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Abstract. Smart contracts which enforce behaviour between parties have been
hailed as a new way of regulating business, particularly on public distributed
ledger technologies which ensure the immutability of smart contracts, and can do
away with points of trust. Many such platforms, including Ethereum, come with a
virtual machine on which smart contracts are executed, described in an imperative
manner. Given the critical nature of typical smart contract applications, their bugs
and vulnerabilities have proved to be particularly costly. In this paper we argue
how dynamic analysis can be used not only to identify errors in the contracts, but
also to support recovery from such errors. Furthermore, contract immutability
means that code cannot be easily fixed upon discovering a problem. To address
this issue, we also present a specification-driven approach, allowing developers
to promise behavioural properties via smart contracts, but still allowing them to
update the code which implements the specification in a safe manner.

1 Introduction

Smart contracts built on top of blockchain and other distributed ledger technologies
(DLTs) have been hailed as a game changer in providing a formal interface through
which to regulate interaction between real-world parties. Originally, Szabo [27] con-
ceived the notion of smart contracts as means of automated agreement and regulatory
enforcement to the extent that they “make breach of contract expensive (if desired,
sometimes prohibitively so) for the breacher” — thus allowing for breaches of contract,
and yet at a cost. This corresponds closely to the notion of legal contracts which include
the possibility of breaches to the extent that they frequently include clauses to regulate
what happens in case of violation of other clauses. In contrast, Lessig’s [21] dictum of

“code is law” saw computer code regulating behaviour in an incontrovertible way, and
thus, e.g. if the code automatically reroutes 25% of your income to pay taxes, there is no
way in which you may breach this ‘law’ and not pay your taxes.

The term contract has been used in different contexts with different meanings,
ranging from legal contracts which talk about ideal behaviour agreed upon between the
participating parties, to programming language contracts to allow for the specification
to be part of the system implementation (e.g. pre- post-conditions in Eiffel [23] and
behavioural interfaces [17]). In their current incarnation as adopted on distributed ledger
systems such as Ethereum, smart contracts are closer to Lessig’s view of code as law, with
smart contracts providing executable transactions enforced implicitly by the underlying
distributed ledger system and possibly changing its state. They provide an opportunity to



execute code affecting global state in a safe manner which would otherwise be impossible
without the participation of trusted central authorities or resource managers.

Whether specifications should be executable [14] or not [18] is an old debate in
computer science, but what is clear is that a non-executable specification may limit itself
to describe what the resulting state should look like (or satisfy), while an executable one
must also include a description of how to achieve such a state. The additional information
required for the latter leaves more room for incorrect or mistaken specifications.

This is a crucial issue with the current incarnation of smart contracts: smart contracts
do exactly what they say they do, but that might not be what the agreeing parties thought
it would do — or for that matter what the developer of the contract thought it would do.
This is particularly important since once deployed on the underlying blockchain, smart
contracts are immutable and cannot be changed. The only way to support updates to a
smart contract is to include the possibility to update the code in its own logic, which goes
back to the question of trust. Whether a smart contract is written by one of the parties
participating in a transaction, or by an outsider, participating parties may rightfully
fear that there might be obscure ways in which others can exploit the contract to their
benefit. There have been well-known instances of bugs in smart contracts, for instance,
on Ethereum [1].

Although due to the immutable nature of smart contracts one would prefer to use
static analysis techniques to ensure correctness at compile-time, such work is still sparse,
with most of it aimed at addressing common vulnerabilities rather than business-logic
specifications. For instance, Fröwis et al. [13] try to identify control-flow mutability,
OYENTE [22] performs reentrancy detection, while Bhargavan et al. [2] transform
Solidity into F* on which they perform analysis to identify general vulnerable patterns.
Much of this work is performed at the EVM level, partly due to the fact that the
semantics of Solidity being only informally described in the language documentation,
and effectively pragmatically decided based on what the compiler does. In contrast, there
are published formal semantics for EVM bytecode either through direct formalisation or
via translation in [19, 16]. However, what these approaches do not address are application
specific, business-logic properties; perhaps mainly due to issues of scalability, especially
because of the data intensive aspects of many smart contracts. In such cases, one may
have to resort to runtime analysis of smart contracts.

