
StaRVOOrS — Episode II

Strengthen and Distribute the Force

Wolfgang Ahrendt1, Gordon J. Pace2, and Gerardo Schneider3

1 Chalmers University of Technology, Sweden.
ahrendt@chalmers.se

2 University of Malta, Malta.
gordon.pace@um.edu.mt

3 University of Gothenburg, Sweden.
gerardo@cse.gu.se

Abstract. Static and runtime techniques for the verification of programs
are complementary. They both have their advantages and disadvantages,
and a natural question is whether they may be combined in such a way
as to get the advantages of both without inheriting too much from their
disadvantages. In a previous contribution to ISoLA’12, we have proposed
StaRVOOrS (‘Static and Runtime Verification of Object-Oriented Soft-
ware’), a unified framework for combining static and runtime verification
in order to check data- and control-oriented properties. Returning to
ISoLA here, we briefly report on advances since then: a unified spec-
ification language for data- and control-oriented properties, a tool for
combined static and runtime verification, and experiments. On that basis,
we discuss two future research directions to strengthen the power, and
broaden the scope, of combined static and runtime verification: (i) to use
static analysis techniques to further optimise the runtime monitor, and
(ii) to extend the framework to the distributed case.

1 Introduction

The development of lightweight verification techniques in what concerns ease
of use and automation is considered to be one of the major challenges being
addressed by the verification community.

Runtime verification is one such technique: a monitor is usually automatically
extracted from a property written in a formal language, and an executable
program automatically synthesised. The monitor is then run in parallel with the
monitored program, checking at runtime that its underlying property is being
satisfied by the current run, and flagging a violation if this is the case. Though
the overheads induced by runtime verification are small when compared to the
computational effort required by most static analysis and verification techniques,
these can still be a problem in certain settings.

Static verification has the advantage of being used pre-deployment, coming
with strong guarantees in what concerns correctness for all possible runs. This
generality is, however, hard to achieve (if not impossible) automatically, in

particular when verifying data-oriented properties. Among other things, loop
invariants typically need to be provided by a human user. Verification systems
therefore rely on code annotations, or interactive proof construction. With that,
they can achieve a lot, however introducing the additional constraint of needing
highly trained experts.

Another dimension, somewhat orthogonal to the above, are complementary
issues with checking data-oriented and control-oriented properties. Data-oriented
properties (e.g. all the numbers stored in the array are positive) are typically very
costly to monitor fully at runtime. Control-oriented properties (e.g. files can be
read only between a login and a logout), on the other hand, typically require (often
manual, sometimes unsafe) abstractions before they can be efficiently verified
statically.

In 2012 we introduced StaRVOOrS to the ISoLA community [3], a promise of
a unified framework for the specification and verification of data- and control-
oriented properties combining static and runtime verification techniques. Though
the approach was sketched as tool- and language-independent, had discussed a
possible implementation targeting Java programs based on the runtime verifier
LARVA [10] and the static verifier KeY [5] .

That promise started to materialise in recent years in the form of two published
papers. In [1] we introduced the automata-based formalism ppDATE which may
be seen as an extension of DATE [9] (the underlying specification language of
LARVA), extended with pre/post-conditions. We gave a high-level description
of the algorithm to translate ppDATE into DATE. In [8] we presented the tool
StaRVOOrS, a full implementation of this framework.

In this paper we report on our achievements concerning StaRVOOrS (Section
2), and we discuss two interesting extensions and research directions: (i) the
use of static analysis techniques to further optimise our runtime monitors, in
particular by using control-flow approaches (Section 3), and (ii) the extension of
the framework to the distributed case (Section 4).

2 StaRVOOrS — Episode I

StaRVOOrS (Static and Runtime Verification of Object-Oriented Software) [3]
is a framework for the specification of data- and control-oriented properties, and
their verification using static and dynamic techniques. It combines the use of
the deductive source code verifier KeY [5] with that of the runtime monitoring
tool Larva [10] to analyse and monitor systems with respect to a specification
written in a formalism called ppDATE.

KeY is a deductive verification system for data-centric functional correctness
properties of Java source code that generates proof obligations from a Java
program enriched with annotations written in JML (Java Modeling Language)
[21]. These proof obligations are written in dynamic logic, a modal logic tailored
to reason about programs.

Larva (Logical Automata for Runtime Verification and Analysis) [10] is an
automata-based tool for the runtime verification of Java programs. It automati-

Program'P'

ppDATE'

Deduc&ve(
Verifier(

Specifica&on(
Transla&on(

Pre6/post6
Condi&on(
Generator(

(Par.al)'
Proofs'

Code(
Instrumenta&on(

S'

Par&al((
Specifica&on(
Evalua&on(

ppDATE'

S’'

Program'P’'

DATE'

D' Run&me(
Verifier(

Monitored'
program'

Fig. 1. High-level description of the StaRVOOrS framework workflow

cally generates a runtime monitor from a property written in the automata-based
specification formalism DATE (Dynamic Automata with Timers and Events).
Larva transforms the specification into monitoring code together with AspectJ
code which links the system with the monitors.

