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Abstract. The functional correctness of particular components in a
multi-party system may be dependent on the behaviour of other com-
ponents and parties. Assumptions about how the other parties will act
would thus have to be reflected in the specifications. In fact, one can find
a substantial body of work on assume-guarantee reasoning with respect
to the functional aspects of the component under scrutiny and those of
other components. In this paper, we turn to look at non-functional as-
sumptions about the behaviour of other parties. In particular, we look at
smart contract verification under assumptions about presumed benevo-
lence of particular parties and focussing on reentrancy issues — a class
of bugs which, in the past few years, has led to huge financial losses. We
make a case for allowing, in the specification, fine-grained assumptions
on benevolence of certain parties, and show how these assumptions can
be exploited in the verification process.

Keywords: Smart contracts · Interactive systems · Non-functional spec-
ifications.

1 Introduction

Verification of a component in a distributed system which brings together mul-
tiple actors comes with the need for assumptions about how the other parties
will interact with the component under scrutiny. In a setting where the other
components are processes designed to work well with our code (whether its an-
other method we wrote, a library we trust or a service we rely on), we would
typically assume their well-behaviour, effectively presuming their benevolence.
In an open-world setting, however, when a component interacts with external
parties on whom we have no control, we may have to assume these parties to
be malicious. Design of such systems and their verification typically takes one
of these two extreme views.

Now consider smart contracts — essentially executable code running on a
decentralised platform [12,13] regulating the behaviour of multiple parties. The
correctness of such code is, indeed, of high importance to a user of such a sys-
tem. Bugs may affect functionality, interfering with the user (and other parties)
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and hindering them from interacting through the smart contract in the orig-
inally intended manner. Take, for instance, a smart contract allowing parties
to purchase, sell and transfer tokens, and a bug which may occasionally create
a new token with a new owner but reusing an existing id, effectively stopping
the current user from exercising their rights on their token. Other bugs may
be better described as vulnerabilities, not deviating from expected behaviour
when used normally, but allow a malicious party to capitalise on them to carry
out logic not as originally (hopefully) intended by the smart contract developer.
Many such types of vulnerabilities are known in the smart contract world: in-
teger over- and underflow, transaction order dependency, reentrancy, gas-limit
attacks, unexpected reverts, etc., with some being easier to avoid than others.
Although there is no line, fine or otherwise, to draw between these two types of
bugs, the main difference between the two would lie in the intention of the party
triggering the bug.

Take reentrancy, which we discuss in more detail later on in this paper, and
which we will use as an illustrative use case for our contribution. Informally, a
smart contract is vulnerable to reentrancy bugs if it exhibits wrong behaviour
when the smart contract invokes another party, which unexpectedly calls back
the original smart contract.3 This was the cause of various high-profile instances
of bugs, the exploitation of which led to huge financial losses [5]. A verification
engineer would not be fazed by such bugs, reasoning that having identified a class
of such undesireable behaviour, we can write an anti-specification to capture
instances of such bugs. But it is not as simple as this. Sometimes (albeit rarely),
reentrancy may be a desireable feature, and in others it may not lead to any
undesireable behaviour, making such blanket analyses undesireable.

Furthermore, such a vulnerability may not necessarily be a show-stopper for
a particular party. For instance, if we know that there is such a vulnerability
which only we can exploit, we may still decide to participate as part of the smart
contract (which may already be in place, and cannot be updated). After all, we
trust ourselves not to exploit the loophole if the otherwise normal behaviour
of the smart contract is what we are after. Consider a smart contract which
allows a party to send funds to another party with an intermediary performing
due diligence checks on the two parties. If such a contract has a reentrancy
vulnerability exploitable only by the receiver resulting in the loss of the funds,
and someone is willing to send us funds through the smart contract, we can
simply accept and use the contract in the expected way, not exploiting the bug.

This notion can be extended to situations in which we may assume certain
other parties not to be malicious.4 Consider a smart contract which handles the
sale of a property, involving the seller and their spouse, the real-estate agent, and

3 The design of the execution platform on blockchains such as Ethereum, even trans-
ferring funds from one smart contract to another involves a call to the recipient’s
code, providing potential for reentrant calls.

4 We are sorely tempted to simply say that we trust those other parties. However, in
the blockchain world, the word trust has been heavily used and comes with much
baggage — trustless computation, trusted oracles, trusted parties, etc. We thus chose
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the buyer. The smart contract to be used may have reentrancy issues which only
the seller and/or their spouse may exploit. This may certainly be an issue for
the buyer and for the real-estate agent, but from the the seller’s point-of-view,
if they are happy to assume that neither they nor their spouse will exploit the
vulnerability they would not object to the use the smart contract and enabling
the transaction to go through. Similar situations may arise in which the parties
who may exploit such code would have other incentives, economic, social or oth-
erwise, outweighing their gains from exploiting the smart contract, in which case
another party may choose to presume that they will not carry out malicious ac-
tions. We propose verification techniques verifying a multi-party system against
a specification whilst selectively presuming benelevolence of certain parties.