Runtime monitoring, already a special case of dynamic analysis, admits to a whole
family of activities. At the most basic level, one can merely monitor or observe a system
and log information about its runtime behaviour. The next level up is that of runtime
verification, in which not only is the behaviour observed, but particular behavioural
patterns are identified to be undesirable and algorithmically classified to be so. This
notion can be taken further by adding on logic to support runtime recovery or reparation,
triggering in the case of undesirable behaviour being observed to make up for it. One can
also go another step further, using runtime enforcement to ensure that the undesirable
behaviour is avoided in the first place, modifying the system’s behaviour to ensure it
works as expected3. In the rest of the paper, we primarily focus on runtime verification
and recovery.

3 Needless to say, this terminology has been used in a wide variety of contexts, and not all usages
correspond to the neatly compartmentalised descriptions we give. In case of disagreement with



The very architecture of blockchain (and similar distributed ledger technologies)
in itself provides the monitoring process for free. Each transaction and invocation to a
smart contract is immutably recorded on the underlying ledger. The violation detection
process itself can be addressed using techniques not too different from those already
in use for other software systems. It is worth noting that the ledger architecture does
provide an opportunity in injecting online runtime verification into the underlying design
— one can design a monitoring-aware DLT in which verification code can be added
to the architecture (the DLT implementation itself), ensuring no smart contracts are
executed or data written unless verified to be correct. In the rest of this paper, however,
we will simply assume that runtime verification is being performed, thus allowing for
violations to be identified and captured. Whether this verification is performed in the
traditional manner (e.g. injecting code in the smart contract to perform the monitoring
and verification), or performed by modifying the underlying architecture is irrelevant.

Even just identifying such violations can be useful in practice — consider a (physical-
world) legal contract which stipulates that the parties agree on legal liability whenever
the runtime monitor identifies a violation. However, in this paper we concern ourselves
primarily with going beyond the monitoring and verification process — looking at the
choices and challenges in reacting upon the identification of points of violation, primarily
in the form of reparation, but also, enforcement in a limited manner. When runtime
verification detects a violation of the specification at runtime, the system is typically
instructed on how to react to (i) make up for the violation from the point of view of
the system logic (e.g. block an account for safety); and (ii) restore the system state to a
sane one (e.g. revert a financial transaction to leave no pending transactions or locked
resources). We discuss how one can support such reparations in the context of smart
contracts, and show how these notions can be used to extend the existing Solidity runtime
verification tool CONTRACTLARVA [11].

However, on normal systems, the detection of a violation also triggers offline be-
haviour outside of the system — when the system developers try to identify the origin
of the bug which led to the violation, fix it and redeploy the updated system. With the
immutability of smart contracts, this phase is severely crippled. One of the contributions
of this paper is the proposal of a model-based approach incorporating runtime verifica-
tion, to support updatable smart contracts in order to address violations discovered post
deployment.

In order to be able to illustrate our ideas, in Section 2 we give a brief overview
of the Ethereum platform4 and the Solidity smart contract scripting language. In this
section, we also show how CONTRACTLARVA specifications can be written, enabling
us to propose concrete extensions supporting richer means of handling violation in
smart contracts in the following sections. In Section 3, we then discuss the challenges
of recovery from specification violations both to recover the internal state of the smart
contract, but also to make up for the violation from the affected users’ perspective. The

our use of terminology, kindly read the rest of the paper replacing the terms with your preferred
ones.

4 Since DLTs vary in design and in their take on smart contracts, we particularly focus on
the Ethereum blockchain platform [28], even if many of the ideas presented herewith can be
extended for other takes on smart contracts and other DLTs.



issue of dynamically addressing bugs discovered post-deployment in the context of smart
contract immutability is discussed in Section 4. Finally, in Section 5, we discuss related
work and draw some conclusions.