In order to combine, and get advantage of, these two verification approaches,
we have defined a specification language able to represent both data- and control-
oriented properties. For the control-oriented part we rely on DATEs, which to a
certain extent also allows for the specification of data. We extend DATE with
pre/post-conditions (or more precisely, with Hoare triples) in order to get more
elaborated ways to specify the data-oriented part.

In the rest of this section we briefly present the StaRVOOrS workflow, we
describe ppDATE through an example, and we give an overview of the tool and
some preliminary experiments.

The StaRVOOrS Workflow. The abstract workflow of the use of StaRVOOrS
is given in Fig. 1. Given a Java program P and specification S of the properties
to be verified, these are transformed into suitable input for the Deductive Verifier
module (i.e. KeY) which attempts to statically prove the properties related to
pre- and post-conditions. If any part of the specification is not fully verified
by KeY, it will be left, in a specialised form, in the specification to be verified
at runtime. The approach uses the partial proofs generated by KeY, which
are used to generate conditions for execution paths not statically verified. The
Partial Specification Evaluator module then rewrites the original specification S
into S’, refining the original pre-conditions with the path conditions resulting
from partial proofs, thus covering only executions that are not closed in the
static verification step. The Specification Translation then converts the ppDATE
specification S’ into an equivalent specification in DATE format (D) which can
be used by the runtime verifier Larva. The DATE specification language does
not support pre/post-conditions which thus have to be translated to use notions
native to the Larva input language. This also requires a number of changes to
the system (through the Code Instrumentation module), in order to be able to
distinguish different executions of the same code unit and adding methods which
operationalise pre/post-condition evaluation. The instrumented program P’ and

q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

q′ :
(iii) {cups < limit} brew() {cups == \old(cups)}
(iv) {true} cleanF() {cups == \old(cups)}

bad

t1 : brew↓ | cups < limit 7→ skip

t4 : cleanF↓ | true 7→ skip t3 : brew↓ | true 7→ skip

t2 : brew↑ | true 7→ skip

Fig. 2. A ppDATE controlling the brew of coffee

the DATE specification D are then used by the Runtime Verifier Larva, which
generates a monitor M using aspect-oriented programming techniques capturing
relevant system events and linking P’ to M.

The monitor and the program are executed together after deployment, running
P’ in parallel with M. The instrumented system identifies violations at runtime,
reporting error traces to be analysed.

The Specification Language ppDATE. ppDATE [1] is a formalism for
specifying both control- and data-oriented properties. ppDATEs are automata
with transitions labelled by a trigger (tr), a condition (c) and an action (a).
Together, the label is written tr | c 7→ a. Transitions are enabled whenever
their triggers are active and the conditions guarding them hold. Triggers are
activated by the occurrence of either a visible system event, such as the calling or
termination of a method execution4, or a ppDATE internal event generated by
specific actions executed when a transition fires (that is, the transition is taken).
The conditions may depend on the values of system variables (i.e., variables of
the program to be monitored) and the values of ppDATE variables (i.e., variables
which belong to the ppDATE). The latter can be modified via actions in the
transitions. States in ppDATEs are decorated with Hoare triples of the form
{pre} method-name(·) {post}, where pre and post are predicates in first-order
logic describing what is to hold after the method method-name(·) is called (post),
provided that pre holds before making the call.

We will not present ppDATEs formally in this paper, but rather illustrate
the formalism through an example. Let us consider a coffee machine in which
the filters needs to be cleaned after a certain amount of coffee cups are brewed.
After this maximum number of brewed cups is reached the machine should stop
brewing more cups until the filters are cleaned. The brewing process cannot be
interrupted: no new coffee cup can be brewed nor the filters be cleaned until the
brewing is done.

4 σ↓ means that method σ has been called and σ↑ means that method σ has terminated
its execution.

Fig. 2 illustrates a ppDATE describing part of the behaviour of the coffee
machine. Among other things, the ppDATE specifies the property that it is
not possible to brew one more coffee cup or to clean the filters until the brewing
process is done. That is, whenever the coffee machine is not active (i.e. is not
brewing) and the method brew starts the coffee brewing process, it is not possible
to execute this method again or to execute the method cleanF, which initialises
the task of cleaning the filter, until the brewing terminates.5