These are the sort of scenarios we will explore in this paper, essentially
proposing a langauge semantics which allows for proving the correctness of speci-
fications annotated by the set of parties presumed to be benevolent — essentially
having such presumptions becoming an element of the specification. This paper
is driven by the idea that the distinction of who we will presume will act in good
faith should be made explicit in the specification, and capitalised in the verifi-
cation. In particular, we will illustrate these notions by focussing on verification
of smart contracts written in Solidity [6], explicitly making assumptions about
party-benevolence with regards to reentrancy attacks.

Related work. Different variations of relative correctness have been studied
extensively in the literature (even if ‘relative correctness’ is not regularly used
as a term). In particular, assume-guarantee reasoning has been invented [7,10]
to allow compositional verification of component based software. The approach
typically taken is to specify functional-correctness properties by writing specifi-
cations that make explicit both the assumptions that the component can make
about its environment, and the guarantees that it provides. In contrast, in our
approach we talk about the functional guarantees made by a component, but
against non-functional assumptions about other components. The use of such
compositional verification for smart contracts has not, to our knowledge, been
explored, despite the fact that smart contracts are typically multi-party sys-
tems. If one focuses on vulnerability due to reentrancy attacks, the literature is
rife with techniques and tools to identify them e.g. [9,8,11]. However, all these
techniques simply identify the possible reentrancy, and are not concerned with
which parties may (or may not) initiate the according attack. Ironically, based
on our experience in the sector, it is not uncommon that when faced with such
a potential vulnerability, a domain expert may dismiss the concern due to the
fact that the only party that can trigger the ‘attack’ is a trusted party, e.g., the
sole owner of a wallet contract, or generally some party that has no interest in
running the attack.

The paper is organised as follows. In Section 2 we provide the necessary
background about smart contract programming and reentrancy required for the
rest of the paper. In Section 3 we present previous work on proof rules for

to avoid the use of the term in order to avoid confusion and talk about benevolence
and trust that a particular party will not perform a reentrancy attack.
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Solidity taking a best or worst case approach to reentrancy (i.e. either trusting
everyone not to perform a reentrancy attack, or not trusting anyone). Based
on this, in Section 4 we present a new proof rules parametrised by presumed
party-benevolence, and we finally conclude in Section 6.

2 Smart Contracts, Solidity and Reentrancy

Agreements between autonomous agents identify obligations and rights of those
agents. Automation of the actions regulated by the agreement partially addresses
this concern, in that if actions (and the lack thereof) are enforced by the ex-
ecution engine, the original agreement is guaranteed to be adhered to. We say
that this only partially addresses the problem, since a party which can exer-
cise control over the execution platform can still interfere with adherence to the
contract. With the development of blockchain and other decentralised ledger
technologies, the technology was adapted to provide trustless decentralised exe-
cution platforms on which smart contracts can be hosted. On public blockchains
such as Ethereum [13], miners validate and carry out transactions initiated by
users of the blockchain, recording them in a block in return for a mining re-
ward. It is up to the other nodes on the network to ensure that only valid blocks
are accepted. The initialisation and execution of smart contracts take the form
of special transactions, also executed by a miner writing that transaction in a
block, and checked to be a faithful execution by the others. However, unlike a
transaction consisting solely of a transfer of funds, executing arbitrary code is
not a constant cost operation. The solution typically used is to providing the
miner with a reward proportionate to the cost of the computation. This is done
by associating each virtual machine instruction with a number of gas units, and
having the initiator of the call pay a fee to cover the gas required to execute the
code. The miner takes funds to cover the total number of gas units consumed by
the execution of the call. If the fee does not cover the whole call, it is reverted,
but the miner still gets to keep the fee.

Solidity [6] is an imperative programming language (with a sprinkle of object-
oriented features) designed and developed to write smart contracts, originally for
the Ethereum [13] blockchain. A Solidity smart contract consists of a set of func-
tions each of which can be invoked by parties through a blockchain transaction.

1 contract MultiWallet {
2 private mapping (address => uint) balances;
3
4 function depositTo(address receiver) payable public {
5 balances[receiver] += msg.value;
6 }
7
8 function withdraw(uint amount) public {
9 require (balances[msg.sender] >= amount);

10 msg.sender.transfer(amount);
11 balances[msg.sender] -= amount;
12 }
13 }

Listing 1. A multi-user wallet written in Solidity.
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Listing 1 shows a simple multi-user wallet programmed as a smart contract,
which allows multiple users to keep cryptocurrency (in the smart contract) and
pay other parties (directly from the smart contract), with a separate account
held per user. The state of the smart contract is a mapping from addresses
of owners to balances — crypto value is represented as an unsigned integer in
Solidity. Two functions are provided, depositTo() to allow depositing funds into
an individual’s account, and withdraw() to send funds from a user’s account in
that smart contract to their address on the blockchain.

At a glance, one may see no features distinguishing the language from the
myriad of other imperative or object-oriented languages computer scientists are
familiar with. There are, however, certain features which particularly charac-
terise smart contract programming languages:

– Firstly, smart contracts typically handle cryptocurrency (or some form of
digital assets), and programming languages for smart contracts provide na-
tive functionality to receive and send funds. It is worth noting that smart
contracts can own cryptocurrency themselves, which is how the MultiWallet
contract works. Any funds received are kept in the smart contract and any
payment is done by sending funds from the smart contract to the recip-
ient. Solidity provides a payable keyword to annotate functions, such as
depositTo() which, when called, may also receive funds (unless a function
is annotated to be payable, calls made to the function carrying funds would
fail at runtime). For instance, depositTo() which is used to put crypto in a
user’s account, will update the mapping for the identified user by the amount
of funds sent upon calling the function. Note that in Solidity, information
about the call is stored in the msg structure which includes, amongst others,
the field value which provides the amount of funds sent with the call. To
send funds out of the smart contract, Solidity uses a method transfer()
called on the recipient’s address.