2 Smart Contracts on Ethereum

Smart contracts and the programming thereof, due to the inherent immutability of
blockchains and the critical nature of applications they are used for, requires a differ-
ent programming mindset [10]. Once deployed a smart contract is there forever. The
internal code cannot be changed, and with this in mind, developers tend to use defensive
programming techniques to ensure that users cannot exploit bugs or unintended func-
tionality. Ethereum provides for the execution of a ‘one world computer’, the Ethereum
Virtual Machine (EVM) [28], which can be seen as a single computational core which
executes function code atomically. What is really happening though, is that every node is
computing and storing the same values within the blockchain, and must therefore require
computation to be deterministic (since the same result must be computed on every node).
Calls to smart contracts are treated as atomic transactions, which often instills a sense
of security in programmers since race conditions no longer appear to be an issue. It has
been argued that smart contract programming still shares much with concurrent object
programming [26] and issues such as reentrancy remain — occurring when calls are
made to third party smart contracts that in turn call back the caller smart contract.

The Ethereum platform allows executable smart contracts to be written using the
EVM’s assembly instruction set, but also provides high-level languages, with the pre-
dominant one being Solidity. Once deployed on Ethereum, a smart contract has an
associated unique identifier, corresponding to its address and can intrinsically own ether
(Ethereum’s internal currency) and transfer ether to other addresses (which could be
contracts or user accounts). The EVM instruction set is Turing complete, and in order
to deal with smart contract functionality which may not terminate or take inordinately
long, uses the notion of gas — effectively payment (in ether) for the execution of each
instruction step. When the gas allocated to a particular transaction is exhausted, execution
stops and the altered state is reverted to the original one upon initiation of the transaction,
thus effectively ensuring that (i) all functionality is terminating; and (ii) computationally
more expensive functionality is also financially more expensive, thus avoiding possible
attempts to overload the Ethereum platform with complex computation.

In the rest of the paper, we will use a running example of a smart contract to
implement a casino which provides a single game that allows for guessing the outcome
of a coin toss. The legal contract which we will be using as a running example is shown
in Figure 1. This can be implemented as a smart contract on a platform like Ethereum
(with part of the code in Solidity shown in Listing 1), where each party’s possible actions
are encoded as functions which the respective parties may invoke. The shown closeBet
function is used by the casino owner to reveal the coin tossed after a player has made a
guess, corresponding to clause 6. It is worth remarking on some aspects used in the code
which will be used in the rest of the paper.

The require function provides a mechanism to ensure that a predicate holds before
proceeding with the code. If the predicate does not hold, the whole transaction and



1. The casino owner may deposit or withdraw money from the casino’s bank, with the bank’s
balance never falling below zero.

2. As long as no game is in progress, the owner of the casino may make available a new game
by tossing a coin and hiding its outcome. The owner must also set a participation cost of
choice for the game.

3. Clauses 1 and 2 are constrained in that as long as a game is in progress, the bank balance
may never be less than the sum of the participation cost of the game and its win-out.

4. The win-out for a game is set to be 80% of the participating cost.
5. If a game is available, any user may choose to pay the participation fee and guess the outcome

of a coin toss to join the game. After that, the game will no longer be available to other users.
6. The owner of the casino is obliged to reveal the coin tossed upon creating the game within

half an hour of a player participating. If the coin matches the guess, the player’s participation
fee and the game win-out is to be paid to the player from the casino’s bank. Either way, the
game then terminates.

7. If the casino owner does not adhere to clause 6, the player has the right to declare a default
win and be paid the participation fee and the game win-out from the casino’s bank. At this
stage, the game also terminates.

Fig. 1. A legal contract regulating a coin-tossing casino

execution of the code is abandoned, and the variables are reverted to their original values.
This mechanism can also be triggered directly through the Solidity revert instruction
(which Solidity’s require uses internally). Reverts are bubbled up to functions calling
the failing one, and the only way to stop such a revert chain is through contract commu-
nication. Contracts on Ethereum may invoke functions in other contracts through the
call and delegatecall functions which stop the bubbling up of a revert. In addition,
delegate calls run the called code from within the caller (i.e. giving access to variables
defined in the caller function).

