
Conditional Permissions in Contracts 1

Gordon J. PACE a Fernando SCHAPACHNIK b Gerardo SCHNEIDER c

a gordon.pace@um.edu.mt
University of Malta, Malta

b fschapachnik@dc.uba.ar
Universidad de Buenos Aires, Buenos Aires, Argentina

c gerardo@cse.gu.se
University of Gothenburg, Sweden

Abstract. Defining and characterising conditional permissions has never

been easy. Part of the problem, we believe, comes from the fact that
there is not one but a whole family of possible deontic operators, all of

them distinct and reasonable, that can be labelled as conditional per-

missions. In this article, rather than disputing the correct interpreta-
tion, we revisit a number of different interpretations the term has re-

ceived in the literature, and propose appropriate formalisations for these
interpretations within the context of contract automata.

Keywords. Deontic Logic, Automata, Normative Systems, Interactive

Two-Party Systems, Contract Representation, Conditional Permission

1. Introduction

The notions of permission and the notion of conditionality must be amongst
the hardest-to-formalise deontic concepts. Conditional permission combines the
difficulties from both terms and has proved to be specially elusive. Part of the
problem, we believe, comes from the fact that there is not one but many possible
deontic operators, distinct yet all providing a reasonable interpretation of the
term. The general consensus is that conditional permissive norms have a condition
(let us call it ϕ) and a normative consequence of that condition, that can be either
a state of affairs or an action or action set that becomes permitted.

The very notion of clauses being conditional is at heart of Makinson’s and
van der Torre’s I/O logics [6]: “Technically, a normative code is seen as a set G of
conditional norms, i.e., a set of such ordered pairs (a, x). For each such pair, the
body a is thought of as an input, representing some condition or situation, and
the head x is thought of as an output, representing what the norm tells us to be
desirable, obligatory or whatever in that situation”. In [5] the authors deal with
conditional permissions and claim that under the principle of nihil obstat (the one
ruling the so called negative permissions), conditional permission is interpreted as

1Partially supported by UBACyT 20020130200032BA and the Swedish Research Council
under grant nr. 2012-5746 (project REMU: Reliable Multilingual Digital Communication:

Methods and Applications).



follows: “[. . . ] a code permits something with respect to a condition iff it does not
forbid it under that same condition, i.e. iff the code does not require the contrary
under that condition”. So, if we start with an empty code and ask whether a
person younger than 18 can drink and can work, then the answer is yes in both
cases. If we add a single clause that permits drinking on the condition of being
at least 18 years old then if follows that for someone with 18 years of age it is
permitted both to drink (explicitly) and to work (because nihil obstat). However,
someone younger that 18 will be in violation if she drinks but not if she works.
This is because there is a implicit notion that the fact of putting a condition on
a permission is at the same time prohibiting it when the condition does not hold
(essentially ¬ϕ =⇒ F (x)). Yet, this is not always the interpretation given.

Consider the notion of antithetic permission as presented by Stolpe in [8]
(see also [4,3]): “The second form of implied permission, may be called antithetic
permission, since such a permission (the thesis) overrules any prohibition (the
antithesis) that is incompatible with it. Unlike exemption, the primary function
of antithetic permissions is not to limit or suspend an existing prohibition, but
rather to prevent one from being passed or practised in the first place.”

Besides examples from constitutional law, one might consider university
statutes that permit students over 21 years old to vote for School President ex-
plicitly, thus disallowing schools (which might have the power to pass their own
ruling) to forbid it. In this case the intended meaning is not to prohibit voting
if the condition does not hold (a particular school might want to permit voting
starting from 18 or even without considering age), but to make sure that at least
it is permitted in the given case. The rule ¬ϕ =⇒ F (x) does not apply for
conditional antithetic permissions. In this case it can be considered, following
the words of Alchourrón and Bulygin [1], that it might be that “there is a norm
permitting p; p is strongly permitted, but ¬p is not regulated (it belongs to the
extranormative sphere)”. As we will argue later, this can be the case even in
normative systems that are not hierarchical.

In the context of contracts there is a further complication when violations are
considered, because some actions require active involvement of the other party.
Contracts are general enough to be interesting and specific enough so many deon-
tic aspects can be analysed in a constrained environment, yet they are not covered
by many formal studies that regulate parties independently.

