and Schapachnik, 2012]).
Interaction has long been studied in computer sci-

ence using calculi to reason about communicating
transition systems enabling the classification of sys-
tems into correct and incorrect ones with respect to
a property. It is only recently, however, that the dis-
tinction between properties and contracts has started
being explored. Yet, in much of the literature, con-
tract comparison is still defined in terms of how the
contracts regulate systems e.g. saying that a contract
is stricter than another if any system which violates
the latter will also violate the former. This means that
to reason about contracts one has to bring to play the
systems which they regulate.

Orthogonal to this issue is that of the notion of
time in contracts. From work in linear temporal log-
ics, one can (broadly) categorize such logics into a
number of categories: (i) ones which permit rea-
soning about sequentiality of events; (ii) ones which
can also reason about time using a notion of a dis-
crete global clock; and (iii) ones which allow rea-
soning about timers which can take continuous time
values and which can interact with such timers e.g.
triggering on timeouts, or resetting the timers. The
notion of continuous time clocks, i.e. (iii), intro-
duces additional complexity including aspects which
may be undecidable as can be seen, for instance, in
the extensive work on verification of timed automata
and hybrid systems in general [Asarin et al., 2012].
Multi-party session types, which share much with
contracts have been extended to deal with timed as-
pects [Bocchi et al., 2014]. Our approach to time
shares much with theirs, although our handling of no-
tions such as permission allows for an implicit notion
of deontic modalities

Furthermore, if events are timed, one has to intro-
duce a notion of time in the deontic logic — whether
in a point-wise manner (e.g. an obligation to perform
a particular action at a particular time) or over time
intervals (e.g. an obligation to perform a particular
action before a deadline). There is much work about
the combination of discrete time temporal and deon-
tic logics, but less so with dense-time logics. Our ap-
proach is an interval logic one, taking the approach
adopted by real time logics such as duration calcu-
lus [Chaochen et al., 1991], which only allows state-
ments about signal values over non-point intervals.

In earlier work, we have developed a calculus to
reason about contracts independently of the systems
[Cambronero et al., 2017] in which, only temporal se-
quentiality of events was handled. In this paper, we
present a time extension, give an operational view
of contracts, and use simulation techniques to reason
about contracts at an operational level.

The paper is organised as follows. First, we
present a running example (section 2) used through-
out the paper to clarify concepts. Then, the notation
we will use to formalize our notions is presented in
Section 3. We then present our timed contract calcu-
lus Themulus in Section 4 and formalize the notion of
refinement of contracts in section 5. We finally con-
clude in Section 6 with some conclusions and possible
lines of future work.

2 Running Example

In the rest of the paper, we will illustrate our logic
and results based on a contract commonly used in
the literature, that of a plane boarding system, based
on e.g. [Azzopardi et al., 2014]. In this section we
present this use case — an agreement between the
passenger and airline company, regulating the plane
boarding process, from check-in till the flight, includ-
ing time constraints. The use case is a simplified ver-
sion based on the Madrid Barajas airport regulations.
1. The passenger is permitted to use the check-in desk

within two hours before the plane takes off (t0).

2. At the check-in desk, the passenger is obliged to present
her boarding pass whitin 5 minutes.

3. After presenting the boarding pass, the passenger must
show her passport, she has 5 minutes for this purpose.

4. Henceforth, the passenger is (i) prohibited from carry-
ing liquids in her hand-luggage until boarding; and (ii)
prohibited from carrying weapons during the whole trip
until the plane lands. If she has liquids in her hand-
luggage, she is obliged to dispose of them within 10
minutes.

5. After presenting her passport, the passenger is permit-
ted to board within 90 minutes and to present the hand-
luggage to the staff within 10 minutes. Therefore, the
airline company is obliged to allow the passenger to
board within 90 minutes. If the passenger is stopped
from carrying luggage, the airline company is obliged
to put the passenger’s hand luggage in the hold within
20 minutes.

3 Background and Notation

Contracts regulate the behaviour of agents or par-
ties that are acting concurrently. In this Section, we
present notation used to describe these agents and
their behaviour in order to be able to formalize con-
tracts in the following sections.

Structurally, the underlying system consists of
several indexed agents running in parallel, using vari-
ables A, A1 to represent the individual agents. The sys-
tem as a whole will consist of the parallel composition



of all agents indexed by a finite set I i.e. the system
will be of the form ||iPI Ai. We will use variables A ,
A 1 to denote the state of the system as a whole.
Notation: The visible behaviour of the system and
agents will be assumed to consist of actions over Act,
and the agents’ behaviour will be assumed to con-
sist of (i) a relation indicating how their state changes
whenever such action occurs; and (ii) a relation indi-
cating how they change over time. Time will be taken
to range over the non-negative reals: T=R+. Agents
semantics are thus represented as timed labelled tran-
sition systems:
• A a−−Ñ A1, for a P Act, indicates that agent A

changes to A1 upon performing action a. As it is
usual in process algebrae [Yi, 1991], the execu-
tion of actions does not consume time. The tran-
sition A a−−Û indicates that agent A cannot perform
a: A a−−Û df

= DA1 ¨A a−−Ñ A1.

• A d
::; A1, for d ą 0 P T, indicates that agent A

evolves to A1 after d time units pass.
Assumptions: We will assume that agents are non-
blocking: for any agent A, there is an agent state A1

such that either (i) A a−−Ñ A1 (for some a PAct); or (ii)
A d
::; A1 (for some d ą 0 P T). We also assume the

following common properties of the time transition
relation: time determinism, time additivity, and time
continuity.

We can now define how a system as a whole
(a composition of agents) evolves. There are two
kinds of transitions: (i) action transitions of the form
A a,S−−Ñ A 1 will indicate that system A can perform ac-
tion a P Act with agents indexed by S P 2I participat-
ing, to become system A 1; and (ii) timed transitions
A d

::; A 1 indicate the evolution of the system as a
whole over time.

Definition 1 We define the following transition rela-
tions over systems:

• A a,S−−Ñ A 1, with S P 2I indicating that agents in
S (and no others) synchronise on action a. For-

mally, A a,S−−Ñ A 1, where A = A1 }A2 } ¨ ¨ ¨ }An, and
A 1 = A1

1 }A1
2 ¨ ¨ ¨ }A1

n1 is defined as follows: (i) the
number of agents does not change: n = n1; (ii)
agents other than those whose index appears in S
do not participate in action a: @i P I ¨ i R Sñ Ai =
A1

i; and (iii) agents indexed in S evolve over action
a: @i P I ¨ i P Sñ Ai

a−−Ñ A1
i.