A function call is viewed as a message passed to the contract, accessible through the
msg variable, and allowing access to information such as the message sender’s address:
msg.sender. A smart contract can transfer any ether owned by the smart contract to an
Ethereum address through the address.transfer(amount) instruction.

Finally, it is worth noting that private variables and functions in Solidity (as
opposed to public ones), only prevents other contracts from accessing the data directly.
However, the data is still visible to anyone outside since it is publicly written on the
Ethereum blockchain, so the hiddenCoin would have to be encrypted and not simply
written to a private variable. One commonly used way is to encode the hidden coin
toss by submitting and storing the hash of an odd number if it was heads, and even if
it was tails. Upon revealing the actual number, it is easy to confirm that the coin was
not changed and whether it was heads or tails (achieved using the function sameAs, the
implementation of which is not shown).

It is worth noting that contracts may not only call and execute functions in the
same contract, but may also have calls to other smart contracts. Solidity provides call
and delegatecall functions as means to execute named functions at a given contract
address, with the main difference (of interest to this paper) being that delegatecall



gives the called contract access to the state of the contract from where the call is made.
This allows for delegation of control of state to external contracts.

When an exception is raised within the callee, the call function will return a false
value (and if it was successful, a true value). A similar function delegatecall allows
for calls to external contract functions which execute the external contract function code
within the context of the caller’s contract and caller’s transaction, which will maintain the
same values for the msg.sender, msg.value, and other contract context including the
storage used. This can be seen to be the same as though the contract was calling another
internal function, although in actual fact the code is stored in an external function.

The code in Listing 1, thus ensures that (i) it is being invoked by the casino owner;
(ii) the revealed coin matches the originally given (encrypted) hidden one; and (iii) a
player has participated in the game. If all three conditions hold, then the player is given
a reward in case of a guess (clause 6). The game terminates after that.

contract Casino {

.

.

.
address private hiddenCoin;

.

.

.
function closeBet(uint _shownCoin) public {

require(msg.sender == casinoOwner );
require(sameAs(_shownCoin , hiddenCoin ));
require(gameStatus == PLAYER_PARTICIPATED );

if (matches(_shownCoin , guessedCoin )) {
player.transfer(participationCost + winout );

}
gameStatus = GAME_OVER;

}

.

.

.
}

Listing 1: Part of the smart contract implementing the casino table

Consider a property which states that the casino owner may not withdraw from the
casino’s bank leaving less than the required player payout as long as there is an active bet.
This property can be expressed as a dynamic event automaton (DEA), the specification
language used by CONTRACTLARVA [11] (a runtime verification tool for Solidity
contracts), as shown in Figure 2. DEAs are effectively automata whose transitions are
tagged by a triple e | c 7→ a, where e is an event, c is a Solidity condition (which has to
be satisfied to take the transition) and a is a Solidity action (essentially code which is
executed upon taking the transition). Both the condition and the action can be left out if
not required. The events are of the form: o :: m : f , where f is a Solidity function name
and parameters, m is the modality which will trigger it, and o is the agent who must call
the function for the event to trigger. In turn, the modality can be start which triggers
as soon as the function is called, or end which triggers when the function terminates
successfully i.e. without a revert. DEAs also allow a fails modality (which will be used



later in the paper) which triggers if the function is called but is reverted for any reason
other than lack of gas. DEAs are deterministic automata and include identified bad states
(marked in black in the figure) which flag a violation if reached at runtime.
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casinoOwner:: end: openBet(_amount,*)  

   ↦ amount = _amount;

player:: end: timeout()

casinoOwner:: end: closeBet(*)
end: placeBet(*)

casinoOwner:: end: withdraw(*) |  

    bankBalance < winout;

casinoOwner:: end: withdraw(*) |  

    bankBalance < amount+winout;

Fig. 2. Property specifying that enough funds must remain in the bank throughout the bet’s lifetime.

