
December 2018

On Observing Contracts:
Deontic Contracts Meet Smart Contracts

Shaun AZZOPARDI a,1 and Gordon J. PACE a,b Fernando SCHAPACHNIK c,2

a Department of Computer Science, University of Malta, Msida, Malta
b Centre for Distributed Ledger Technologies, University of Malta, Msida, Malta

c Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Computación and ICC UBA-CONICET, Buenos Aires, Argentina

Abstract. Smart contracts have been proposed as executable implementations en-
forcing real-life contracts. Unfortunately, the semantic gap between these allows
for the smart contract to diverge from its intended deontic behaviour. In this paper
we show how a deontic contract can be used for real-time monitoring of smart con-
tracts specifically and request-based interactive systems in general, allowing for the
identification of any violations. The deontic logic of actions we present takes into
account the possibility of action failure (which we can observe in smart contracts),
allowing us to consider novel monitorable semantics for deontic norms. For exam-
ple, taking a rights-based view of permissions allows us to detect the violation of
a permission when a permitted action is not allowed to succeed. A case study is
presented showing this approach in action for Ethereum smart contracts.

Keywords. blockchain, smart contracts, contracts, deontic logic, monitoring

1. Introduction

Regulating the behaviour of interactive systems3 has long been studied in a formal man-
ner — from the formal semantics of contracts describing the expected modalities of be-
haviour to analysis techniques to enable automated verification of compliance of a sys-
tem with such contracts. Deontic logics have been shown to be particularly effective in
capturing the concepts behind such contracts, enabling them to be described as first-class
logical objects which one can analyse, manipulate and transform. The deontic modali-
ties of obligation and prohibition lend themselves easily to verification techniques, since
through the observation of actions or the state of the system regulated by such a contract,
one can easily ascertain whether or not an obligation or a prohibition has been violated.
On the other hand, the notion of permission, if we take a rights-based view of it, is more
problematic when it comes to verification, because an action that is permitted but (ille-
gitimately) denied might be mistaken for one than never occurred. If a user is allowed
to close an account but the bank does not allow it, the account remains open. From a
(oversimplistic but common) point of view, there is no trace of the violation.

1Corresponding Author: Shaun Azzopardi, Department of Computer Science, University of Malta, Msida,
Malta; E-mail: shaun.azzopardi@um.edu.mt.

2Partially supported by PICT-201-0112 and UBACyT 20020170100172BA.
3By interactive systems we refer to systems made up of different components interacting in such a manner

that parts of their behaviour can be enabled or blocked by the other components.

December 2018

1. This contract is between 〈buyer-name〉, henceforth referred to as ‘the buyer’ and 〈seller-name〉, hence-
forth referred to as ‘the seller’. The contract will hold until either party requests its termination.

2. The buyer is obliged to order at least 〈minimum-items〉, but no more than 〈maximum-items〉 items for
a fixed price 〈price〉 before the termination of this contract.

3. Notwithstanding clause 1, no request for termination will be accepted before 〈contract-end-date〉. Fur-
thermore, the seller may not terminate the contract as long as there are pending orders.

4. Upon enactment of this contract, the buyer is obliged to place the cost of the minimum number of items
to be ordered in escrow.

5. Upon accepting this contract, the seller is obliged to place the amount of 〈performance-guarantee〉 in
escrow, otherwise, if only a partial amount is placed, the seller is obliged to place the rest by a time
period at the buyer’s discretion.

6. While the contract has not been terminated, the buyer has the right to place an order for an amount of
items and a specified time-frame as long as (i) the running number of items ordered does not exceed
the maximum stipulated in clause 2; and (ii) the time-frame must be of at least 24 hours, but may not
extend beyond the contract end date specified in clause 2.

7. Upon placing an order, the buyer is obliged to ensure that there is enough money in escrow to cover
payment of all pending orders.

8. Before termination of the contract, upon delivery the seller must receive payment of the order.
9. Upon termination of the contract, if either any orders were undelivered or more than 25% of the orders

were delivered late, the buyer has the right to receive the performance guarantee placed in escrow
according to clause 5.

Figure 1. A legal contract regulating a procurement process.

In open systems (i.e. systems whose internal structure is not fully known), such as
ones where one of the intervening parties is a human, verification is problematic and the
best one can hope for is to observe or monitor the interaction between the parties and
deduce whether or not it is compliant with the contract. Even through simple monitoring,
obligations and prohibitions are easily analysed for compliance or violation. Observed
behaviour, however, does not always give sufficient information to enable a decision of
whether or not there was a violation of a permission.