– The other feature of smart contracts is that they (usually) act as multi-party
computation, and thus have an inherent notion of parties. On Ethereum,
these parties are identified by their address which corresponds to where a
smart contract is located, or to a personal address at which a user can accu-
mulate and control funds. In the MultiWallet smart contract, the addresses
are used as the key of the mapping to keep track how much of the funds
kept in the smart contract are owned by each user.5 They are also used in
the require statement (in the withdraw() function), which checks that the
caller of the function (identified by another field in the msg structure —
msg.sender) has enough funds accumulated in the smart contract to send
on.6

5 Note that this allows both humans and other smart contracts to use this smart
contract, the former through transactions and the latter through direct calls to the
MultiWallet smart contract.

6 If the condition appearing in the require statement is not satisfied, the whole com-
putation is aborted and reverted, i.e., any changes to the state are reversed and only
a record that a reverted call was made is kept on the blockchain.
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We have kept this example simple in order to illustrate the language, but one
could have additional logic, for instance releasing the funds only once a trusted
third party has checked the identity of the sender or the receiver of the funds.

One distinguishing feature of how smart contracts on Ethereum, and indeed
most other Distributed Ledger Technologies (DLTs), work is that a transaction
is performed in isolation of others. In other words, if a user sends a transaction to
MultiWallet.depositTo(), and another user sends one to MultiWallet.withdraw(),
one of the two transactions is executed to completion before the other can be
started. This ensures a degree of atomicity of computation in that function exe-
cutions do not overlap. However, if a smart contract performs a call to another
smart contract, that smart contract may call back the original smart contract,
violating this illusion of atomicity. The original transaction will still have been
executed to completion, but halfway through, the smart contract was reentered,
thus executing another call, possibly even to the same function, within that
transaction (on a different level of the call-stack). Such external calls thus re-
quire additional care in order to ensure smart contract correctness.

The snag is that when the transfer command is used to send funds to
another smart contract, this performs an external call to the receive() function
on the receiver’s smart contract,7 thus ceding control to the other party, who
may call back the original smart contract. The simple and innocent-looking code
shown in the MultiWallet smart contract, in fact, does not take this into account.

Consider a situation in which depositTo() is called with Alice’s address,
sending 1 Ether8 in the process, and once again with Bob’s address, also with
1 Ether. This results in the smart contract storing a total of 2 Ether with the
table of balances showing that Alice and Bob own 1 Ether each. If MultiWallet
is correct, neither Alice nor Bob should be able to use more than 1 Ether from
the smart contract. Now consider a call to withdraw(1 Ether) coming from
Bob’s address. Since Bob’s balance is 1 Ether, the require statement succeeds,
allowing the transfer to be called. Recall that if Bob’s address points at a smart
contract, this is a call to the transfer function in that smart contract, which
may, apart from receiving the funds, maliciously call MutliWallet.withdraw(1
Ether) again. Note that Bob’s balance is still recorded as 1 Ether, thus allowing
the sending of 1 more Ether to Bob. If Bob’s transfer function now just accepts
the funds, the calls terminate successfully with Bob having taken 2 Ether out of
the MultiWallet smart contract, even though he owned only 1 Ether. This class
of bugs, called reentrancy bugs, have been the cause of many high profile major
cryptocurrency losses due to incorrect code, perhaps the most notorous being
The DAO9 hack [5].

7 In older versions of Solidity, it was the (nameless) fallback function which was exe-
cuted on the receiver side of a transfer.

8 Ether is the unit of cryptocurrency on the Ethereum blockchain.
9 The DAO was a smart contract implementing a venture capital fund in a decen-

tralised manner (hence the name DAO referring to Decentralised Autonomous Or-
ganisation).
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In this case (and as typically recommeded in most Solidity developers’ guide-
lines), one solution is to update the balance before the transfer is performed, thus
avoiding reentrant calls abusing of the balance not yet being reduced. The fol-
lowing example shows that this rule-of-thumb is not a foolproof one.

AwaitingApproval

start

AwaitingPayment AwaitingKYCInfo Done

approvePayment()

rejectPayment()

affectPayment() registerKYCInfo(..)

Fig. 1. Process flow of a one-shot KYC-approved transfer.