3 Smart Contract Recovery

Detecting situations where a contract has violated applicable correctness properties is
desirable, but dealing with the aftermath of such a discovery might not be straightforward.
In the context of software which is not blockchain-based, one approach may simply block
the execution of the whole system or of part thereof (e.g. block the users or functionality
affected by the issue) until the problem is resolved. In the case of smart contracts though,
naı̈vely blocking the contract from proceeding further would mean locking funds held
within it forever, implying the need for more sophisticated recovery code.

Using a custom recovery action to manage such violations allows for comprehensive
and customisable handling. For instance, in the casino property example, one might
consider an escrow arrangement, in which the casino owner initially pays into the
contract an amount which is paid off to the player in case of a violation to make up
for the malfunctioning contract. At the most coarse grained level, recovery actions
may be generic (any violation fires this recovery), but can be made more specific for
particular properties or particular parts of code which trigger the violation (effectively
acting similar to typical exception handling). This approach has been adopted by several
runtime verification tools e.g. Larva [9] and Java-MOP [5].

While such custom recovery arrangements are convenient in that they provide a
specific case-by-case solution to violations, they have the downside of being hard to
automate, i.e. procedures have to be customised and coded manually, increasing the
complexity of the smart contract. Taking once more the escrow arrangement example, if
a contract involves a number of different stakeholders, who has to pay the escrow and
how to divide it for each violation becomes substantially more complicated. We now
look at a number of alternative approaches to specifying recovery in more compositional
ways.



3.1 Checkpointing

One standard way of automating recovery from failure is through the use of checkpointing
[25], i.e. to save the state of the contract at important points of execution in order to allow
reverting back to them when the monitor detects a deviation from the expected behaviour.
In the casino example, this would mean that money placed on a bet would automatically
be returned to the player. Through the revert mechanism, the EVM already provides an
underlying notion of checkpointing for its atomic transactions: if a transaction fails half
way through, its effects are discarded by returning to the state of the blockchain before
the start of the transaction, and this can be used to ensure that calls to a smart contract
which cause a property to fail are completely undone, thus guaranteeing that the state is
returned to its previous (assumed to be sane) state.

In using reverts to undo execution of a failed transaction on Ethereum, particular care
has to be taken due to calls and delegate calls which stop a revert from being bubbled up
to the caller.

However, using EVM reverts to handle system state recovery comes with a number
of caveats:

Normal vs. exceptional reverts: Since reverts are typically used in the normal logic of
the smart contracts (e.g. the assertions in the code shown in Listing 1 may trigger
reverts), reverts now play two roles — that of normal exits from the system logic,
and that of exceptions due to behaviour which was not expected from the smart
contract. Care has to be taken to avoid these from interacting together, particularly
since smart contracts may use calls to capture normal (expected) reverts to follow
up its behaviour.

Finer grained checkpointing: The basic checkpointing mechanism provided on the
EVM does not provide the possibility of fine-grained checkpointing; the checkpoint
can only be (implicitly) placed at the start of the transaction. Ideally, one should be
able to allow for marking checkpoints and allow for reverting to particular ones. For
instance, consider if the casino smart contract were developed by someone other than
the casino owner who would benefit from a transaction fee with every attempted
withdrawal from the casino bank. In such a case, one may want to ensure that
violation of the smart contract property from Figure 2 should revert the withdrawal
from the bank, but still keep the transaction fee. One way of achieving this would
be to use named checkpoints (see Listing 2) and reverting to the named checkpoint
BEFORE WITHDRAWAL when that violation occurs. Such a mechanism can be easily
implemented using code transformation on the smart contract with the help of
explicit calls. The downside of such an approach is that there is even more complex
interwinding between the forward and the recovery logic, with checkpoint tags which
may have been created purely for recovery appearing in the main code thus violating
the often held principle of separation-of-concerns (keeping the normal logic and the
verification specification separate). In [7], we had proposed an alternative to this
approach in that checkpoints relevant only to recovery are also identified as part
of the dynamic analysis. By adding appropriate tagging (e.g. adding a checkpoint
tag after the transfer to the developer is specified on the DEA using an action or a
checkpoint tagging state), one can still keep checkpoint tags relevant to reparation
separate in the specification.