In this paper we limit ourselves to request-based interactive systems — systems in
which a number of parties may initiate interaction (hence request-based), but for each
interaction, one of the parties has the power to allow or reject such a request (hence in-
teractive). In such systems, we observe that as long as the intention to initiate an action,
and its success or otherwise can be observed, we can also monitor for violation of per-
missions i.e. if the user has permission to press a button and attempts to do so, but the
backend rejects the request, then we can flag that the backend has violated the user’s
permission.

In particular, we focus on smart contracts as an instance of such a request-based
interactive system, and show how a deontic logic with permission can be fully monitored
on smart contracts on a platform such as Ethereum [19]. Since smart contracts have
been proposed as executable implementations enforcing real-life contracts, the ability
to ensure that an implementation on a distributed ledger technology (or blockchain),
matches the description of the contract is a highly desirable feature. In order to illustrate
our approach, we consider a smart contract regulated by a procurement contract, shown
in Figure 1, as adapted from [1]. The contract regulates the behaviour of a buyer and
a seller, with the contract setting minimum and maximum order counts, a contract end
date, and ensures that there is enough money in escrow to ensure at least the minimum
amount of orders is financially covered, along with a monetary performance guarantee
from the seller to the buyer.

December 2018

The paper starts off by describing similar and related approaches in the literature in
Section 2. We then go on to define the semantics of an action-based deontic logic for
request-based interactive systems in Section 3 and show how smart contracts written for
the Ethereum platform in Solidity can implement sound and complete monitors of such
contracts in Section 4. The approach is illustrated on a procurement smart contract in
Section 5. We discuss the viability of our approach and conclude in Section 6.

2. Related Work

The interaction of deontic logic and smart contracts is an area of recent interest. Idel-
berger et al. [9] analyse pros and cons of logic-based smart contracts (as opposed to the
more common procedural-code based ones). They discuss the ability to monitor logic-
based contracts as an advantage but do not explore possible implementations, which is
the topic of this article. With the blooming of smart contracts questions have begun to
arise around the issue of how to be sure that the smart contract is correct (eg, [11,1]).

Indeed deontic-based contract monitoring is a well known topic, with proposals for
using deontic languages to monitor business processes [15], building monitors out of
logic contract specifications [4], or for using certain monitoring architectures [12], even
using blockchain as base technology [18]4, amongst others.

However, these proposals takes a lightweight approach to handling permissions. For
instance Modgil et al. [12] consider the monitoring of permissions, but only flag when
they are exercised and not when denied by another party, as we do (see Section 3).

In [2] we presented the notion of a contract between interacting parties where per-
missions on one party could be denied by the other by not cooperating. That work, how-
ever, flagged violations when, at a given state, one party did not provide the needed syn-
chronisation for a shared action, independently of whether the permission-bearer party
attempted the action or not — if A is permitted to borrow a book from B, and B’s specifi-
cation does not include the book-lending action, a violation is still flagged. However, one
may argue that perhaps A never intended to exercise his or her right to borrow a book at
the time — should that still count as a violation of the permission? Moreover that work
requires a priori a full specification of the possible party actions, which is not available
in the kind of interactive systems we consider here.

What was missing there, and this work addresses is the notion of attempts. It has
been long established that a logic that only predicates over actions may be insufficient
for certain deontic applications that refer to other concepts such as intention (e.g. [8]),
much in the same sense as BDI agents. Later on, Lorini and Herzig [10] took a step fur-
ther by proposing a logic that includes (and differentiates among) intention and attempt.
While an intention is a mental state that has no direct observable effect, an attempt is an
observable action, which may or may not succeed. Attempts permit to separate the state
that the action is intended to bring about from whether the agent took some transition
with a visible output. As an example, Bob might try to sell his car, yet failed to do so.
The end state is Bob keeping the car and not having extra money, yet he engaged in the
action of trying to sell it.

This work was built on prior philosophical traditions on what it means for an agent
to intend to do an action. For space reasons we concentrate only on the two that are more

4Note that [18] discusses the use of blockchain as a decentralized way to monitor business processes but not
the monitoring of the smart contract itself as we do.