Example 1. Consider a smart contract to handle a one-shot payment which de-
pends on an intermediary oracle to perform checks on the proposed receiver
of the funds. In practice, such know-your-customer (KYC) checks are required
for regulatory purposes, and this contract enables compliance to such require-
ments by having the sender identify a KYC oracle whose responsibility is to
approve or reject the transfer based on background checks they may perform. In
return, the oracle smart contract gets paid a commission. The abstract process
flow of the smart contract is shown in Figure 1.10 The smart contract allows
the processing of a single transaction, the details of which are assumed to be
given in the constructor. Once initialised, the KYC oracle can approve and af-
fect the payment (along the transitions labelled with calls to approvePayment()
and affectPayment() in sequence), or reject it (along the transition labelled
with rejectPayment()). Whether the oracle approves or rejects the transaction,
they are then expected to register the KYC information (along the transition
labelled registerKYCInfo(..). These calls (and transitions) implicitly carry in-
formation and transfer of funds not shown in the diagram: (i) upon contract
setup, the sender sends funds into the smart contract by calling the (payable)
constructor, providing the receiver, the intermediary (the KYC checker), the
amount to be paid to the receiver, and the amount due as commission to the
intermediary; (ii) the intermediary can then approve (using approvePayment())
or reject (using rejectPayment()) the payment, getting half of their commission;
(iii) in case of a rejection the sender gets their funds back immediately, whilst
in the case of an approval, the receiver can then withdraw their funds using
affectPayment(); (iv) at the end of the process, the intermediary can record (a
hash of) the KYC information to prove that they really did perform background

10 The full code of the smart contracts used in this paper can be found in the public
repository github.com/gordonpace/reentrancy-bugs.

github.com/gordonpace/reentrancy-bugs
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checks using registerKYCInfo(..) receiving the rest of their commission.11 List-
ing 2 shows select parts of the code. Note that in order to keep track of the state
of the smart contract, a variable mode is used, ranging over an enumerated type.
Also note the constructor which is called when the smart contract is set up.

The contract uses the generally accepted rule-of-thumb of performing trans-
fer of funds at the end of functions, after all variables have been updated. So
can anything go wrong due to reentrancy? Upon rejecting a payment using
rejectPayment(), the intermediary and the sender receive some funds, but upon
inspection, one can see that the intermediary can use the fact that the mode
of the contract has already been updated, and when their transfer function
is called, they immediately call registerKYCInfo(..) to steal all the remain-
ing funds including those of the sender. Therefore, in this example, doing all
assignments before the transfers does not prevent the possibility of a harmful
reentrance attack!

1 contract KYCTransfer {
2 constructor (
3 address payable _receiver , uint _payment_amount ,
4 address payable _intermediary , uint _commission_amount
5 ) payable { ... }
6
7 function approvePayment () public byIntermediary { ... }
8
9 function rejectPayment () public byIntermediary {

10 // Make sure that we are in the right mode and move
11 // on to the mode awaiting KYC information to be recorded
12 require (mode == Mode.AwaitingApproval);
13 mode = Mode.AwaitingKYCInfo;
14
15 // The intermediary gets 50% of their commission (rounded
16 // down if necessary)
17 intermediary.transfer(commission_amount / 2);
18
19 // The payer gets his money back
20 payer.transfer(payment_amount);
21 }
22
23 function affectPayment () public byReceiver { ... }
24
25 function registerKYCInfo(bytes32 _KYC_information) public byIntermediary {
26 // Check that the contract is in the right mode and move
27 // on to the final mode where no other action is possible
28 require (mode == Mode.AwaitingKYCInfo);
29 mode = Mode.Done;
30
31 ...
32 // Reset payment and commission amounts for safety
33 payment_amount = 0;
34 commission_amount = 0;
35
36 // Send the remaining commission funds to the intermediary
37 // (avoiding rounding calculations)
38 intermediary.transfer(address(this).balance);
39 }
40 }

Listing 2. Code of a smart contract implementing a one-shot KYC-approved transfer.

11 In practice, we would also need functionality to deal with the case of the intermediary
or the receiver not performing their part, introducing timeouts after which the other
party can force the logic of the smart contract forward.
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An interesting observation can be made here, one that is at the heart of this
paper: from the point-of-view of the sender the contract is unsafe, but from the
intermediary’s point-of-view it can be considered safe. Obviously, it depends on
what we mean by safe. In this case, we can specify an invariant which states what
funds are expected to be sent and received to and from which party. For instance,
one part of the invariant could be that the intermediary will never receive more
funds than the amount specified in the constructor. Taking a worst-case scenario
(i.e. allowing all parties to perform reentrant calls) this invariant does not hold,
although it holds if we take a best-case scenario view (i.e. we assume that no
party will perform reentrant calls). However, we can also look at what happens
if we only assume that certain parties will not perform a reentrant call. If we
only trust the intermediary not to perform such call (either because we are
the intermediary or perhaps because the intermediary has too much at stake
to perform such attacks), the invariant can be proved to hold no matter what
other parties do. Trusting the sender and receiver not to perform reentrant calls,
however, does not suffice to enable the invariant to be proved.

So why does it really matter? The root problem indicated by the above ex-
amples is that both the developer and the reader of a contract’s implementation
often focus on the main purpose of transfer, which is the passing of crypto
funds to some receiver. They may not consider the possibility of the receiver
calling back the sending contract during the execution of transfer.12

The fact that this feature led to a number of high-profile losses on Ethereum,
resulted in a change in the way the blockchain execution engine handles smart
contract fund transfers — there is a cap on the amount of gas which calls to
transfer can use. The notion of gas as a resource to be paid for to execute code
is the most common way through which public blockchains motivate miners (the
nodes in the decentralised network which process transactions and record them
on the blockchain) to execute and record execution of smart contract code. The
execution of every operation of the (compiled) smart contract code uses gas, to
be paid by the caller. Since many versions of the Ethereum protocol (the latest
is called Arrow Glacier at the time of writing), the gas fee of transfer is lower
than the fee of a call. Thereby, the gas passed to the receiver of transfer is not
sufficient for the receiver to call any other contract. Any such call would result
in the whole call reverting. In particular, this means that it cannot call back.