In contracts, the mere fact of permitting one to do a shared action, even with-
out conditions involved, imposes an obligation on the other to synchronise with
that action (for instance, a permission to buy that is also an obligation on the
other to sell, much in the spirit of what is sometimes called a right). In this arti-
cle we use contract automata [7], a formalism that allows to discuss interactions,
while still tagging violations per party, to discuss different forms of conditional
permissions. In the case of interacting systems, the notion of permission (unlike
those of obligation and prohibition) refers to the possibility of potential behaviour
in order to specify that one of the parties does offer a viable way for the other
party to perform a particular action, in a manner analogous to that typically han-
dled by branching time logics such as Computation Tree Logic (CTL). This is
key to understanding one of the challenges in formally characterising conditional
permissions which depend on a hybrid view of the system — the conditions typ-



ically refer to the present state of affairs, whereas permissions refer to potential
states of affairs.

In order to avoid confusion with different interpretations given to terms by
different authors, and because those are generally used in the context of general
law and not specifically in the context of contracts, we will not refer to them
as positive, negative, antithetic, exceptional, static or dynamic conditional per-
missions. Instead, this article will rely on formal semantics to present differences
and similarities between the different interpretations — avoiding contentious dis-
cussions as to what is the generally accepted name to refer to each definition.
The characterised forms of conditional permissions presented are i) those where
the condition is sufficient for the permission to hold, but not necessary (type
1); ii) those where, in addition, the condition not holding transforms the per-
mission into a prohibition: the condition is both sufficient and necessary (type
2); iii) those where the condition is necessary, but not sufficient, and additional
conditions should hold (type 3); iv) those where the condition is necessary, but
it is not something that has to hold but rather something that one of the parties
has also to do (type 4).

In the next section we summarise key aspects of contract automata, and then
discuss the different forms of conditional deontic clauses in Section 3. Section 4
concludes the article with some final remarks.

2. Contract Automata

To enable direct reasoning about contracts, one requires a model in which the two
parties somehow interact to agree on which actions to perform. Here we present
the key aspects of such a model (see [7] for full details):

• Each of the intervening parties is modelled as a multi-action automaton
(Definition 2.1). Parties interact based on the notion of synchronous com-
position [2] and multi-action labels on transitions.

• Contracts that rule relationships among those parties are also multi-action
automata tagged with deontic clauses, called contract automata.

• The synchronous composition of the parties and the contract is called a reg-
ulated two-party system (Definition 2.3). It provides the ability to predicate
about deontic clauses enforced at each possible step of interaction between
the two parties.

Definition 2.1 – Multi-Action Automaton
A multi-action automaton S is a 4-tuple with components 〈Σ, Q, q0, →〉, where
Σ is the alphabet of actions, Q is the set of states, q0 ∈ Q is the initial state and
→⊆ Q×2Σ×Q is the transition relation. We will write acts(q) to be the set of all

action sets on the outgoing transitions from q (defined to be {A | ∃q′ · q A−→ q′}).
The synchronous composition of two automata S1 and S2 (with Si =

〈Qi, q0i, →i〉), both with alphabet Σ and synchronising over alphabet G, written
S1‖GS2, is defined to be 〈Σ, Q1 × Q2, (q01, q02),→〉, where → is the classical
synchronous composition relation (e.g., [2]).



We can now define contracts to be automata with each state tagged with the
clauses which will be in force at that point. The contracts will be able to refer to
both presence and absence of an action. Given an alphabet of actions Σ, we write
!Σ to refer to the alphabet extended with actions preceded with an exclamation

mark ! to denote their absence: !Σ
df
= Σ ∪ {!a | a ∈ Σ}.

Each clause in a contract automata refers to one of two parties, with the set
of parties being Party = {1, 2}. We will use variables p, p1 and p2 to range over
this type, and write p to refer to the party other than p (i.e., 1 = 2 and 2 = 1).
Contract clauses are either (i) obligation clauses of the form Op(a) or Op(!a),
which say that party p is obliged to perform or not perform action a respectively;
or (ii) permission clauses which can be either of the form of Pp(a) or Pp(!a) (party
p is permitted to perform, or not perform action a respectively). Note that being
obliged not to perform an action is the same as being forbidden to perform the
action (Fp(x) = Op(!x)). We will use both expressions interchangeable in the rest
of the paper.