• A d
::; A 1 indicates that system A evolves to A 1

after dą 0 PT time units pass. Formally we define
A d

::; A 1 to mean that all agents evolve with a
time transition of length d: Ai

d
::; A1

i for all

i P I, where A = A1 } ¨ ¨ ¨ }Al } ¨ ¨ ¨ }An, and A 1 =
A1

1 } ¨ ¨ ¨ }A1
l } ¨ ¨ ¨ }A1

n.

We will also write A a,S−−Ñ to mean that system A
can perform action a involving the agents in set S:

A a,S−−Ñ df
= DA 1 ¨A a,S−−Ñ A 1. The lack of such a transi-

tion is written as: A a,S−−−−Û .
In order to formalize violation of contracts, we

will use predicates over agent behaviour.

Definition 2 A predicate is defined in terms of the fol-
lowing grammar:

P ::= tt | ff | xa,ky | xa,ky | P_Q | P^Q

In the grammar above, k P I ranges over agent
indices, a PAct over actions, and P, Q P P over pred-
icates.

Predicates tt and ff denote true and false respec-
tively. Predicate xa,ky means that agent k may per-
form action a. However, since some actions may re-
quire involvement by several agents, we use the pred-
icate xa,ky to indicate that agent k wants to perform
action a, but this action is not offered by any other
agent for synchronisation. For instance, an agent c
may want to purchase a ticket (action: ticket) to go
to a theatre. Predicate xticket,cy indicates the success
of such an action with c participating. However, if
the action requires the participation of the ticket of-
fice, we can write the predicate xticket,cy to indicate
that c wanted to perform the action, but neither the
ticket office (nor any other agent) was willing to per-
form the handshake required. Predicate disjunction
and conjunction are indicated by P_Q and P^Q re-
spectively.

Definition 3 The semantics of a predicate P under a
system A , written A ( P, is defined as follows:

A ( tt
df
= true

A ( ff
df
= false

A ( xa,ky df
= DS P 2I , A 1 ¨A a,S−−Ñ A 1^ k P S

A ( xa,ky df
= A a,tku−−−−Ñ and @l ¨ l ‰ kñ Al

a−−Û
A ( P_Q

df
= A ( P or A ( Q

A ( P^Q
df
= A ( P and A ( Q

We can now define the notion of stronger-than and
that of equivalence between predicates.

Definition 4 Given predicates P,Q P P , we say that
P is stronger than Q, written P ( Q, iff for any state
of any system A for which A ( P holds, A ( Q also
holds. We say that P is equivalent to Q, written P)(
Q, iff P( Q and Q( P.



We will now present a proposition which indicates
how equivalence combines with disjunction and ac-
tion success.

Proposition 1 Let P,Q P P , k be an agent index and
a P Act, then

1. If P��)(tt, then xa,ky _ P ��)( tt and xa,ky _
P��)( tt.

2. If P_Q)( tt then P)( tt or Q)( tt.

4 A Timed Contract Calculus

We can now define our contract calculus Themu-
lus. We start by defining its syntax and an equivalence
relation over the syntactic forms. We then define the
notion of contract violation conditions based on the
operational semantics of the calculus. As we men-
tioned before, we will assume a time domain T rang-
ing over the non-negative reals. In order to deal with
the recursion operator, we assume a set of variables
fvars over which recursion will be defined.

4.1 Contract Syntax

Definition 5 The set of contract formulae denoted by
C (with variable ϕ P C to range over the contracts) is
syntactically defined as follows:

ϕ ::= J | K | Pkpaqrds | Okpaqrds | Fkpaqrds
| waitpdq | condkpaqrdspϕ1,ϕ2q | ϕ1;ϕ2
| ϕ1^ϕ2 | ϕ1_ϕ2 | ϕ1 § ϕ2 | rec x.ϕ | x

where a P Act, x P fvars, k P I and d P TYt8u.

The basic formulaeJ andK indicate, respectively,
the contracts that are trivially satisfied and violated.
The key modalities we use from deontic logic to spec-
ify contracts are permissions, obligations, and prohi-
bitions. The formula Pkpaqrds indicates the permis-
sion of agent k to perform action a within d time units,
while Okpaqrds is an obligation on agent k to perform
action a within d time units, and Fkpaqrds is the pro-
hibition on agent k to perform action a within d time
units. The formula waitpdq represents a delay of d
time units.

Contract disjunction is written as ϕ1 _ ϕ2, and
contract conjunction as ϕ1^ϕ2. The formula ϕ1;ϕ2
indicates the sequential composition of two contracts
— in order to satisfy the whole contract, the first con-
tract ϕ1 must be satisfied and then the second one ϕ2.
For instance, we can model the obligation of agent k
of doing action a in 3 time units after a delay of 2 time
units: waitp2q;Okpaqr3s.

The reparation operator, written ϕ1 § ϕ2, is the
contract which starts off as ϕ1, but when violated trig-
gers contract ϕ2, e.g., O1paqr2s§ P2pbqr5s is the con-
tract which obliges agent 1 to perform action a in 2
time units, but if she does not, permits agent 2 to per-
form action b in 5 time units.

The formula condkpaqrdspϕ1,ϕ2q is a conditional
contract where (i) if party k performs action a within d
time units it proceeds to behave like ϕ1; otherwise (ii)
if d time units elapse without a being performed by k,
it then proceeds to behave like ϕ2. Note that we can
generalize to more general conditions on the system,
but we limit it to the ability of a party to perform an
action for the scope of this paper.

Finally, rec x.ϕ and x handles recursive contracts,
e.g., rec x.Oppaqrds;x is the contract which obliges
agent p to repeatedly perform action a within d time
units of each other. In contrast, rec x.Orpprqr10s ^
waitp30q;x, is the contract in which agent r is repeat-
edly obliged to pay rent (action pr) during the first 10
days of the month.

Using these basic contract combinators, we can
define more complex ones, for example, a prohibi-
tion which persists until a particular action is per-
formed — a prohibition on agent k from perform-
ing action a until party l performs action b, written
F pra,ksU rb, lsq, and defined as follows:

F pra,ksU rb, lsq df
= rec x.