There are, however, various arguments why one still should consider potential
callbacks during transfer. One is that the current protection against callbacks
depends entirely on the fees for transfer and for calls. For instance, a well
established Ethereum community blog [1], emphasises that gas fees can and
will change, and that “smart contracts should be robust to this fact”. But even
with stable gas fees, the concern would not go away. The transfer operation
is actually only one way to pass crypto funds. Another is to explicitly use the
call operation. For instance, instead of c.transfer(1 Ether), one can write
c.call{value: 1 Ether}(""). This passes the same 1 Ether to c, but with the

12 Some are even unaware that any code at all is executed on the receiver side during
execution of transfer, in case the receiver is a contract address.
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difference that all remaining gas is passed on, which makes callbacks possible.
Although less safe, this is widely used, even in the standard Solidity library
collection openzeppelin (e.g., in utils/Address.sol). Moreover, a blog [1] from
Consensys Diligence, an important player in the Ethereum community, heavily
advocates the use call instead of transfer.13

Even if one trusts the call-back protection induced by the gas fee of transfer,
one just has to replace every transfer in this paper by a call, and the callback
protection is gone. The main reason why we use transfer in this paper rather
than call, is one of simplicity of presentation.

Although we have focussed on the reentrancy in smart contracts, we note that
the problem is just one instance of a much more general issue. In all computa-
tional contexts where we have a multi-party code base, and where interacting
parties may have potentially conflicting interests, there is the question of what
can and cannot be assumed of other parties’ behavior, and what the consequences
of such assumptions are on the safety of one’s own code.

3 Semantics of Solidity and Handling of Callbacks

There are many reasons why smart contracts are a killer application for formal
verification [4]: potentially conflicting interests between participating parties, the
immutable nature of the code, the handling of digital assets of value, etc. In [3],
a program logic calculus was presented for a core fragment of Solidity. The cal-
culus is implemented in the (currently prototypical) program verification system
SolidiKeY, a version of the KeY system [2] dedicated to Solidity verification.

In this section, we will briefly present the calculus rules for transfer (with
minor adaptions for presentation) in two different versions: (i) a version allow-
ing for the possibility of callbacks during the call to transfer; and (ii) a version
which assumes no such callbacks. In the previous work [3], the two rules served
as a means of performing a best case or worst case scenario verification. Such an
upfront decision can be motivated by technical arguments (like the aforemen-
tioned gas fees) or as a choice between trusting everyone, or no one to not call
back during a transfer. We will use this as a baseline on which we will later on
build rules for handling presumption of selective benevolence in later sections.

The KeY approach is based on dynamic logic (DL), an extension of first-
order logic (FOL) by a multi-modality that is parameterised by programs. DL
formulae are defined inductively, with FOL connectives as the base forms. The
additional form in DL is the box modality: [π]post, which takes a program π (in
our context Solidity code), and another DL formula post. The formula means:
if π terminates successfully (i.e., it does not revert), then the property post
holds in the reached final state. Due to this inductive definition, DL formulas
are closed under the usual propositional and first-order connectives. A frequently

13 The rationale behind their advice is that by not having the safety net of a gas limit,
developers are bound to design smart contracts more carefully. The authors disagree.
This is akin to saying that one should not wear a helmet on a motorbike, because
that would mean that you will drive more carefully.



Selective Presumed Benevolence in Multi-Party System Verification 11

encountered DL formula pattern using these operators is pre → [π]post, which
corresponds to the Hoare triple: {pre}π{post}. DL formulas are evaluated in
states, which are essentially a mapping from program variables to values. A DL
formula is valid if it eveluates to true in all states.

In KeY, DL is further extended with updates for symbolic execution. An
update v1 := t1 ‖ . . . ‖ vn := tn consists of program variables v1, . . . , vn and
terms t1, . . . , tn (where n can be 1), and represents a state change in the form
of explicit substitutions. If u is an update and φ is a DL formula, then {u}φ is
also a DL formula, with {v1 := t1 ‖ . . . ‖ vn := tn}φ evaluated in state s being
equivalent to φ evaluated in a state s′, where s′ coincides with s except that each
vi is mapped to the value of ti in s. In a proof construction, a DL formula of the
form {u}[π]post represents the status of symbolic execution where the a prefix
of a program (path) has already been turned into update u, and the remaining
program π is still to be executed (symbolically). At intermediate proof steps, we
can have DL formulae with nested updates like in {u1}{u2}[π]post, which will
be merged to a single update by further proof steps. See [3,2] for details.