Forward recovery: Whilst reverting to a previous state provides a straightforward way
of restoring the state of the smart contract, sometimes one still needs to perform a
recovery action after recovering the state. For instance, in the casino smart contract,
one may want to not only disallow the withdrawal, but also allow the player a default
win. Such forward recovery logic can be placed in the smart contract itself, but as
argued before, makes more sense in the specification (for instance by tagging the
bad state with the code). Figure 3 shows how the specification can be extended with
this information, adding another DEA to keep track of the relevant checkpoint upon
matching a particular sequence of events.

function withdraw(uint _amount) public {
require(msg.sender == owner);
. . .
// Pay transaction fee
developer.transfer(transactionFee );
// Withdraw specified amount
checkpoint(BEFORE_WITHDRAWAL );
casinoOwner.transfer(_amount );

}

Listing 2: Named checkpointing for partial reverts
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casinoOwner:: end: openBet(_amount)  

   ↦ amount = _amount;

player:: end: timeout()

casinoOwner:: end: closeBet(*)
end: placeBet(*)

casinoOwner:: end: withdraw(*) |  

    bankBalance < winout;

casinoOwner:: end: withdraw(*) |  

    bankBalance < amount+winout;

casinoOwner:: begin: withdraw(*) developer.transfer(*)

casinoOwner:: end: withdraw(*)

BEFORE_WITHDRAWAL

restore(BEFORE_WITHDRAWAL) 
playerWins();

restore(BEFORE_WITHDRAWAL) 

Fig. 3. Extending the property to allow for tagged checkpointing followed by forward recovery —
checkpoints being saved upon entering the red state.

3.2 Compensations

The notion of forward recovery after restoring to a checkpoint, as discussed in the
previous section, is typically used to make up for earlier behaviour e.g. allowing the
player to win is done to compensate for the fact that the player has already (in a previous
transaction) committed him or herself to betting in the casino. Although each function



call to the EVM is seen as a full transaction, from a higher level of abstraction, sequences
of function calls can be seen as long-lived transactions [25, 15, 6]. Just as in long-lived
transactions, previous function calls to the EVM may not always be fully reversible5, in
which case compensation for such functions cannot be feasibly done via checkpointing.

When a global compensation is applied (as in the case of giving a default win to
the player), compensations can be easily handled, but when in more complex situations,
one usually has compensations gathering as the long-lived transaction advances. The
appealing aspect of a compositional compensation mechanism is that each individual
action can be assigned a default compensation, i.e. an action which manages the effects
of the action being compensated for, and unless specifically changed, the compensation
of a sequence of actions results in the execution of the individual actions’ compensations
in reverse order. Such a mechanism is frequently used on, for instance, payment trans-
action systems to ensure that the participating entities are compensated for the failing
transaction, also in the context of runtime verification [8, 7].

For instance, consider a casino scenario in which a player may join either a roulette
or a coin-tossing table, where they may place multiple bets. A monitor can be used
to ensure that if a player performs an illicit action (e.g. placing more bets than legally
permitted), they will be refunded any bets they have placed (less charges, which may
depend on the game they are betting on) and their account will be disabled. Figure 4
shows how this can be handled using simplified compensation automata [7] — extending
the notation used earlier for transitions to add a compensation u: e | c 7→ a/u, where u
can either be an action which will be added to the compensation stack or an instruction
to clear the compensation stack. When a violation is identified (by a separate monitor),
actions are individually removed from the compensation stack and executed.
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player:: end: chooseRoulette()  

player:: end: chooseCoinToss()  

player:: end: register()

player:: end: placeBet(_amount)  
  /player.transfer(0.75*_amount);

player:: end: placeBet(_amount)  
  / player.transfer(0.85*_amount);

player:: end: closeGame() / ClearCompensations

Fig. 4. Monitor-based compensation synthesis.