`

condkpaqr8spK,Jq^
condlpbqr8spJ,xq

˘

Example 1 The contract of the plane boarding sys-
tem from Section 2, can be formalised using our con-
tract calculus as follows:

ϕ0 ::= Pppcheckinqrt0−120s
ϕ1 ::= OppPBPqr5s
ϕ2 ::= OppShPqr5s
ϕ3 ::= pF prweapon, psU rlanding,csqq^

ppF prlq, psU rboarding, psqq§ Oppdlqqr10sq
ϕ4 ::= pPppbrdqr90s;Ppphlqr10sq§

pOcpbrdqr90s; Ocphlhldqr20sq

PBS ::= ϕ0;ϕ1;ϕ2;pϕ3^ϕ4q

Where t0 is departure estimated time. Note that
the clauses ϕ0 to ϕ4 are used to express different parts
of the contract, and combined together in the top-level
contract expression PBS.

[\

The syntax of our logic allows for formulae
whose meaning is unclear. For instance, the formula
Fkpaqrds_x is not well-formed since it contains a free
instance of variable x. Another problem arises with
formulae such as rec x.Fkpaqrds_x, which use recur-
sion not guarded by a prefix formula since the latter
ensures certain desirable properties of our operational



semantics. In order to simplify our semantics, we re-
strict the set of well-formed formulae to ones which
are (i) closed; and (ii) strongly prefixed. As usual,
the closed formulae are those that do not contain free
recursion variables (a recursion variable x is free if it
not bound to a rec x above it). A strongly prefixed for-
mula is one where all the occurrences of the formula
variables are prefixed by an obligation, prohibition,
permission or wait operation.

4.2 Syntactical Congruence

As in other such approaches [Milner, 1999], we start
by defining a syntactical congruence, denoted by ”,
between contracts. This congruence is to be applied
on a well-formed formula and its subformulae before
the rules of the operational semantics.

Definition 6 We define the relation”Ď C ˆC as the
least congruence relation that includes:

1. ϕ^J” ϕ 2. J^ϕ” ϕ

3. K^ϕ”K 4. ϕ^K”K

5. ϕ_J”J 6. J_ϕ”J

7. ϕ_K” ϕ 8. K_ϕ” ϕ

9. J;ϕ” ϕ 10. K;ϕ”K

11. J§ ϕ”J 12. K§ ϕ” ϕ

13. Okpaqr0s ” K 14. Fkpaqr0s ” J
15. Pkpaqr0s ” J 16. waitp0q ” J
17. condkpaqr0spϕ,ψq ” ψ

In order to compute the ” relation, we transform
it into a rewriting calculus: we can see the rules above
as rewriting rules going from left to right. For in-
stance, the equivalence rule 13 (Okpaqr0s ” K) allows
us to rewrite Okpaqr0s;Plpbqr5s to K;Plpbqr5s, which
in turn can be rewritten to K using rule 10 (K;ϕ”K).

Definition 7 We write ϕ ãÑ ϕ1 (where ϕ,ϕ1 P C ), if ϕ1

is the result of applying one of the equivalence rules
from left to right on a subexpression of ϕ.

Example 2 Returning to the plane boarding system
agreement, consider the obligation on passengers to
present the boarding pass (action PBP) within 5 time
units: OppPBPqr5s. In this case, equivalence rule 13

can be applied after 5 time units: OppPBPqr5s
5

::;

OppPBPqr0s ãÑK.
[\

In order to justify the simplification of contract
formulae by applying these rules repeatedly, we will
need to prove that the rewriting process is terminat-
ing and confluent. To prove confluence of ãÑ, we
will first prove local confluence, from which conflu-
ence follows using a standard result from computer
science.

Proposition 2 The ãÑ P C Ø C relation is: (i) ter-
minating: there is no infinite sequence ϕ1, ϕ2 . . . ,

such that @i ¨ ϕi ãÑ ϕi+1; and (ii) locally confluent:
if ϕ ãÑ ϕ1 and ϕ ãÑ ϕ2, then there exists a contract ϕ1

such that ϕ1 ãÑ∗ ϕ1 and ϕ2 ãÑ∗ ϕ1.
Proof. Since the right term is always syntactically
smaller than the one on the left, the relation ãÑ is a
well-founded relation, and thus, termination is easily
proved. Local confluence is proved by structural in-
duction on ϕ. The base cases are trivial. To prove the
inductive cases, we perform case by case analysis on
the different rules, which are applied to the subformu-
lae to show that the confluence result holds. [\

Based on these results, confluence of ãÑ follows using
Newman’s Lemma [Newman, 1942].

Corollary 1 The syntactic equivalence relation ap-
plied from left to right is confluent: if ϕ ãÑ∗ ϕ1 and
ϕ ãÑ∗ ϕ2, then there is a contract ϕ1 such that ϕ1 ãÑ∗

ϕ1 and ϕ2 ãÑ∗ ϕ1.

Confluence and termination mean that any given
formula can be deterministically reduced to an irre-
ducible formula in a finite number of steps.

Definition 8 A contract formula ϕ P C is said to be
irreducible, if the equivalence relation cannot be ap-
plied to any of its subexpressions:  Dϕ1 P C ¨ϕ ãÑ ϕ1.

Given contract formulae ϕ,ϕ1 P C , we write ϕ ÞÝÑ

ϕ1 iff (i) ϕ can be syntactically reduced to ϕ1 in a num-
ber of steps: ϕ ãÑ∗ ϕ1; and (ii) ϕ1 is irreducible.

Confluence and termination guarantee that for a
given ϕ, there exists a unique ϕ1 such that ϕ ÞÝÑ ϕ1.

4.3 Operational Semantics

We can now define an operational semantics for our
contract calculus. The rules of the operational seman-
tics appear in Figure 1. The semantics take one of

three forms: (i) ϕ
a,k−−Ñ ϕ1 to denote that contract ϕ

can evolve (in one step) to ϕ1 when action a is per-
formed, which involves party k (and possibly other

parties); or (ii) ϕ
pa,kq−−−−Ñ ϕ1 indicating that the contract

ϕ can evolve to ϕ1 when the action a is not offered by

any party other than k; or (iii) ϕ
d

::; ϕ1 to represent
that contract ϕ can evolve to contract ϕ1 when d time
units pass. We will use variable α to stand for a label
of either form: pa,kq or pa,kq. The rules of the op-
erational semantics are always applied to irreducible
terms.