To reason about the validity of formulae, we use a sequent calculus, which
we present here in a simplified fashion. A sequent φ1, . . . , φn =⇒ ψ has a set of
formulas φ1, . . . , φn on the left and a single formula ψ on the right14 and whose
meaning is equivalent to (

∧
i=1..n φi) → ψ. Calculus rules are denoted as rule

schemata of the form:

name
premises︷ ︸︸ ︷

Γ1 =⇒ φ1 . . . Γn =⇒ φn

Γ =⇒ φ︸ ︷︷ ︸
conclusion

where Γ, Γi, φ, φi denote sets of formulas or just formulas, respectively.
Since one important feature of smart contracts is that they can receive, store

and send crypto assets, in specifications and proofs it is frequently required
to express properties about the asset flow. In order to do so, Solidity DL as
presented in [3] has the notion of financial net — the difference between incoming
and outgoing payments which a contract has with another address. Solidity DL
uses the built-in function net : address → Z to keep track of the asset flow
between this contract and other addresses, with:

net(a) = money received from a−money sent to a

The verification methodology is based on contract invariants relating the external
flow of money with the persistent internal data of the contract (which we call
storage). These contract invariants are expected to hold whenever control is
outside the contract. For instance, in the setting of an auction contract where
every user can make bids, increase bids, and withdraw bids, the contract invariant

14 The implemented calculus allows for more than one formula on the right-hand side of
a sequent, but here we limit ourselves to one formula for simplicity of presentation.
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I may look something like:

I ≡ ∀a ∈ address. bids[a] = net(a)

This invariant states that bids is a mapping with the current effective bid of an
address a, equivalent to the financial net of the contract with address a.

With this notation, we are now in a position to present the proof rules for the
symbolic execution of the transfer function in the code of the sending contract.

Rule for transfer with callback. We start by looking at the version which
allows for callback, making no assumption about the receiving contract. Since
the transfer may result in callbacks, we must ensure that the smart contract
invariant holds before the transfer is made in order to ensure that any callback
will find that the invariant holds, and thus also allows us to assume that the
invariant will still hold when control is returned after the transfer:

transfer (with callback)

Γ, c 6= this =⇒ {u}{net(c) := net(c)− v}I
Γ, c 6= this =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c 6= this =⇒ {u}[c.transfer(v);ω]φ

The rule handles a transfer to the destination address c other than this same
contract this, and allows us to reach a conclusion that φ will hold after executing
c.transfer(v);ω, if we start with u as the result of symbolic execution so far.
The rule splits the proof into two branches establishing that: (i) after sending
the requested amount to c (i.e., after substracting v from the financial net this
contract has with c), invariant I of contract this holds, thus ensuring that
the contract is in a consistent state when control is handed over to c; and (ii)
if the invariant holds, but making no assumption about the storage and net
variables15 (since callbacks may have changed these values in the meantime),
then executing ω will ensure that φ will hold upon termination.

Rule for transfer without callback. For the second version of the rule, which
assumes that the receiver of the transfer will not perform a callback, we know
that this contract will not be accessed and therefore we need not prove the
invariant but simply that φ will finally hold. This makes the rule substantially
simpler:

transfer (without callback)

Γ, c 6= this =⇒ {u}{net(c) := net(c)− v}[ω]φ

Γ, c 6= this =⇒ {u}[c.transfer(v); ω]φ

In this case, we simply need to prove that, after updating the net of the receiving
address, executing ω to completion will ensure that φ holds at the end.

15 The variable storage and the mapping net are assigned newly generated constants st
and n, about which no knowledge can be inferred. After that update, the invariant
I is assumed, meaning the invariant is all we know about storage and net when
continuing symbolic execution of ω.
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In SolidiKeY, the user can configure which rule to use for a proof as a
whole, thus deciding upfront to either allow potential callbacks from all con-
tracts (with callback), or from none (without callback). Examples which were veri-
fied using either of the rule settings are discussed in [3].

4 Presumption of Benevolence

The original motivation for having two different rules was to allow the user of So-
lidiKeY control whether to trust gas fee-based callback prevention. However, as
we have already discussed, the choice can also be made with regards to assump-
tions about the benevolence of certain parties, where benevolence of a receiver
c of a transfer c.transfer(v) is taken to mean that c will not call back into the
sender (directly or indirectly) during execution of the transfer.

Presumption of benevolence can be either static, where a fixed set of addresses
are presumed to be consistently benevolent, or dynamic, where the addresses to
be trusted is determined at runtime and may change throughout the execution.
In all cases, the specification has to clearly state the assumption under which
a property is expected to hold, hence giving rise to different guarantees under
different assumptions.

4.1 Presuming Benevolence of Oneself

When a smart contract provides a service which a user may want to access, and
with no knowledge about other parties involved in the contract, one may try to
prove correctness of a specification using a worst case scenario, in which we allow
any transfer to perform callbacks. However, although a particular user may not
be able to make any assumption about the behaviour of others, they can make
them of themselves (or of a smart contract they control). If it is in the user’s
interest that the smart contract works as per the given specification, they can
attempt to prove correctness by assuming no callbacks from transfers to their
address — effectively presuming benevolence of themselves.

The following proof rule allows for the differential treatment between a
trusted address s (oneself) and that of others:

transferBenevolentOneself

Γ, c 6= this, c = s =⇒ {u}{net(c) := net(c)− v}[ω]φ
Γ, c 6= this, c 6= s =⇒ {u}{net(c) := net(c)− v}I
Γ, c 6= this, c 6= s =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c 6= this =⇒ {u}[c.transfer(v);ω]φ

The rule effectively combines the two rules given in Section 3, branching
over whether the receiver’s address is the trusted caller i.e. c = s — if it is, the
premise from the no-callback rule applies16 (appearing as the first antecdent of

16 By ‘premise applies’, we mean that the branches produced by the other premisses
close trivially, as their left sides are false.
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the rule above), and if not, the two premisses of the possible-callback rule apply
(appearing as the second and third antecedents in the rule above).