Definition 2.2 – Contract Automaton
A contract clause over alphabet Σ is structured as follows (where action x ∈!Σ,
party p ∈ Party): Clause ::= Op(x) | Pp(x).

A contract automaton is a total and deterministic multi-action automaton
S = 〈Σ, Q, q0, →〉, together with a total function contract ∈ Q → 2Clause as-
signing a set of clauses to each state.

As we are dealing here only with two-party contracts, we define next regulated
two-party systems as being an automaton composed by the behaviour of the two
parties together with a contract automaton among them.

Definition 2.3 – Regulated Two-Party System
A regulated two-party system synchronising over the set of actions G is a tuple
R = 〈S1, S2〉AG, where Sp = (Σp, Qp, q0p,→p) is a multi-action automaton specify-
ing the behaviour of party p ∈ Party and A is a contract automaton over alphabet
Σ1 ∪ Σ2.

The behaviour of a regulated two-party system R, written [[R]], is defined to
be the automaton (S1‖GS2)‖ΣA. We will write ((q1, q2), qA) as (q1, q2)qA .

A regulated two-party system is well-formed if S1‖GS2 never deadlocks:
∀(q1, q2) · acts((q1, q2)) 6= ∅.

In the rest of the paper we will assume that all systems are well-formed. One
way of guaranteeing this may be by having all system states provide a transition
with the empty action set. Also note that the totality of the contract automaton
guarantees that the system behaviour is not constrained, but simply acts to tag
the states with the relevant contracts at each point in time. We can now define
whether or not either party is violating the contract when a particular state is
reached or a transition is taken.

Definition 2.4 – Viable Action Sets
Given a contract automaton A = 〈Σ, Q, q0, →〉, and a state qA ∈ Q, functions



Op(qA) and Fp(qA) give the set of actions respectively obliged to be performed and
forbidden to be performed by party p:

Op(qA)
df
= {a | Op(a) ∈ contract(qA)} Fp(qA)

df
= {a | Op(!a) ∈ contract(qA)}

Action set A is said to be viable for party p in a contract automaton state qA ∈ Q,
written viablep(qA, A), if (i) all her obliged actions are included in A but; (ii) no
actions which the party is forbidden to perform are included in A:

viablep(qA, A)
df
= Op(qA) ⊆ A ∧ Fp(qA) ∩A = ∅.

For space reasons in what follows we define permissions and obligations in an
informal manner; we refer the reader to [7] for a full formalisation.

Definition 2.5 – Permission
If party p is permitted to perform shared action a, then the other party p must
provide p with at least one viable outgoing transition which contains a but does
not include any forbidden actions. Similarly, if party p is permitted to not per-
form action a, then the other party p must provide p with at least one viable out-
going transition which does not include a nor any forbidden action. Permission
to perform local actions can never be violated.

Definition 2.6 – Obligation
Obligations bring in constraints on both parties. Given that party p is obliged to
perform action a in a state means that (i) party p must include the action in any
outgoing transition in the composed system in which it participates; and (ii) the
other party p must provide a viable synchronisation action set which, together with
other asynchronous actions performed by p, allows p to perform all its obligations,
positive and negative. Obligation to not perform action a (Op(!a)) can be similarly
expressed.

As an example let us consider the case when p is permitted to withdraw
money from the bank, permitted not to deposit, obliged to pay the fee, and obliged
not to steal (Pp(w), Pp(!d), Op(f), Op(!s)). Then p should provide at least one
transition that contains both a w and an f but does not contain d nor s.

2.1. Trace Semantics

In order to present richer conditional operators (see Section 3) we need to be able
to analyse the deontic status of specific traces, as defined below.

Definition 2.7 – Regulated Contract Trace
Given a regulated two-party system R = 〈S1, S2〉AG, a regulated contract trace is

any run of [[R]]: (q0
1 , q

0
2)q0A

A0

−−→ (q1
1 , q

1
2)q1A

A1

−−→ . . .

Definition 2.8 – Trace-Based Modalities
Permission Our model characterises permission as the provision of viable options
for the other party regardless of whether the other party takes them or not. Be-
cause of that, we do not tag permission violations in traces.