The core of any contract reasoning formalism is
the rules defining the semantics of the deontic modal-
ities.

Rules (O1), (O2), (O3), (O4), and (O5) define the
behaviour of obligations Okpaqrds, i.e., the obligation
on agent k to perform action a within d time units.



(O1) Okpaqrds
a,k−−Ñ J

(O2) Okpaqrds
pa,kq−−−−Ñ J

(O3) Okpaqrds
b,l−−Ñ Okpaqrds ,pa,kq ‰ pb, lq

(O4) Okpaqrds
pb,lq−−−−Ñ Okpaqrds ,pa,kq ‰ pb, lq

(O5) Okpaqrds
d1

::; Okpaqrd−d1s ,0 < d1 ď d

(F1) Fkpaqrds
a,k−−Ñ K

(F2) Fkpaqrds
pa,kq−−−−Ñ K

(F3) Fkpaqrds
b,l−−Ñ Fkpaqrds , pb, lq ‰ pa,kq

(F4) Fkpaqrds
pb,lq−−−−Ñ Fkpaqrds , pb, lq ‰ pa,kq

(F5) Fkpaqrds
d1

::; Fkpaqrd−d1s,0 < d1 ď d

(P1) Pkpaqrds
a,k−−Ñ J

(P2) Pkpaqrds
b,l−−Ñ Pkpaqrds, pa,kq ‰ pb, lq

(P3) Pkpaqrds
pa,kq−−−−Ñ K

(P4) Pkpaqrds
pb,lq−−−−Ñ Pkpaqrds, pa,kq ‰ pb, lq

(P5) Pkpaqrds
d1

::; Pkpaqrd−d1s ,0 < d1 ď d

(C1) condkpaqrdspϕ,ψq
a,k−−Ñ ϕ

(C2) condkpaqrdspϕ,ψq
pa,kq−−−−Ñ ϕ

(C3) condkpaqrdspϕ,ψq
b,l−−Ñ ψ, pb, lq ‰ pa,kq

(C4) condkpaqrdspϕ,ψq
pb,lq−−−−Ñ ψ, pb, lq ‰ pa,kq

(C5) condkpaqrdspϕ,ψq
d1

::;

condkpaqrd−d1spϕ,ψq , 0 < d1 ď d

(AO1)
ϕ

α−−Ñ ϕ1, ψ
α−−Ñ ψ1

ϕopψ
α−−Ñ ϕ1 opψ1

(AO2)
ϕ

d
::; ϕ1, ψ

d
::; ψ1

ϕopψ
d

::; ϕ1 opψ1

(AO3)
ϕ

d
::; J, ψ

d1

::; ψ1

ϕ^ψ
d1

::; ψ1

, d1 ě d

(AO4)
ϕ

d
::; ϕ1, ψ

d1

::; J

ϕ^ψ
d

::; ϕ1
, d ě d1

(AO5)
ϕ

d
::; K, ψ

d1

::; ψ1

ϕ_ψ
d1

::; ψ1

, d1 ě d

(AO6)
ϕ

d
::; ϕ1, ψ

d1

::; K

ϕ_ψ
d

::; ϕ1
, d ě d1

(V1)
ϕ

α−−Ñ ϕ1

ϕ § ψ
α−−Ñ ϕ1 § ψ

(V2)
ϕ

d
::; ϕ1

ϕ § ψ
d

::; ϕ1 § ψ

(V3)
ϕ

d
::; K,ψ

d1

::; ψ1

ϕ § ψ
d+d1

::::; ψ1

(S1)
ϕ

α−−Ñ ϕ1

ϕ;ψ
α−−Ñ ϕ1;ψ

(S2)
ϕ

d
::; ϕ1

ϕ;ψ
d

::; ϕ1;ψ

(S3)
ϕ

d
::; J, ψ

d1

::; ψ1

ϕ;ψ
d+d1

::::; ψ1

(wait1) waitpdq d1

::; waitpd−d1q ,0 < d1 ď d
(wait2) waitpdq α−−Ñ waitpdq

(REC1)
ϕ

α−−Ñ ϕ1

rec x.ϕ α−−Ñ ϕ1rx{rec x.ϕs

(REC2)
ϕ

d
::; ϕ1

rec x.ϕ d
::; ϕ1rx{rec x.ϕs

Figure 1: Operational Semantics transition rules

Rules (O1) and (O2) handle the case of the obliga-
tion clause being satisfied when agent k does action a
within d time units, in this case, the contract reduces
to the trivially satisfied one (J). Rules (O3) and (O4)
consider the case when another agent l performs an
action (l ‰ k) or the action b is not the compulsory
one b ‰ a; in both cases the obligation remaining in-
tact. Let us recall that actions are instantaneous, so
the time constraints do not change. Finally, (O5) han-
dles the case when d1 time units pass with d1 ď d,
then the obligation remains, but the obligation time
decreases in d1 time units. Recall that Okpaqr0s is han-
dled through syntactic equivalence (”K).

Example 3 Let us consider the obligation on the pas-
senger (agent: p) to present the boarding pass (action
PBP) within 5 time units: OppPBPqr5s. The possible
outcomes are: (i) rule (O1) applies if the passenger
presents the boarding pass within 5 time units, with
the contract evolving to J: OppPBPqr5s

PBP,p−−−−Ñ J; (ii)
rule (O2) can be applied if the passenger is not al-

lowed to perform the action: OppPBPqr5s
pPBP,pq−−−−−Ñ J;

(iii) if an action other than PBP is performed or PBP
is performed by another party, the obligation remains

intact by rule (O3): OppPBPqr5s
b,l−−Ñ OppPBPqr5s

(where b ‰ PBP or l ‰ p); (iv) similarly if other
parties or actions are not allowed, the obligation re-

mains unchanged by rule (O4): OppPBPqr5s
pb,lq−−−−Ñ

OppPBPqr5s (where b ‰ PBP or l ‰ p ); and finally
(v) rule (O5) handles when an amount of time less
than 5 time units elapses, in which case the obliga-
tion remains in force, but the deadline is moved ac-
cordingly: OppPBPqr5s

δ
::; OppPBPqr5−δs (where

δď 5). Note that in this final case, when the deadline
of the obligation decreases to 0, the syntactic equiva-
lence OppPBPqr0s ” K is directly applied and reduced
accordingly.