5 Atomic transactions rely on locking to isolate themselves from external observation — which
is impractical with transactions which have a long lifespan. If the environment reacts to
intermediate results after which the transaction fails, then the transaction cannot simply be
wiped out. Rather, the effects it had had on the environment in its lifetime need to be managed.
This is done through compensations.



Since compensations depend on the history of execution, and can very easily lead
to substantial increase in space and time execution resources required, this comes with
an additional problem when used on platforms such as Ethereum, due to substantial
gas consumption increase. A standing challenge is how to constrain the notion of
compensations in order to avoid or mitigate this issue.

4 Updating Code

In most software systems, when a violation to a specification is discovered, one important
action is to report the problem back to the development team to assess its severity and
accordingly report the issue to be eventually addressed in a patch or future release. In
hardware verification circles, it has always been recognised that bugs are more serious
and costly, as the 1994 Intel FDIV bug [24] had shown, since one cannot cheaply update
a chip post-production. In a manner, despite the software nature of smart contracts, their
intrinsic immutability shares much with hardware systems. Once deployed, there is no
simple manner in which one may update the code.

In order to deal with problems identified post-deployment, the industry has developed
a family of design patterns in order to support code updates through having the code of
the smart contract refer to updatable references to secondary smart contracts or through
means of migrating users from a smart contract to an updated one. Listing 3 shows a
code snippet of how this is typically done using the proxy or hub-spoke pattern. The
approach involves the use of an interface contract (with no internal implementation
but) with a reference to the current version of the actual contract implementation. Any
function calls to the contract are simply passed on as calls or delegate calls (if the data is
also stored in the interface contract) to the actual implementation contract. The primary
issue with this approach is that each such contract must choose what policy to adopt
in order to decide how a version update can be accepted. For instance, in the example
shown in Listing 3, the casino owner would be able to unilaterally update the code, but
one may adopt more sophisticated approaches, e.g. requiring updates to be decided by a
majority vote amongst the current users of the contract.

contract Casino {
address currentVersionOfContract;
address owner;

function updateVersion(address _newVersionOfContract) public {
require(msg.sender ==owner);
currentVersionOfContract = _newVersionOfContract;

}

function openTable () public {
currentVersionOfContract.call(bytes4(sha3(" openTable ()")));

}
...

}

Listing 3: Enabling versioning of smart contracts



In this section we identify a solution to this challenge of enabling smart contract
updates in a safe manner, building on ideas from behavioural interfaces [17], monitoring-
oriented programming [4] and using dynamic analysis to ensure safety.

The major challenge faced is that unless somehow limited, code updates can be
arbitrary and users of the contract have no guarantees that the new contract code will
continue to implement the same logic (except for new features or fixed bugs) as the
original one they signed up to. We propose a specification-oriented approach, in which
users initially agree on a specification of how the smart contract is to behave, and set
up a smart contract which (i) implements the interface of the contract; (ii) passes on
any calls to the public interface to the current version of the implementation available
as an external contract; (iii) enables the developer to update the version of the code
arbitrarily; but (iv) instruments a monitor to ensure that the specification is adhered to by
the current version of the contract. The first three are identical to the design pattern shown
in Listing 3, but the fourth is what ensures user confidence in the implementation. No
matter how the developer updates their code, the users are guaranteed that any violations
to the specification will be captured and acted upon.

Consider, for example, a specification which a user may want to be sure holds in
order to trust a casino implementation as shown in Figure 5 in terms of a DEA. The
specification identifies three forms of casino implementation misbehaviour — once a
bet is opened by the casino owner and a bet is placed by the user, the three violations
identified are if (i) the casino reveals the number which matches the user’s guess but
insufficient funds are transferred on to the user; (ii) the user calls the timeout after an
appropriate amount of time without the number being revealed but not enough funds are
transferred to the user; and (iii) the user tries to call a timeout but is stopped from doing
so by a revert.