Obligation Each party satisfies its obligation in a transition if the action set is
viable for her and for the other party. I.e., she included all her mandatory actions,
along with the ones of the other party, and did not include any forbidden ones.

satOp ((qi1, q
i
2)qiA

Ai

−→ (qi+1
1 , qi+1

2 )qi+1
A

)
df
= viablep(q

i
A, A

i) ∧ viablep(q
i
A, A

i).

Violations of prohibitions can be identified using Fp(x) = Op(!x).

2.2. Enriched Trace Semantics

Conditions are predicates over an (as yet) implicit state of the system2. To go
beyond basic modalities and support conditional ones we thus need to enrich the
traces with this state information.

Definition 2.9 – Enriched Contract Trace

Given a regulated contract trace (q0
1 , q

0
2)q0A

A0

−−→ (q1
1 , q

1
2)q1A

A1

−−→ . . . we call enriched

contract trace a trace of the form (q0
1 , q

0
2)θ

0

q0A

A0

−−→ (q1
1 , q

1
2)θ

1

q1A

A1

−−→ . . . where each θi

is a state-predicate in an unspecified logic.

Note that we do not pose any requirements on the underlying logic for θ, allowing
it to be determined depending on the intended domain of application, clearly
affecting the complexity of the analysis (including decidability issues).

3. Conditional Permissions

In this section we introduce four types of conditional permissions. The first two
of them try to characterise the two different intended meaning of conditional per-
missions raised by the example of the university statute discussed in the intro-
duction: when the condition is sufficient but not necessary, and when it is both
sufficient and necessary. The third and four types include cases when additional
actions or facts are needed in order for the conditional permission to be satisfied.

Type 1 Conditional Permission
We will define as type 1 conditional permission the one where the condition is
sufficient for the permission to hold, but it is not necessary. In the given example
being emancipated could also be a trigger for the permission. To formalise it we
will consider enriched contract traces and parties p1, p2 ∈ Party.

Definition 3.1 – Type 1 Conditional Permission
Party p satisfies party p’s type 1 conditional permission P1

p (ϕ.a) over an enriched

transition (q1, q2)θqA
A−→ . . . iff θ satisfying the condition ϕ implies that there is an

action set which is viable for p and contains action a3.

2We can associate these predicates to the states of the contract automaton, but it makes
more sense to keep the state over which conditions depend to be distinct from the state of the

contract.
3Recall that only shared actions (actions in G) can be restricted by the other party.



(qi1, q
i
2)θ

i

qiA

Ai

−→ (qi+1
1 , qi+1

2 )θ
i+1

qi+1
A
`p1 P1

p2(ϕ . a)
df
=

θi ` ϕ ∧ a ∈ G =⇒
∃A′ ∈ acts(qip1), A′′ ∈ (Σ−G) ·
a ∈ A′ ∧ viablep2(qiA, A

′ ∪A′′) if p1 6= p2

true if p1 = p2

Note that this conditional permission can be satisfied even if the actually
taken action set (Ai) and the action set that contains the permitted actions (A′)
are not the same. In the university statute example, if the student is at least 21,
the permission is satisfied even if voting is not present in Ai, but was present
in any other of the transitions that the School offered at state (q1, q2). This is
an interesting property shared also by the other types: the satisfaction of the
permission has to do with potentiality, and as such, depends on the structure
of the system and not on the particular branch taken by the trace. Yet, it is
the enriched state of the trace that triggers the signalling of the violation. As
an analogy, consider the prohibition of being drunk while driving. The subject
is drunk or not independently of the driving, but only when he gets behind the
wheel that property becomes of legal interest.

Type 2 Conditional Permission
Another interpretation of the university statute example can be given in which,
whenever the condition does not hold, transforms the permission into a prohibi-
tion: that being 21 years old is both sufficient and necessary. This will be the case
for type 2 conditional permission: the holding of the condition brings about the
holding of the permission, and it is also required that the condition holds for the
permission to be in effect. That is, the condition becomes necessary and sufficient
condition for the permission to be effective. Another example might be “Passen-
gers can unbuckle seat belts when the red light is off”. Only when the light goes
off passengers can opt to unbuckle, being that this is the only requirement for the
permission to hold.