[\

Rules (F1), (F2), (F3), (F4), and (F5) define the cases
for prohibition similar to obligation.

Permission of agent k to perform action a within



d time units (Pkpaqrds) is defined through Rules (P1),
(P2), (P3), (P4) and (P5). Rule (P1) considers the
case when agent k consumes her permission to per-
form action a by actually performing it, in this case,
the contract reduces to the trivially satisfied one (J).
Rule (P2) handles the case when an agent other than
k performs an action or the action involving b is
not the permitted one a, leaving k’s permission in-
tact. Rule (P3) handles the case when the permis-
sion is violated because agent k intended to perform
action a, but it was not offered a synchronizing ac-
tion. Rule (P4) considers the case when another agent
than k intends to perform an action b (different to
a), but it was not offered a synchronizing action. Fi-
nally, Rule (P5) considers the case when d1 time units
elapse, with d1 ď d, then the permission remains, but
the permission time decreases by d1 time units.

The rules for conditional contracts handle the
cases when the condition holds ((C1) and (C2)), and
when it does not ((C3) and (C4)), resolving the con-
tract to the appropriate branch. The rule (C5) consid-
ers the case when d1 time units pass (with d1 ď d), in
which case the conditional deadline decreases accord-
ingly.

The rules for conjunction and disjunction are
structurally identical, since both take the two con-
tracts to evolve concurrently. The difference between
the two operators is only exhibited when one of the
two operands reduces to J or K, which is then han-
dled by the equivalence rules. The first rule (AO1)
states that the conjunction or disjunction of two for-
mulae evolves along with both operands concurrently.

The second rule (AO2) considers the case in
which d time units pass for both contracts. Rule
(AO3) shows the case in which: (i) d time units pass
for the first contract, ϕ, then it evolves to J and (ii)
d1 for the second one, ψ, evolving to ψ1, with d1 ě d.
Thus, the contracts’ conjunction evolves as the sec-
ond one. (AO4) handles the case in which d time
units pass for the first contract, ϕ, then it evolves to
ϕ1 and d1 time units for the second one, ψ, then it
evolves to J, with d ě d1, thus the contracts conjunc-
tion evolves as the first one. Rules (AO5) and (AO6)
consider the cases in which the first or second contract
has been already violated and how the disjunction of
both contracts evolve, in an analogous manner as the
conjunction.

The rules for reparation and sequential composi-
tion are similar. The rules (V1) and (V2) allow mov-
ing along the primary contract when some actions are
done or the time passes. There is no need for rules
dealing with the recovering from a violation since this
is handled by the syntactic equivalence rules. The se-
quential composition rules (S1) and (S2) behave in

an analogous manner, allowing evolution along with
the first contract, with no need for additional rules
thanks to the syntactic equivalence rules. It is worth
noting that, similar to reparation which fires the sec-
ond operand on the first (shortest trace) violation, se-
quential composition fires the second operand on the
shortest match of the first operand. Rules (V3) and
(S3) are necessary for time additivity with reparation
and sequential composition, respectively.
Example 4 In our running example, we can consider
clause ϕ4, that is:

ϕ4 ::= pPppbrdqr90s;Ppphlqr10sq §

pOcpbrdqr90s; Ocphlhldqr20sq

where the passenger is permitted to board within 90
minutes (Pppbrdqr90s) and, then to present the hand-
luggage to the staff within 10 minutes (Ppphlqr10s).
Therefore, the reparation part of this clause indi-
cates that if the passenger is stopped from board-
ing or carrying luggage, the airline company is
obliged to allow the passenger to board within 90
minutes (Ocpbrdqr90s) and then, to put the passen-
ger’s hand luggage in the hold within 20 minutes
(Ocphlhldqr20s). If 90-time units pass, ϕ4 evolves
in the following way:

Pppbrdqr90s;Ppphlqr10s § Ocpbrdqr90s; Ocphlhldqr20s
90

::;

Pppbrdqr0s;Ppphlqr10s § pOcpbrdqr90s; Ocphlhldqr20s
” J;Ppphlqr10s § pOcpbrdqr90s; Ocphlhldqr20sq

The latter equivalence applies by rule 15, since
Pppbrdqr0s ” J. In turn, rule 9 can be applied to
the first part (J;Ppphlqr10s ” Ppphlqr10s), then
ϕ4 ::= Ppphlqr10s § pOcpbrdqr90s; Ocphlhldqr20sq.
Thereafter, if 10 time units pass, rule 15 can be
applied again (Ppphlqr10s 10

::; Pppbrdqr0s ” J),
then ϕ4 ::= J § pOcpbrdqr90s; Ocphlhldqr20sq.
And finally, applying rule 11: ϕ4 ::=
J § pOcpbrdqr90s; Ocphlhldqr20sq ” J, then in
this case, it is possible to conclude that the contract is
satisfied by only applying the congruence relations.

[\

The wait rules define two possible cases: when
d1 time units pass, with d1 ď d, then the time delay
decreases by d1 time units (Rule (wait1)), and when
an action is performed (Rule (wait2)) the time delay
remains intact since (let us recall) actions are instan-
taneous.

The final rules deal with recursion in a standard
manner — by replacing free instances of the recur-
sion variable by the whole recursion formula. Note
that since we assume formulae to be closed and recur-
sion guarded, we require no rules for expressions con-
sisting of just a free variable, or to handle unguarded
recursion such as rec x. x.



The following proposition shows that the seman-
tics ensure that any non-trivial contract (i.e. any ir-
reducible contract other than J and K) can evolve to
any observed action. Furthermore, they evolve in a
deterministic manner.

Proposition 3 Given a contract ϕ P C :
1. One of the following holds: (i) ϕ ” J; (ii) ϕ ”

K; or (iii) for any a P Act and k P I , ϕ
a,k−−Ñ and

ϕ
pa,kq−−−−Ñ .

2. If ϕ
a,k−−Ñ ϕ1 and ϕ

a,k−−Ñ ϕ2, then ϕ1 ” ϕ2.
Proof. The first property follows immediately from
the operational semantics. The second follows by
structural induction on ϕ. [\

The following proposition shows that the con-
tracts behave coherently with respect to time.
Proposition 4 Let ϕ,ϕ1,ϕ2 P C be contracts and
d1,d2 P T be time values. Then, the following proper-
ties hold:

1. If ϕ
d1

::; ϕ1 and ϕ
d1

::; ϕ2 then ϕ1 ” ϕ2.