December 2018

relevant to our work: Sellars [17] poses that “A tries to do α” if and only if A exercises
actions to bring about the state α without being sure whether they will succeed or not.
Schroeder [16] however, reverses the word “trying” to the observation of the action being
done by another agent: B perceives A trying an action a if B is not certain that action a
will succeed. The labelling of something as an attempt is done by an observer, not by
the exerciser of the action. Others, such as [3], have presented an alternative notion of
attempt having to do with the probability p of bringing about a certain state α by certain
action a. Interestingly, as the chance of ¬α is 1− p, then a becomes both an attempt at
α and an attempt at ¬α at the same time.

Our work follows the tradition of Lorini and Herzig (and others) of having actions
that might succeed or not, but in our case the failure is an observation of an action at-
tempted and denied by the system (which in turn, might be a permission violation).

3. An Operational Semantics for Deontic Contracts

In this section we present a simple action-based deontic logic for request-based interac-
tive systems based on approaches from the literature such as [7,2], which will be used
to synthesise smart contract violation monitors. By request-based interactive systems we
mean systems in which only one party initiates interaction (hence request-based), but the
other party may allow or reject any such request (hence interactive). Although we could
have adopted other existing deontic logics which deal with interaction, we choose to de-
fine our own in order to obtain a clean translation process, which can then be adapted to
other existing logics by adding the features as required.

Well-formed formulae in the logic will be used to denote a contract specifying the
expected behaviour of the user interacting with a service. The interaction with the system
will take the form of actions which are initiated by the user and accepted or rejected by
the service. Formally, the logic is defined on an alphabet of event names Σ — we will
use variables a, b to range over Σ. Given event name a, we will write aY to denote a
successful attempt to perform event a, and aN to denote that event a was attempted but
was rejected. We will write � to denote the set of all possible observations over event

names Σ: �
df
= {aY , aN | a ∈ Σ}. We use variables x, y to range over �.

For example, in the procurement contract, actions may include login, requestExten-
sion, etc. Consider a contract where the user is allowed to request an extension only once.
Then the first time the user would call requestExtension, she or he would expect it to
succeed, but it may fail thereafter (i.e. any further requests are rejected).

The logic itself will allow the expression of obligations, prohibitions and permis-
sions over these actions from the point of view of the user. It is worth noting that in a
request-based interactive system, the obligations and prohibitions of invoking actions are
the responsibility of the user (the caller), whereas satisfying the permissions which the
user has is the responsibility of the underlying service. The syntax of the logic is the
following:

C ::= > | ⊥ | O(a) |F (a) |P(a) | [ψ]C | C &C | C ;C | C .C | rec X .C | X

The logic contains the trivially satisfied (>) and violated (⊥) contracts and ways of
expressing obligation to perform an action (O(a)), prohibition (F (a)) and permission
(P(a)). Contracts can also be guarded by a condition on the actions which are performed
([ψ]C) — with the contract trivially holding if the condition does not hold. Contracts can
be combined via conjunction (C1 &C2), sequential composition (C1;C2) and reparation

December 2018

(C1 .C2), with the last operator indicating that if the first contract is violated, the second
comes into force. Finally, one can use recursion (rec X .C) to express repeating contracts.
We will use variables C, C1, C2 to range over contracts. In the rest of the paper, we will
assume that all recursion is well-formed in that it is guarded by a condition or a deontic
modality e.g. rec X .O(a);X & [hasNotPaid]X is fine, but not rec X .(X &P(a));F (b).

Consider a contract clause in the procurement example, which states that the user is
permitted to terminate the contract once a delivery has been made. This can be expressed
as: rec X .[noDelivery]X & [madeDelivery]P(endContract).

We define a syntactic equivalence relation over contract formulae:

C & > ≡ C ⊥ & C ≡ ⊥ > ; C ≡ C rec X .C ≡ C[X\rec X .C]
> & C ≡ C C & ⊥ ≡ ⊥ ⊥ . C ≡ C

As typically done in operational semantics, this relation will be used to simplify
the presentation of the semantics, and will be applied in between the steps defined by
the operational semantics. The only equivalence worth commenting on is the one for
recursion, which states that free instances of the recursion variable may be replaced by
the recursive formula itself. If unguarded recursion were allowed, this rule can be applied
infinitely often. However, with guarded recursion, we note that if the equivalence relation
is applied from left to right, we can prove that the process of applying the relation until
no further reductions are available acts as a total and deterministic function. If, starting
from C, the result obtained is C′, we will write C ↪→ C′. We say that a contract C is
normalised if C ↪→C.