Assuming benevolence of oneself, whoever the caller of a function, we only
rely on the fact that if a transfer is made to the trusted address s, there will
be no callback into the contract, and symbolic execution proceeds accordingly,
with no need to show the invariant at that moment.

4.2 Presuming Benevolence of a Static Group

As a generalisation of this rule, it may be reasonable to presume benevolence of
several parties. For instance, when buying a house together with your siblings,
you may choose to trust the behaviour of yourself and your siblings, but not that
of the ones selling the house or that of the estate agent. This is an example of a
statically determined trusted group and can be encoded as the following rule:

transferBenevolent(S)

Γ, c 6= this, c ∈ S =⇒ {u}{net(c) := net(c)− v}[ω]φ
Γ, c 6= this, c 6∈ S =⇒ {u}{net(c) := net(c)− v}I
Γ, c 6= this, c 6∈ S =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c 6= this =⇒ {u}[c.transfer(v);ω]φ

The rule is almost identical to the previous one, but trusts a receiver if they
appear in a (constant) set S i.e. c ∈ S.

4.3 Presuming Benevolence of a Dynamic Group

The two rules we have just seen require the parties to be trusted to be decided
statically a priori, and remain unchanged throughout the execution of the smart
contract. In practice, this may be too much of a constraint. For instance, one
may want to trust a party which is only known at runtime or which may change
e.g. in an auction smart contract, one may trust that the current top bidder has
no interest in breaking the smart contract’s invariant, but the top bidder is not
known before the smart contract starts executing, nor does it remain constant
throughout the execution.

If we use a predicate ben to characterise which addresses are trusted at any
point during execution i.e. an address c is trusted if ben(c), we can encode such
dynamic presumed benevolence using the following rule:

transferBenevolencePredicate

Γ, c 6= this

=⇒

{u}

 ben(c)→ {net(c) := net(c)− v}[ω]φ
∧ ¬ben(c)→ {net(c) := net(c)− v}I
∧ ¬ben(c)→ {storage := st ‖ net := n}(I → [ω]φ)


Γ, c 6= this =⇒ {u}[c.transfer(v);ω]φ
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Compared to the earlier rules, this one makes a case distinction over the pred-
icate ben, which may depend on the state. Thereby, the set of trusted parties
is not statically fixed. The rule thus has only one premise, meaning it does not
cause an immediate branching of the proof since the code which was (symboli-
cally) executed before the transfer, and which is captured in the update u, can
potentially influence the validity of ben(c). The rule will still, indirectly, cause
a branching of the proof, which is however delayed to after applying u to the
conjunction in further proof steps.

The predicate ben will be defined in the specification of the contract. For in-
stance, the contract at hand may have a mapping trustworthy from addresses to
bool to indicate which parties may be trusted. The specification of the contract
could define ben as follows:

ben(a) ≡ (trustworthy[a] = true)

As another example, one may trust all addresses which have invested more than
2 Ether into the contract, in which case ben would be defined as follows:

ben(a) ≡ (net(a) >= 2 ether)

As a final example, we may return to trusting the current top bidder in an
auction smart contract by defining ben to be:

ben(a) ≡ (a = top bidder)

5 Collaborative Malicious Behaviour

One important property of these semantics is that they are monotonic under
presumed benevolence. In other words, an invariant which can be proved when
trusting a set of parties would still hold if we trust even more parties. For in-
stance, if we write C `B I to indicate that smart contract C satisfies invariant
I if parties B are presumed to be benevolent, we should be able to show that:

Program invariants are monotonic with respect to the set of presumed
benevolent parties. Given sets of parties B and B′, smart contract C
and invariant I, if B ⊆ B′ and C `B I, then it follows that C `B′ I.

A natural question is whether we can also use proofs with different sets of
parties to require trust in less parties. For instance, if we know that C `B1

I
and that C `B2

I, can we argue that we do not need to presume benevolence of
B1 \B2 since they are not presumed to be benevolent in the second assumption,
nor that of B2 \ B1 since they are not presumed to be benevolent in the first
assumption. In other words, does it follow that C `B1∩B2 I? We show that this
is not the case by counter-example, showing a system and an invariant which
holds if we presume benevolence either of party p1 or of party p2. However, we
show that that the invariant will not hold if we cannot presume benevolence of
anyone i.e. {p1} ∩ {p2}.
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Example 2. Consider a two-party token system, in which token ownership by
one party indicates certain rights of that party, impinging on the other party
e.g. use of a single parking space exclusive to the two parties. An implementa-
tion of this as a smart contract is shown in Listing 3, and cycles across three
phases (i) the first in which anyone may load the smart contract with funds
using loadAndLaunchTokens() (e.g. the funds could be jointly contributed to by
the two parties, or by their employer); (ii) the second phase in which the parties
may acquire the tokens using acquireToken1() and acquireToken2(), and im-
plemented in such a manner that whenever one party takes a token, the other is
compensated in funds; (iii) the third phase in which owners may use the tokens.