2. If ϕ
d1

::; ϕ1
d2

::; ϕ2, then ϕ
d1+d2

::::; ϕ2.

3. If ϕ
d1+d2

::::; ϕ2 then there is ϕ1 P C such that

ϕ
d1

::; ϕ1
d2

::; ϕ2

Proof. These properties are proved by structural
induction. The base cases are trivial, one only
needs to take into account that the contracts Okpaqrds,
Fkpaqrds, Pkpaqrds do not transition beyond time d
because the contracts are violated (in the case of obli-
gation) or satisfied (in the case for prohibition and
permission). [\

4.4 Contract Violation

We can now formally define contract violation. First,
we define the predicate viopϕq. This predicate will
be used to verify if a contract is currently violated,
which enables us to determine how a system can be
monitored with respect to a contract.

Definition 9 We say that an irreducible contract ϕ is
in a violated state, written viopϕq if and only if the
contract has already been violated:

viopJq
df
= ff viopKq

df
= tt

viopPkpaqrdsq
df
= pa,kq viopOkpaqrdsq

df
= ff

viopFkpaqrdsq
df
= pa,kq viopwaitpdqq

df
= ff

viopϕ;ϕ1q
df
= viopϕq vioprec x.ϕq

df
= viopϕq

viopcondkpaqrdspϕ,ϕ1qq
df
= ff

viopϕ^ϕ1q
df
= viopϕq_viopϕ1q

viopϕ_ϕ1q
df
= viopϕq^viopϕ1q

viopϕ § ϕ1q
df
= viopϕq^viopϕ1q

Since syntactical equivalences would remove any
zero time windows (i.e. d = 0), the above definition
covers only when d ą 0.

The two first cases for the trivially satisfied and
violated contracts are straightforward. In the case of
permission being currently in force, we flag a viola-
tion if the party holding the permission wants to per-
form the action but is not offered a synchronizing ac-
tion. In case of an obligation, a violation can only
occur after the time has expired (d = 0), but this case
is already defined because of the syntactical equiva-
lence Okpaqr0s ” K. Let us note that an obligation
to perform an action within a (non-zero) time frame
is never in violation at this instant since there is still
time to perform the action and fulfil the obligation.

In the case of a reparation viopϕ § ϕ1q, a viola-
tion can only occur, if both ϕ and ϕ1 are violated. In
the case of viopcondkpaqrdspϕ,ϕ1qq, whether the ac-
tion a or any other action is observed the violation is
always false since the conditional contract only de-
fines how the contract will behave (as ϕ or ϕ1). In the
case of sequential composition viopϕ;ϕ1q, an imme-
diate violation must occur on the first operand (since
J;ϕ would have been reduced to ϕ), and it is thus de-
fined as viopϕq. In the case of waitpdq, the violation
is always false, since it depicts a time delay, then an
immediate violation is false. Finally, the definition
vioprec x.ϕq = viopϕq is well-formed since recursion
is always assumed to be guarded.

Lemma 1 For any contract ϕ P C , viopϕq )( tt if
and only if ϕ”K.

Proof. The proof uses structural induction on ϕ.
The only non-trivial case being when ϕ = ϕ1 ^ ϕ2,
in which case we use Proposition 1. [\

4.5 Contracts Acting on Systems

We can now define how contracts evolve alongside a
system, and what it means for a system to satisfy a
contract.

Definition 10 Given a contract ϕ P C with a set of
actions Act1 and a system A , we define the semantics
of ϕ}A — the combination of the system with the con-
tract — with alphabet Act with Act1 Ď Act through
the following rules:



(M1)
ϕ

a,k−−Ñ ϕ1, A a,s−−Ñ A 1

ϕ }A =ñ ϕ1 }A 1
k P s

(M2)
ϕ

pa,kq−−−−Ñ ϕ1, A ( xa,ky
ϕ }A =ñ ϕ1 }A

(M3)
A a,s−−Ñ A 1

ϕ }A =ñ ϕ }A 1
a R Act1

(M4)

A d
::; A 1, ϕ

d
::; ϕ1,

@d1 < d ¨ if A d1

::; A2 and

ϕ
d1

::; ϕ2 then A2 ­( viopϕ2q

ϕ }A =ñ ϕ1 }A 1

Rule (M1) and (M2) handles synchronization be-
tween the contract and the system. If an action a per-
formed by the system is of interest to the contract, the
contract evolves alongside the system ((M1)), if the
contract allows an agent to perform an action but only
agent k (and no other agent) is willing to engage in the
action, then only the contract evolves ((M2)). Rule
(M3) handles actions on the system in which the con-
tract is not interested in. Finally, rule (M4) ensures
that time cannot skip over a violation.

Definition 11 Let A be a system and ϕ P C be a con-
tract.

• System A can breach ϕ, written breachpA ,ϕq, if
there exists a computation that leads to a violation
of the contract: for some n ě 0 and contracts ϕ0
till ϕn such that:

ϕ }A = ϕ0 }A0 =ñ . . .ϕn−1 }An−1 =ñ ϕn }An,

and An ( viopϕnq.
• System A may fulfil ϕ, written fulfillpA ,ϕq, if there

exists a computation of the system that fulfils the
contract: for some ně 0 and contracts ϕ0 till ϕn:

ϕ }A = ϕ0 }A0 =ñ . . .ϕn−1 }An−1 =ñ ϕn }An ,

and A ­( viopϕkq for 0ď k < n, and ϕn ”J.

Note that there are contracts that may never be
fulfilled. An example of such a contract is ϕ =
rec x.ra,k,8spK,8q, which may never be fulfilled
since there are no transitions from this contract lead-
ing to J. Nevertheless, if agent k never performs ac-
tion a, then neither is the contract broken.

5 Refinement

We now define two notions of contract refinement
(ďK and ďJ). Intuitively ďK relates two contracts
ϕ,ψ P C (i.e. ϕďK ψ) if any system which can breach
contract ϕ, can also breach contract ψ. The meaning
of ďJ is its dual: if ϕďJ ψ then any system which can
fulfil ϕ can also fulfil ψ. Both notions are based on
simulation techniques, defined in a co-inductive fash-
ion.

Definition 12 Let ϕ,ψ P C and R Ď C ˆ C , we say
that R is a K-simulation relation iff whenever pϕ,ψq P
R the following conditions hold:

(i) viopϕq ( viopψq.