Note that the logic allows for multiple obligations to be in place at the same time,
in order to enable conformance to such concurrent obligations, we give a semantics in
which a set of concurrent actions (an action set) is observed at once. This approach
follows other similar work in the literature (e.g. [14,2]). We will use variables A, B to
range over action sets (i.e. in 2�)5.

We can now define the semantics of the logic as a relation such that C A−→ C′ if
contract C ∈ C evolves to contract C′ ∈ C if an action set A ⊆ � is observed. The full
semantics is illustrated in Figure 2.

It is worth noting a number of features of the semantics of this logic: (i) obligations
can be satisfied upon an attempt by the user to perform the action, irrespective whether
or not it was approved, and dually, prohibition is violated by an attempt by the user
to perform the action even if it is rejected; (ii) permission6 is violated if an attempt to
perform the action occurs but is rejected by the system; (iii) conditions are assumed to
be predicates over the set of actions which the user has performed. However, one may
adopt alternative choices (e.g. one may choose that an attempt to perform a forbidden
action which is rejected not to be a violation) without changing the results in the rest of
the paper. Finally, note that although at first sight some interactions may appear missing
(e.g. semantics of recursion and the triggering of a reparation) they are handled by the
equivalence relation presented earlier.

Given a trace of action-sets T ∈ (2�)∗, we write C T
=⇒C′ to indicate that contract C

evolves to contract C′ following trace T , and applying the syntactic equivalences after

5In this article we use standard notation of 2X to denote the power set of X , and X∗ for finite lists over set X .
6We use the term permission to define a modality that other authors in the Hohfeldian tradition call a right,

in the sense that what is permitted to a party posses a burden of compliance on the other party (or the system
in our case).

December 2018

> A−→> ⊥ A−→⊥

O(a) A−→>
{aY ,aN}∩A 6= /0

O(a) A−→⊥
{aY ,aN}∩A = /0

F (a) A−→>
{aY ,aN}∩A = /0

F (a) A−→⊥
{aY ,aN}∩A 6= /0

P(a) A−→>
aN 6∈ A

P(a) A−→⊥
aN ∈ A

C1
A−→C′1 C2

A−→C′2

C1 &C2
A−→C′1 &C′2

C1
A−→C′1

C1;C2
A−→C′1;C2

C1
A−→C′1

C1 .C2
A−→C′1 .C2

C A−→C′

[ψ]C A−→C′
ψ(A)

[ψ]C A−→>
¬ψ(A)

Figure 2. Semantics of deontic contract logic.

each step, defined as the smallest relation such that7: (i) if C ↪→C′, then C
〈〉
=⇒C′; and (ii)

if C ↪→C′ A−→C′′ T
=⇒C′′′, then C A:T

==⇒C′′′.
Although the contract semantics allows transitions over action sets, most services are

accessed as a sequence of individual events. We choose to resolve concurrent norms by a
special event that marks a time unit, using it to group single events into action sets. This
may correspond to a temporal period (e.g. a day, with an event marking the occurrence
of midnight) or otherwise (e.g. the time unit may be a login session, and the logging out
event marks the end of the time unit). We will now show how such a small-step semantics
can be defined using the action set semantics in order to be able to deal with systems
such as smart contracts in which events happen individually.

The small-step semantics will process one action at a time, with the special event
tick (not in Σ) to denote the end of the current time unit. We will write �tick to denote

the observable events � augmented by tick: �tick
df
= {tick}∪�, and we will use variables

α, β to range over this set. The small step semantics will be of the form CA
α C′A′ to

denote that upon receiving event α , if A⊆ � were the events observed since the last tick
event, then contract C ∈ C will evolve to contract C′ ∈ C with the accumulated observed
events now being A′ ⊆ �:

CA
x C{x}∪A

C A−→C′ C′ ↪→C′′

CA
tick C′′/0

As we did before with action set semantics, for a trace t ∈ �∗tick we define CA
t

C′A′
to be the transitive closure of the small step semantics.

Another reasonable choice here is to immediately flag a violation. Note also how a
tick event is essential, since at some point the actions performed need to be evaluated —
an obligation to do an action without an explicit or implicit time limit is not an obligation.