Note that in this case, a conditional permission where the condition does not
hold leads to an additional prohibition which means that we need to enrich our
notion of active prohibitions and viability to depend also on the conditions (and
hence state θ):

F+
p (qA, θ)

df
= Fp(qA) ∪ {a | P2

p (ϕ . a) ∈ contract(qA) ∧ θ 6` ϕ}
viable+

p (qA, A, θ)
df
= Op(qA) ⊆ A ∧ F+

p (qA, θ) ∩A = ∅.

Definition 3.2 – Type 2 Conditional Permission
Party p satisfies party p’s type 2 conditional permission P2

p (ϕ.a) over an enriched

transition (q1, q2)θqA
A−→ . . . if there is an action set A that is viable for p and

contains action a if and only if θ satisfies the condition ϕ (in the particular case
of θ not satisfying ϕ, it means that a should not be in Ai).

(qi1, q
i
2)θ

i

qiA

Ai

−→ (qi+1
1 , qi+1

2 )θ
i+1

qi+1
A
`p1 P2

p2(ϕ . a)
df
=

true if p1 = p2 ∨ a /∈ G
∃A′ ∈ acts(qip1), A′′ ∈ (Σ−G) · if p1 6= p2 ∧ a ∈ G ∧ θi ` ϕ

a ∈ A′ ∧ viable+
p2(qiA, A

′ ∪A′′, θi)
a 6∈ Ai if p1 6= p2 ∧ a ∈ G ∧ θi 6` ϕ



Note that in the case of action a being a shared action and θi not satisfying
ϕ we are blaming party p1 if action a is present in Ai. If action a is shared then
both parties had it in their actions sets prior to synchronisation, so p1 is to blame
for offering a when it should not have done so.

As before, a party always satisfies its own permissions. This decision is rather
arbitrary, because it could perfectly be decided to blame p1 for overindulging
herself by having a in the action set even when the condition did not allow for
it. We decide to choose a semantics where this responsibility lays into the other
party.

Note that Definition 3.1 would also require the use of viable+(·) if the two
types would be used together.

Type 3 Conditional Permission
Consider now the case of “A ticket can be purchased provided that there are
seats available” and “Tickets need to be bought three days in advance”. Each
requirement (seats being available and purchase date being at least three days
ahead) is necessary for the permission to be effective, yet none of them alone is
sufficient. Thus, if one would state each of them individually, the given condition
would be necessary, yet not sufficient. This is the case for type 3 conditional
permission, P3

p (ϕ . a). This is similar to type 1 but a little bit more complex,
because in order to exercise the action many conditions have to hold, and they
could had be expressed in different deontic clauses.

Take the air ticket example, where bt is the buying ticket action, ϕ1 stands for
the condition that tickets are available and ϕ2 for the condition that the departure
date is at least three days in advance. If a given contract has both P3

p (ϕ1 .bt) and
P3
p (ϕ2 . bt), both of them have to be considered. Contract automata assume full

deontic information, i.e., given an enriched state (q1, q2)θqA , all relevant deontic
clauses are in qA. Thus, if one would want to support type 3 conditional permis-
sions it is sufficient to consider the conjunction of all the conditions imposed to
an action in the given state and then fall back to type 1. Note that other for-
malisms that operate under an open world assumption need a more sophisticated
definition of type 3 conditional permission.

Type 4 Conditional Permission
The first three types can be defined by giving their satisfaction predicates over
extended contract traces. However, it could also be the case that the conditions
are actually actions that the party has to do, as in the case of “You have to pay
the ticket to watch the movie” or “You have to take your little brother with you
if you want to go to play”. The case is similar to type 1 in that the condition is
necessary, but differs in that the condition is not something that has to hold but
rather something that party has also to do. I.e, in order to do a you have to do
other things as well.

This scenario can sometimes be encoded as a type 1 conditional permission by
sequentialising actions meant to be done concurrently. The example can be turned
into “Tickets have to be already paid to watch the movie”. Contract automata
allows the expression of type 4 conditional permission without having to resort to



P4
1 ({tear ticket} . board)

{wait} {board, tear ticket}

{board, tear ticket, greet}

{board}

Figure 1. Type 4 Conditional Permission Example

such transformations, by taking advantage of transitions being labelled by sets of
actions meant to be executed concurrently. The advantage of doing so being that
violations of such type of conditional permission can be detected without having
to consider specific traces.