(ii) If ϕ
d

::; ϕ1 then

a. there is d1 ď d such that ψ
d1

::; K, or

b. there is ψ1 P C and ψ
d

::; ψ1 and pϕ1,ψ1q P

R.
(iii) If ϕ

α−−Ñ ϕ1 then there exists ψ1 P C and ψ
α−−Ñ

ψ1 and pϕ1,ψ1q P R.
We say ϕ ďK ψ if there is a K-simulation relation R
such that pϕ,ψq P R.
Definition 13 Let ϕ,ψ P C and R Ď C ˆ C , we say
that R is a J-simulation relation iff whenever pϕ,ψq P
R, the following conditions hold:

(i) If ϕ”J then ψ”J.
(ii) If viopψq ( viopϕq.

(iii) If ϕ
d

::; ϕ1 then

a. there is d1 ď d such that ψ
d1

::; J, or

b. there is ψ1 P C and that ψ
d

::; ψ1 and
pϕ1,ψ1q P R.

(iv) If ϕ
α−−Ñ ϕ1 then there is ψ1 P C such that ψ

α−−Ñ
ψ1 and pϕ1,ψ1q P R.

We say ϕ ďK ψ if there is a K-simulation relation R
such that pϕ,ψq P R.
Lemma 2 The relation id = tpϕ,ϕq | ϕ P Cu is both a
K-simulation relation and a J-simulation relation.
Proof. It is immediate from the definitions. [\

Lemma 3 Let R1 and R2 be K-simulation relations
(respectively J-simulation). Then, their composition
R1 ˝R2 is also a K-simulation relation (respectively
J-simulation).
Proof. The proof is simple from the definitions. [\

Proposition 5 The relations ďK and ďJ are reflexive
and transitive.
Proof. This proposition is immediate from Lemmas 2
and 3. [\

Consider the following example illustrating the
use of these definitions.
Example 5

waitp3qďK Pkpaqr5s
waitp3q;KęK Pkpaqr5s;K

Pkpaqr3sďJ waitp3q
Pkpaqr3s§ Olpbqr2sęJ waitp3q§ Olpbqr2s

waitp5qďK Okpaqr6s
waitp5q^waitp7qďK Okpaqr6s^waitp7q



It is not difficult to formally verify the correctness of
these orderings. For instance, consider waitp3q and
Pkpaqr5s — the former cannot be violated, whilst the
latter can be violated by any system that does not al-
low agent k to perform action a within 5 units of time,
which ensures that the simulation holds. Now con-
sider waitp3qďK Pkpaqr5s, we can put both contracts
in the context of the continuation operator to follow
up with K. While waitp3q;K cannot be fulfilled after
3 units of time whatever the system does, in the case
of Pkpaqr5s;K, if the system allows agent k to perform
a after 3 units of time but agent k does not perform the
action, the contract is not broken yet. Regarding the
ďJ relation, dual reasoning can be applied, whilst the
other relations can be similarly reasoned about.

[\

Since the relations are preorders, for each of them
we have an equivalence relation. However, we can
prove that these relations are, in fact, equivalent.

Proposition 6 The two equivalence relations vJ =
ďJXďJ

−1 and vK =ďKXďK
−1, are equal to each

other: vJ =vK.
Proof. In order to prove vK Ď vJ we have to prove
vK ĎďK and vK ĎďK

−1. Both proofs are symmet-
rical, so let us prove the first. It is sufficient to prove
that vK is a J-simulation relation. Consider ϕ,ψ P C
such that ϕ vK ψ — we must prove the conditions
of Definition 13, with the only non-trivial one being
condition i. Assume ϕ”J. Since ϕvK ψ, we deduce
viopψq= ff . If ψı J, then by Proposition 3, for any
possible α there must exist ψ1 such that ψ

α−−Ñ ψ1.
Again, since ϕvK ψ we obtain that for any α, there
must exist ϕ1 such that J = ϕ

α−−Ñ ϕ1, which is im-
possible. We can thus conclude that ψ”J. [\

Given their equivalence, we can define the sim-
ulation equivalence of contracts as either of the two
equivalence relations.
Definition 14 We define the simulation equivalence
relation as v

df
= ďJXďJ

−1

Consider the K simulation: if two contracts are
related ϕ ďK ψ, then the violations identified by ϕ are
also identified by ψ.

Theorem 1 Let A be a system and ϕ,ψ P C be con-
tracts, such that ϕ ďK ψ. Then, if A violates ϕ, it also
violates ψ: breachpA ,ϕq ñ breachpA ,ψq.
Proof. Since ϕ ďK ψ, then there exists a simula-
tion contract relation R, such that pϕ,ψq P R. On the
other hand, since breachpA ,ϕq holds, there exists a
sequence of transitions

ϕ }A = ϕ0 }A0 =ñ . . .ϕn }An = ϕ
1 }A 1

where n ě 0, such that breachpA 1,ϕ1q. By simulat-
ing ϕ, we can build a computation beginning with the

contract ψ0 = ψ:

ψ }A = ψ0 }A0 =ñ . . .ψm }Am = ψ
1 }A 1

such that m ď n, pϕk,ψkq P R for 0 ď k < m, and
breachpA 1,ψmq. Let us proceed by induction. If n= 0
the proof is immediate, so let us consider the induc-
tive case n ą 0. Let us consider the first transition.
There are four cases according to the rules of the sys-
tem transitions (Definition 1):
Rules M1 and M2. ϕ0

α−−Ñ ϕ1. Since pϕ0,ψ0q P R,
then there is a contract ψ1 such that ψ0

α−−Ñ ψ1 and
pϕ1,ψ1q P R. Therefore, we obtain that we have the
computation ψ0 }A0 =ñ ψ1 }A1. Then we obtain the
result by induction.
Rule M3. This is trivial because the contract is not
involved.
Rule M4. ϕ0

d
::; ϕ1 then either:

1. There exists d1 < d such that ψ0
d

::; K. In this
case we obtain ψ }A =ñK}A 1.

2. There exists ψ1 such that ψ0
d

::; ψ1 and
pϕ1,ψ1q P R. If there were 0 < d1 < d such

that ψ
d1

::; ψ1, A d1

::; A 1, and A 1 ( viopψ1q,
then we obtain the result immediately. Otherwise
ψ }A =ñ ψ1 }A1 and we obtain the result by in-
duction.