7In the rest of the paper we use standard notation for traces: 〈〉 denotes the empty list, x : xs denotes the
list consisting of item x followed by list xs, xs++ ys denotes the concatenation of lists xs and ys and items(xs)
denotes the set of elements appearing in list xs.

December 2018

We also define a relation [∈ (2�)∗↔ �∗tick, such that action-set trace T ∈ (2�)∗ is
related with singleton-action trace t ∈ �∗tick if the actions in t split by tick actions are
the same as the actions sets appearing in T . This relation is defined as the least relation
satisfying the following:

〈〉 [〈〉 df
= true

(A : T) [(t1 ++ 〈tick〉++ t2)
df
= A = items(t1)∧ tick 6∈ A∧T [t2

Using this relation, we can formulate and prove the correctness of the small step
semantics with respect to the action set semantics.

Theorem 1. Given a normalised contract C ∈ C , an action-set sequence leads to a vio-
lation if and only if equivalent singleton-action traces also lead to violations:

∀T ∈ (2�)∗, t ∈ �∗tick · T [t =⇒ (C T
=⇒⊥)⇔ (C/0

t
⊥ /0)

4. Monitoring Deontic Contracts in a Blockchain

Smart contracts are concrete instances of request-based interactive systems, with the in-
tended purpose of serving as executable implementations of real-life contracts. By be-
ing executed on blockchains there is a certain degree of transparency and dependability.
Although their out-of-the box immutable transaction record can be used for analysing
past behaviour, such an approach does not allow for online monitoring with real-time
and on-chain reactions to violations.

In smart contracts, actions are requested by the user (typically by calling an entry-
point or function of the smart contract’s interface), which triggers specific business logic.
In this manner, since a smart contract is intended to serve as a regulated environment
within which the parties interact, the smart contract ensures that the action is allowed
(according to the counterpart real-life contract) and if so carries out the expected be-
haviour. For example, if a buyer attempts to place an order when there is not enough
money in escrow to cover it, then the smart contract should not let the order to be placed
successfully (see Clause 7 of the procurement contract).

A smart contract thus enforces a deontic contract if it only allows compliant se-
quences of actions. This is not always possible — for instance when certain blockchain
actions should signal an off-blockchain event which the smart contract should faithfully
record (e.g. that a delivery was made). However, within the domain of what is observable
on the blockchain, the challenge in monitoring that the smart contract behaviour matches
that of the deontic contract lies in the semantic’s rules which deal with attempts, par-
ticularly the rules for permission (where an attempt which is not allowed to go through
results in a violation) and prohibition (where an attempt to perform a forbidden action is
sufficient to trigger a violation). In other words, being able to monitor not just successful
actions (i.e. aY) but also failed attempts (i.e. aN). In this section we will look at how
monitoring for attempts (as opposed to actual performance of the action) can be done on
the Ethereum blockchain, and we discuss how we can instrument smart contracts written
using the Solidity language [6] to monitor deontic contracts.

In Solidity smart contracts, the code defines an interface which parties may invoke
in order to trigger particular behaviour specified in the code itself. The code itself may
trigger a failure which results in the whole invocation to be dismissed (including any
effects performed before the failure). For example, the code below shows a function used
to terminate a contract which uses the require command to fail and abort execution if
invoked by anyone other than the buyer or the seller:

December 2018

1 function terminateContract () public {
2 require(msg.sender == seller || msg.sender == buyer); // Can only be done by the seller or buyer
3 ...
4 }

The fact that such failure triggers a revert of the smart contract state, as though the invo-
cation never happened, is problematic for monitoring, since this means that if one mon-
itors for a failure in an online manner, failure will also obliterate the observation itself.
However, Ethereum provides different modalities for function calls, allowing for encap-
sulating function calls within a call, capturing such failures and signalling the outcome
using a boolean value indicating success or failure of the invocation (instead of the fail-
ure). One can thus pre-process a smart contract to package its functions in order to detect
both success and failure of invocations, and which are used to keep a record of events
between tick events:

1 function terminateContractWithFailure () public {
2 if (this.call(bytes4(keccak256("terminateContract ()")))) {
3 addSuccessfulAction(Action.TerminateContract);
4 } else {
5 addFailedAction(Action.TerminateContract);
6 }
7 }

This approach allows us to listen to smart contract events, and record the ones that are
relevant to the deontic contract to be used according to the small-step semantics of the
contract language. The gathering of events corresponds to the first rule of the small-step
semantics, while by encoding the deontic contract’s semantics e.g. using a finite-state
automaton or a symbolic automaton which we can easily instrument a smart contract with
[5], we can then trigger a transition as per the second rule of the small-step semantics.
That is, when tick is called we attempt to transition from the current state with the
events that happened since the last tick:

1 function tick() public {
2 ...
3 transition ();
4 if (isViolating(currentState))
5 doSomethingUponViolation ();
6 resetActions ();
7 }

When a tick is invoked, the big step semantics are thus invoked and if a mismatch between
the actions and the deontic contract is identified, appropriate action takes place8. How
triggering of the tick function takes place depends on the contract itself, as discussed
before. Instead of using the tick event to mark explicit time periods, we can also let it be
triggered in other ways, for instance by agreement between parties (e.g. acknowledging
that both will not perform any more actions in the current round), or by just one of the
parties after a certain amount of time has elapsed since the last tick (e.g. as a signal that
the party is ready to move to the next stage).

5. Case Study

Let us reconsider the procurement contract from Figure 1. In Figure 3, we show how the
contract can be formalised in our logic. Here events do not just reflect actions of a party,

8How to deal with malfunctioning smart contracts is a challenge in itself, and is largely still an open problem,
although an initial attempt at addressing this can be found in [13].

December 2018

C1. P(TerminateContractUnlessOtherwiseForbidden)
C2. F (TeminateContractWithItemsNotBetweenMinAndMaxItems)
C3. F (TerminateContractBeforeEndTimestamp)&F (TerminateContractBySellerAndWithPendingOrders)
C4. F (EnactmentWithLessThanCostOfMinimumItems)
C5. F (AcceptContractWithLessThanGuarantee).O(SendRestOfGuarantee)
C6. [ContractNotTerminated]P(OrderWithLessThanMaxItemsAndDeliveryTimeLessThan24HrsAndBeforeEnd)
C7. F (OrderWithLessThanEnoughMoneyForPendingOrders)
C8. [ContractNotTerminated]F (DeliveryWithPaymentLessThanCost)
C9. [TerminateContractWithPendingOrdersOr25PercentLateOrders]O(SendGuaranteeToBuyer)&

[TerminateContractWithoutPendingOrdersAnd25PercentLateOrders]O(SendGuaranteeToSeller)

ProcurementContract
df
= rec X .[¬ψ]((C4 &C5);X) & [ψ](rec Y.(C1 &C2 &C3 &C6 &C7 &C8 &C9);Y)

where ψ
df
= EnactmentAndSellerAcceptanceWithEnoughInEscrow

Figure 3. Formalisation of each of the clauses in Figure 1.

but rather actions happening in some smart contract state. It is worth noting here that
the choice of meaning of the tick action is crucial, and one has to ensure that no party
is able to unilaterally trigger this action to gain advantage, e.g. quickly invoking a tick
so that the other party violates a pending obligation. For the sake of our case study, we
implement a third party activated tick action, but there are other solutions which could be
implemented, such as a unilateral time-bounded tick, in which either party can activate a
tick action if at least a certain amount of time has passed since the last tick.

Both the contract and its monitoring based on the techniques outlined in Section 4
have been implemented on Ethereum in Solidity9, thus achieving (i) a smart contract
which should implement the logic of the legal contract; and (ii) a monitor which observes
whether the behaviour of the parties and the logic of the smart contract actually complies
with the legal contract as written in the formal deontic logic.

It should be noted that monitoring for compliance does not come for free. Execu-
tion of code in smart contracts on platforms like Ethereum require payment for so-called
gas. The monitoring logic we add to a contract adds to the gas required when calling
the original functions in such a contract. This increase (as a percentage of the original
cost) is highly dependant on (i) the original smart contract; and (ii) the number of actions
received between successive ticks. However, to get an idea of the magnitude of the extra
cost we have done some previous studies at evaluating overheads in instrumenting mon-
itors on Solidity smart contracts in [1]. It is worth mentioning that (i) given the critical
nature of many smart contracts, the additional cost (in many cases being in the order of
10–20% of the original cost) is typically worth paying for; and (ii) given prices of ether
at the time of writing the gas added is negligible in actual cost.