1 contract TwoUtilityToken {
2 /*@ contract_invariant
3 !( tokens_owned1 == 2 && tokens_owned2 == 2) &&
4 tokens_owned1 <= 2 && tokens_owned2 <= 2
5 */
6 ...
7
8 function loadAndLaunchTokens () public payable { ... }
9

10 function acquireToken1 () public {
11 // Only user1 may invoke this
12 require (msg.sender == user1);
13 // The contract must be in token acquisition mode
14 require (mode == Mode.TokenAcquisition);
15
16 // User 1 acquires one token
17 tokens_owned1 ++;
18 // Pay user 2 compensation
19 user2.transfer (1 ether);
20
21 // Move on to the token usage mode if enough tokens have been acquired
22 if (tokens_owned1 + tokens_owned2 >= 2)
23 mode = Mode.TokenUsage;
24 }
25
26 function acquireToken2 () public { ... }
27
28 function useToken () public { ... }
29 }

Listing 3. Code of a two user utility token.

The smart contract invariant will ensure that the supply of tokens is limited
— it will never be the case that any one of the users owns more than two tokens,
or that both users own two tokens each. The implementation takes a safer route,
and switches to token usage mode (phase 3) as soon as the sum of tokens owned
reaches two as can be seen in the code shown for function acquireToken1(). It
is worth noting that the state of the smart contract is encoded in the variable
mode, which is updated at the end of acquireToken1() i.e. after transfering
funds, because of reentrancy. Since control is temporarily given to user 2 during
the transfer of funds, if we would have already updated the mode, that party
would have the opportunity to use any token they own before user 1 can, thus
giving them an undesirable advantage.

The question is whether anything can go wrong. Verifying the invariant using
the no-reentrancy semantics allows us to prove that the contract is safe, indicat-
ing that if anything can go wrong, it would have do so due to reentrancy. The
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invariant can also be proved if we assume that the first user will not attempt
reentrancy, and similarly for the second party. Good, both primary stakeholders
have the power to ensure that the smart contract does not violate the invari-
ant. But does that suffice? Consider the following execution pattern: (i) user
1 acquires one token using acquireToken1(); (ii) user 1 calls acquireToken1()
again to acquire a second token, but when user 2 is given control through the
call to transfer (on line 19), (iii) user 2 calls acquireToken2()17 to (hurriedly)
acquire a token, but as user 1 gains control when their compensation is being
transferred, (iv) user 1 will call acquireToken1() again. Since the mode is only
changed at the end of the functions,18 all tokens will be successfully acquired,
resulting in user 1 owning 1 token, and user 2 owning 3 tokens, thus violating
the invariant. Furthermore, if gas were not a concern, the two parties can nest
this attack to any depth, acquiring even more tokens.

Verifying the smart contract allowing both parties to use reentrancy would,
in fact, identify this vulnerability. But is the contract safe to use if violation can
only occur through collaboration? It largely depends on other parties involved in
the contract. If a third party e.g. the employer of the two users is the one loading
the smart contract with funds to pay compensation, then the parties might
collaborate together to take more funds than originally envisaged. However, if
the parties are the only ones involved (they are also the ones who would load
funds into the smart contract), then the contract is safe in that either party
can play clean to ensure that the invariant is not violated. This illustrates an
interesting game theoretic situation in which we would be able to reason about
conditional contract safety with respect to an invariant as long as we have a
notion of user benefits and gains.

6 Conclusions

We have looked at a particularly thorny issue of reentrancy in smart contracts —
a vulnerability that has led to huge financial losses in the past few years. In fact,
the problem is a much more general one, that of reasoning about systems which
perform synchronous external calls and may thus have to handle callbacks when
ceding control to these other parties. Typically, such systems are designed with
their specifications holding only when they can trust certain other parties never
to perform such callbacks, which raises the issue of how to deal with specifications
whose correctness may be conditional on other parties. In a way, it is a problem
akin to assume-guarantee, but with the assumptions being non-functional ones
i.e. not about what properties hold of the results that the external party will
give us, but rather about how that party will compute that result. Combining
such functional and non-functional aspects of a specification in order to enable
formal proof is not straightforward, as we have seen in this paper.

17 The code of acquireToken2() is identical to acquireToken1() but with the parties
switched.

18 As already discussed, moving it forward in the code will open another vulnerability.
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One aspect of smart contracts which we have alluded to multiple times in
this paper is that of parties’ interest. Since smart contracts explicitly encode the
notion of parties and of digital asset migration, one can typically encode some
form of utilitarian interpretation to a particular smart contract state change
being to the benefit of a particular party but possibly not to that of another.
Such an interpretation would allow for economics-based reasoning of whether
a particular party stands to gain or lose from a callback. This would enable a
more refined version of callback-freedom semantic analysis: assuming rational
agents, and thus that a party would never engage in callbacks if they stand
to lose if they do so, does a smart contract satisfy a particular specification
under such an assumption? The notion of a party’s interest in a contract is not
always straightforward to encode (e.g. is the value of gaining 10 tokens alone
any different from that of yourself and another party gaining 10 tokens each?)
and we leave this as future work.
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