Finally, if m < n we have found the computation ψ }

A =ñ∗K}A 1. Otherwise pϕn,ψnq P R, then viopϕnq (

viopψnq, and by definition An ( viopψnq. [\

Now let us prove the corresponding property of J
simulated contract. If two contracts are related ϕ ďJ

ϕ1, and if ϕ can be fulfilled by a system, then ϕ1 is also
fulfilled by the same system.

Theorem 2 Let A be a system and ϕ,ψ P C be con-
tracts such that ϕ ďJ ψ. Then, if A can fulfil ϕ, it can
also fulfil ψ: fulfillpA ,ϕq ñ fulfillpA ,ψq.
Proof. The proof of this theorem is very similar to
the previous one. The inductive cases for rules M1,
M2 and M3 are similar: We only have to verify Ak ­(

viopψkq, which is immediate since viopψkq ( viopϕkq.
The case M4 is slightly different; so let us assume
ϕ0

d−−Ñ ϕ1. First let us suppose that there exists d1 < d

such that ψ0
d1

−−Ñ ψ1, A d1

::; A 1 and A 1 ( viopψ1q.
Due to Proposition 4 and the definition of J simula-

tion contract, there exists ϕ1 such that ϕ0
d1

−−Ñ ϕ1 with
pϕ1,ψ1q P R. Therefore viopψ1q ( viopϕ1q and then the
transition ϕ }A =ñ ϕ1 }A is not possible. Now, since
pϕ0,ψ0q P R there are two cases:

1. There exists d1 < d such that ψ
d1

::; J, so in this

case we have found the computation ψ0 }A d1

::;

J}A .



2. There exists ψ1 such that ψ0
d

::; ψ1 and
pϕ1,ψ1q P R. If ϕ1 ” J then ψ1 ” J and we
have found the required computation. Otherwise,
viopψ1q ( viopϕ1q and then A1 ­( viopψ1q, so we
obtain the result by induction.

[\

Finally, in this section we are going to show im-
portant properties of the relations ďJ and ďK. First,
let us show that J and K are the best contracts in their
respective relations ďJ and ďK. Then, as ϕ^J ” ϕ

and ϕ_K ” ϕ, it is important to show ϕ^ϕ1 ďJ ϕ

and ϕ_ϕ1 ďK ϕ.

Proposition 7 For any ϕ,ϕ1 P C , the following hold:

1. ϕ ďJJ

2. ϕ ďKK

3. ϕ_ϕ1 ďK ϕ

4. ϕ^ϕ1 ďJ ϕ

5. ϕvϕ_ϕ

6. ϕvϕ^ϕ

Proof. Statements 1 and 2 follow from the def-
initions and Lemma 1. For 3 we have to check
that RK = tpϕ_ ϕ1,ϕq | ϕ,ϕ1 P Cu is a K simula-
tion contract. While for 4 we have to check that
RJ = tpϕ^ϕ1,ϕq | ϕ,ϕ1 P Cu is a J simulation con-
tract. For 5 and 6 it is easy to check that the relations
R_ = tpϕ,ϕ_ϕq | ϕ P C}, R1

_ = tpϕ_ϕ,ϕq | ϕ P C},
R^ = tpϕ,ϕ^ϕq | ϕ P C}, and R1

^ = tpϕ^ϕ,ϕq | ϕ P
C} are respectively both, J simulation contracts and
K simulation contracts. [\

Let us show cases in which the relations act as
congruences.

Proposition 8 For any ϕ,ϕ1,ψ,ψ1 P C , the following
hold:

If ϕ1 ďK ϕ and ψ1 ďK ψ:

K.1 ϕ1 § ψ1 ďK ϕ § ψ

K.2 ϕ1^ψ1 ďK ϕ^ψ

K.3 ϕ1_ψ1 ďK ϕ_ψ

K.4 condkpaqrdspϕ1,ψ1q

ďKcondkpaqrdspϕ,ψq

If ϕ1 ďJ ϕ and ψ1 ďJ ψ:

J.1 ϕ1;ψ1 ďJ ϕ;ψ

J.2 ϕ1^ψ1 ďJ ϕ^ψ

J.3 ϕ1_ψ1 ďJ ϕ_ψ

J.4 condkpaqrdspϕ1,ψ1q

ďJcondkpaqrdspϕ,ψq

Proof. For all the cases consider the relations:

Rpop,relq = ďrel Ytpϕ op ψ,ϕ1 op ψ1q |
ϕ,ϕ1,ψ,ψ1 P C ,ϕ ďrel ϕ1,ψ ďrel ψ1u

where op P t; ,§,^,_,condlpaqrdsp¨, ¨qu and rel P
tJ,Ku. In all cases we have to prove that Rpop,relq is a
rel simulation. Also in all cases we are going to con-
sider pχ,χ1q P Rpop,relq and to prove that pχ,χ1q Pďrel
. If pχ,χ1q Pďrel there is nothing to prove, so we con-
sider that χ = ϕ op ψ, χ1 = ϕ1 op ψ1, ϕ ďrel ϕ1 and
ψ ďrel ψ1. In all cases we have to check the condi-
tions on the corresponding relation in Definitions 12
and 13. [\

Theorem 3 v is a congruence.
Proof. This follows from the previous proposition
and Proposition 6. [\

6 Conclusions

The calculus Themulus allows us to reason about
contracts with time constraints independent of the
systems on which they are applied to. In order to
achieve this, we have introduced a notion of similar-
ity between contracts, which takes into account predi-
cates over system states, and shows how these seman-
tics can be used for runtime verification of contracts.

There are various research directions we intend
to explore. From a practical perspective, we will be
looking into automated runtime verification of con-
tracts, and looking at how this scales up with more
complex contracts. From a theoretical perspective,
there are various questions we have yet to explore —
from identifying conflicts in our contract language, to
looking at automated synthesis of the strongest con-
tract satisfied by a given system (analogous to the
weakest-precondition) and synthesis of the weakest
system satisfying a given contract.

One application arising from runtime monitor-
ing was that of runtime enforcement, where start-
ing from a specification, algorithmic machinery is
synthesized to ensure that the system under scrutiny
does not violate the specification e.g. by delaying
or injecting events. In particular, there is a body
of work on runtime enforcement of timed properties
e.g. [Falcone et al., 2016] which could offer insight
on how our work can be extended to build contract en-
forcement engines, a notion that has not been widely
explored in the deontic logic world.
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