6. Conclusions

In computer science circles, one frequently finds conflation of contracts with specifica-
tions, mainly because obligations and prohibitions readily translate into standard speci-
fication languages. In contrast, permission has no direct correspondence in many speci-
fication languages, particularly linear time logics. In this paper, we have argued that in
request-based interactive systems, respecting permission (or at least one form of permis-
sion) corresponds to respecting attempts to perform the permitted action or achieve the

9See https://github.com/shaunazzopardi/deontic-monitoring-solidity/

December 2018

permitted state. Furthermore, in certain systems, attempts and their success (or other-
wise) are observable events, which enables the definition of a trace semantics encom-
passing permission, thus allowing runtime monitoring of deontic contracts. This moni-
toring approach is applied to smart contracts (in our case study, to a procurement con-
tract) in order to enable flagging when the prescribed behaviour and the behaviour of
parties diverge.

One issue we have not addressed in our approach is directed modalities e.g. which
party is obliged to perform an action, which would allow us to assign blame for viola-
tions. The current semantics can easily be extended to tag the modalities with parties and
handle violations in a manner similar to the one we used earlier in [2].

References

[1] Shaun Azzopardi, Joshua Ellul, and Gordon J. Pace. Monitoring smart contracts: CONTRACTLARVA

and open challenges beyond. In the 18th International Conference on Runtime Verification, 2018.
[2] Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik, and Gerardo Schneider. Contract automata -

an operational view of contracts between interactive parties. Artif. Intell. Law, 24(3):203–243, 2016.
[3] Jan M. Broersen. Modeling attempt and action failure in probabilistic STIT logic. In Toby Walsh,

editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Spain, 2011, pages 792–797. IJCAI/AAAI, 2011.

[4] Marı́a-Emilia Cambronero, Luis Llana, and Gordon J. Pace. A calculus supporting contract reasoning
and monitoring. IEEE Access, 5:6735–6745, 2017.

[5] Joshua Ellul and Gordon J. Pace. Runtime verification of ethereum smart contracts. In Proceedings of
the First International Workshop on Blockchain Dependability, 2018.

[6] Ethereum. Solidity v0.4.24 Language Documentation. https://solidity.readthedocs.io/en/v0.
4.24/, 2018. [Online; accessed 09-September-2008].

[7] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Clan: A tool for contract analysis and con-
flict discovery. In Zhiming Liu and Anders P. Ravn, editors, ATVA, volume 5799 of Lecture Notes in
Computer Science, pages 90–96. Springer, 2009.

[8] Guido Governatori, Vineet Padmanabhan, Antonino Rotolo, and Abdul Sattar. A defeasible logic for
modelling policy-based intentions and motivational attitudes. Logic Journal of the IGPL, 17(3), 2009.

[9] Florian Idelberger, Guido Governatori, Régis Riveret, and Giovanni Sartor. Evaluation of logic-based
smart contracts for blockchain systems. In Rule Technologies. Research, Tools, and Applications - 10th
International Symposium, RuleML 2016, NY, USA, 2016. Proceedings, pages 167–183, 2016.

[10] Emiliano Lorini and Andreas Herzig. A logic of intention and attempt. Synthese, 163(1):45–77, 2008.
[11] Daniele Magazzeni, Peter McBurney, and William Nash. Validation and verification of smart contracts:

A research agenda. IEEE Computer, 50(9):50–57, 2017.
[12] Sanjay Modgil, Nir Oren, Noura Faci, Felipe Meneguzzi, Simon Miles, and Michael Luck. Monitoring

compliance with e-contracts and norms. Artif. Intell. Law, 23(2):161–196, 2015.
[13] Gordon J. Pace, Joshua Ellul, and Christian Colombo. Contracts over smart contracts: Recovering from

violations dynamically. In 8th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2018), 2018.

[14] Cristian Prisacariu and Gerardo Schneider. A formal language for electronic contracts. In FMOODS,
volume 4468 of Lecture Notes in Computer Science, pages 174–189. Springer, 2007.

[15] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control objectives for busi-
ness process compliance. In Business Process Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings, pages 149–164, 2007.

[16] Severin Schroeder. The concept of trying. Philosophical Investigations, 24(3):213–227, 2001.
[17] Wilfrid Sellars. Science and metaphysics: Variations on kantian themes. 1968.
[18] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and Jan Mendling.

Untrusted business process monitoring and execution using blockchain. In Business Process Manage-
ment - 14th International Conference, (BPM) 2016, Rio de Janeiro, Brazil, September 18-22, 2016.
Proceedings, pages 329–347, 2016.

[19] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow
Paper, 151:1–32, 2014.