As an example, consider Figure 1. It can be analysed with or without the
dashed transition. Without it, both parties respect the permission: party 1 can
choose to wait, which is a local action not involved into the boarding, or it can
board with or without greeting. In both cases the tearing of the ticket is involved.
If the dashed transition were present in the synchronised system both parties
would be violating the conditional permission because both of them would be
having a transition that allowed the boarding without the tearing. If neither of
the solid transitions were present because of party 2’s unwillingness to offer them,
then party 2 would be in violation.

To fully present type 4 conditional permission we first need to define what it
means for an action set to be required.

Definition 3.3 – Required Action Sets
Party p satisfies the requirement of having to do action set C in order to do a if
all of its outgoing transitions that contain action a also contain the actions in C
that are either local or shared (party p cannot assume responsibility for actions in
C that are exclusive of the other party):

requiresp(q, C, a)
df
= ∀A ∈ acts(q), a ∈ A · ((C ∩ (Σp ∪G)) ⊆ A).

Definition 3.4 – Type 4 Conditional Permission
Party p is permitted to do action a given condition C ⊆ 2!Sigma, written P4

p (C.a),
if there is a transition which makes it possible to do Pp(a) and also contains C,
and there’s no way of doing a without doing C as well. In other words, doing C
is imposed in order to do a.

Party p complies with P4
p (C .a) if all of its outgoing transitions that contain

an a also contain the actions in C that are either local or shared. On the other
hand, party p needs to satisfy the same, plus allowing at least one viable transition
containing the whole C and at the same time permitting a.

(q1, q2)qA `p1 P4
p2(C . a)

df
=

requiresp1(qp1 , C, a) if p1 = p2

requiresp1(qp1 , C, a) ∧ ∃A ∈ acts(qp1), A′ ⊆ (Σ−G) ·
viablep2(qA, A ∪A′) ∧ C ∪ {a} ⊆ (A ∪A′) if p1 6= p2



In the above definition, the set C can contain either local or synchronised
actions. That allows to express requirements to the same individual (e.g., “You
need to show your boarding pass while entering the plane”), or even more complex
interactions requiring the other party involvement (e.g., “You need to have your
ticket torn upon entering the plane”).

Note that we could have given an alternative definition, where there is no need
for a transition to effectively exist. Also note that the given definition trivialises
if C is the empty set, because its role as requirement becomes void.

4. Conclusions and Future Work

In this article we have formally characterised four different forms of conditional
permissions found in the literature, namely i) those where the condition is suffi-
cient for the permission to hold, but it is not necessary (type 1); ii) those where,
in addition, the condition not holding transforms the permission into a prohibi-
tion: the condition is both sufficient and necessary (type 2); iii) those where the
condition is necessary, but not sufficient, and additional conditions should hold
(type 3); iv) those where the condition is necessary, but it is not something that
has to hold but rather something that one of the parties has also to do (type 4).

All of the presented permissions are different and have proper use cases,
thus suggesting that “conditional permission” describes not one but a family of
operators. In future work we plan to address conditional obligations to explore
whether variations described in the literature can be accommodated under one
formal presentation or they also describe a set of modalities.

References

[1] C.E. Alchourrón and E. Bulygin. Permission and permissive norms. Theorie der Normen,
Duncker & Humblot, Berlin, 1984.

[2] André Arnold. Nivat’s processes and their synchronization. Theor. Comput. Sci., 281:31–

36, June 2002.
[3] Guido Boella and Leendert van der Torre. Permissions and obligations in hierarchical

normative systems. In ICAIL’03, pages 109–118. ACM, 2003.

[4] E. Bulygin. Permissive norms and normative systems. In A. Martino and F. Socci Natali,
editors, Automated Analysis of Legal Texts, pages 211–218. Publishing Company, 1986.

[5] D. Makinson and L. van der Torre. Permission from an input/output perspective. Journal
of Philosophical Logic, 32(4):391–416, 2003.

[6] David Makinson and Leendert W. N. van der Torre. What is Input/Output Logic? In-
put/Output Logic, Constraints, Permissions. In Normative Multi-agent Systems, volume
07122 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2007.

[7] Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting Two-Party Systems.

In FLACOS’12, volume 94 of ENTCS, 2012.
[8] Audun Stolpe. A theory of permission based on the notion of derogation. J. Applied Logic,

8(1):97–113, 2010.