The choice as to whether the proxy should use calls or delegate calls depends on a
number of issues, including ones related to monitoring. For instance, if some properties
depend on the data stored in the smart contract (e.g. the openBet function cannot be
called when the balance stored in the state of the smart contract is negative), keeping
these parts of the state on the proxy and using delegate calls may be required.

In order to instrument the specification monitor, we can use CONTRACTLARVA on
the interface contract and the specification to obtain a safely encapsulated behavioural
interface as shown in Figure 6. This will be able to identify any violation at runtime,
ensuring we can react accordingly as discussed in the previous sections. In this manner,
trust — despite versioning — can be addressed through an immutable behavioural
interface, although it remains a major challenge to have a sufficiently detailed behavioural
interface which disallows all undesirable behaviour.

This approach borrows much from behavioural interfaces, in that we automatically
create a safe, trusted and immutable interface which accesses an untrusted backend
and mutable implementation. In a way, the approach also borrows from monitoring-
oriented programming [4] in that we are programming the safe interface using monitoring
techniques.
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user:: end: timeout() 

end: closeBet()

end: openBet(_amount, _hidden) ↦  
    amount = _amount 
    secret = _hidden;

user:: end: timeout()

user:: end: placeBet(_guess) ↦  
    guess = _guess; 
    time = now; 

begin: closeBet(_shown) | 
    sameAs(_shown, secret) &&
     matches(_shown,  guess)

end: closeBet()

end: _user.transfer(_amount) | 
    _user == user && 
    _amount ≥ 1.8*amount

end: _user.transfer(_amount) | 
    _user == user && 
    _amount ≥ 1.8*amount

user:: fails: timeout() | 
    now − time ≥ 30 minutes 

user:: begin: timeout() | 
    now − time ≥ 30 minutes 

begin: closeBet(_shown) | 
    sameAs(_shown, secret) &&
    !matches(_shown, guess)

Fig. 5. User-centric casino specification
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Fig. 6. Building safe behavioural interfaces for smart contracts

5 Conclusions

In this paper we have examined a spectrum of dynamic analysis techniques for making
smart contracts safer and more dependable. Although at the surface level smart contracts
appear to be normal software, however, there are a number of issues which result
in standard runtime techniques to have to be adapted in order to be useful in this
context. Clearly, the domain makes static, compile-time analysis even more attractive
(or desirable) than for standard systems. However, the sparse literature applying such
techniques for smart contracts e.g. [3, 22], particularly for business-logic specifications
indicates that, at least for the time being, we have to depend on the lower hanging fruit
dynamic analysis provides. This brings its own challenges — perhaps most pertinent
is that of recovery from violations discovered at runtime. In the domain of runtime
verification of general systems, the notion of healing has recently been explored in
[12], in which the authors classify the solutions into three similar classes as found in
our proposal: rollback, preventing further failures and compensation. How these can be
adapted for smart contracts is, however, the challenge we have addressed in this paper.



By enriching smart contract programming languages with notions such as checkpoint-
ing and compensations, we believe that one could alleviate handling of such violations.
Another major challenge is that of the immutability of smart contracts, and the solution
we are proposing in order to ensure that the system works correctly but still allow the
implementation to be modified follows the conclusions of other work [20], which argued
for declarative as opposed to imperative and operational approaches currently used on
DLTs such as Ethereum.

We are currently looking at identifying means of deploying many of the ideas
presented in this paper on real-world systems. Our tool CONTRACTLARVA has already
been applied on a number of smart contracts in order to deploy runtime verification and
recovery, but there are still various challenges left to be addressed. It can be argued that
our solution to resolve the immutability of smart contracts by making them mutable
while ensuring immutability of specifications is nothing but pushing the problem one
level up. However, we believe that moving one level of abstraction up, ignoring most
implementation details results in lower risk of error. Furthermore, one can consider other
solutions currently at the implementation level to support versioning of specifications
(e.g. allowing for a specification to be updated by consensus or a majority vote). It will be
interesting to see how such an approach would fare on large real-world smart contracts.
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