The ppDATE may be interpreted as follows: initially being in state q, whenever
method brew is invoked, if it is possible to brew a cup of coffee (i.e. the machine
is not active and the limit of coffee cups was not reached yet), then transition
t1 shifts the automaton from state q to state q′. While in q′, if either method
brew or method cleanF are invoked, then transitions t3 or transition t4 shifts to
state bad, respectively, in which case the property is violated. On the other hand,
if method brew terminates its execution, then transition t2 is fired going from
state q′ to state q.6 The Hoare triples in state q specify the following: (i) if the
amount of brewed coffee cups has not reached its limit yet, then a coffee cup is
brewed; (ii) cleaning the filters sets the amount of brewed coffee cups to 0. The
Hoare triple in state q′ ensures that: (iii) no coffee cups are brewed; (iv) filters
are not cleaned. Note that the Hoare triples make reference to the state of the
coffee machine, i.e. there is no information on whether the machine is active or
not. This is because the machine’s status is implicitly defined by the ppDATE’s
states. If the ppDATE is in state q, the coffee machine is not active, and active
if in state q′: ppDATEs are context dependent. This allows us to describe Hoare
triples with the same precondition but with different post-conditions, getting a
different meaning depending in which state of the ppDATE they are defined. To
clarify the semantics of ppDATEs, consider, for instance, if we are in state q and
method cleanF is called, thus triggering the Hoare triple requiring the number
of cups to be zero upon exiting from the method. This postcondition check is
enforced even if, by the time method cleanF exits the ppDATE has changed
state to q′.

Tool and Experiments. We have implemented the StaRVOOrS tool [8], sup-
porting the specification language ppDATE. The tool implements the workflow
given in Fig. 1, where KeY acts as the Deductive Verifier, and LARVA acts as the
Runtime Verifier. At first, the Hoare triples from ppDATE are translated to JML,
after which KeY attempts to prove them, without user interaction or additional
assertions (like loop invariants). KeY cannot complete most proofs this way, but
the analysis of the partial proofs produces path conditions for those calls which
need to be runtime checked. After refining the Hoare triples accordingly, the
resulting ppDATE is translated to DATE, for which LARVA generates a runtime
monitor. The StaRVOOrS tool is fully automatic, i.e., neither any component

5 In what follows when we talk about a method we refer to the corresponding method
name of a Java implementation of the coffee machine controller.

6 The names used on the transitions, e.g. t1, are not part of the language; they are
included only to simplified the description of how the ppDATE works.

(KeY, partial proof analysis, specification transformations, LARVA), nor the
workflow among the components require the user to interfere.

We have applied the tool to Mondex, an electronic purse application which has
been used as a benchmark problem within the Verified Software Grand Challenge
context [30]. Our variant is strongly inspired by a JML formalisation given in [29].
However, using ppDATE, we could more naturally represent the major ‘status’ of
an observer as automata states, rather than in additional data. In that scenario,
the combined approach makes monitoring up to 800 times faster than just using
runtime verification [8].

3 Episode II, Trailer ‘Control-Flow Optimisation’

Till now, in our framework we have emphasised the control-flow vs. data-flow
dichotomy, arguing that although runtime verification can deal with control-flow
properties in an effective manner, the approach can result in large overheads
when dealing with data-flow. With this in mind, we have adopted static analysis
techniques effective for data-flow properties in order to resolve expensive runtime
analysis pre-deployment. This is the rationale behind the ppDATEs specification
language — enabling specification of combined data- and control-flow properties.

Through the use of KeY, in StaRVOOrS we compositionally analyse the
ppDATE specification without any control-flow information. The analysis looks
at individual Hoare triples, either discarding them if a full proof is achieved, or
refining their pre-conditions (such that they apply less often) if only a partial
proof can be managed. Since ppDATEs deal with control-flow through the graph
structure of the automaton, and the data-flow through the Hoare triples in the
states, the static analysis leaves the ppDATE structure unchanged for runtime
analysis. However, control-flow of the system might guarantee that parts of the
ppDATE are not reachable, and thus, the Hoare triples for those states are
unnecessary. The approach adopted in StaRVOOrS thus poses two challeges:

(i) Although static analysis is performed only once, pre-deployment, it can
be an expensive process, and large specifications might require substantial
resources to verify. However, the Hoare triples in the parts of the ppDATEs
that are unreachable due to the system behaviour, need not be analysed.

(ii) The unreachable triples will result in additional code which dynamically
verifies the system behaviour. Although unreachable, this will induce over-
heads in terms of the instrumented system’s memory footprint and also
result in additional checks when deciding which pre/post-conditions are
applicable due to which ppDATE state the system resides in.

One solution is to adopt control-flow static analysis to reduce ppDATEs
from a control structure perspective. A straightforward solution is to use the
control flow graph of the system being analysed. For instance, reconsider the
coffee-machine example given in Fig. 2. The information we extract from the
system under scrutiny can be used to prune (i) transitions which can never be
taken; (ii) states which are unreachable; and (iii) Hoare triples which can never

start

brew↓ brew↑

cleanF↓cleanF↑

q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

t1 : brew↓ | cups < limit 7→ skipt2 : brew↑ | true 7→ skip

Fig. 3. (left) The control-flow graph of the system under scrutiny; and (right) An
optimised ppDATE specification of brewing of coffee leaving out unnecessary checks

be triggered in a particular state. Consider a sequential controller of the coffee-
machine, which will never attempt to start cleaning the filter or brewing halfway
during a coffee brewing or a filter cleaning, respectively. The control-flow graph
extracted from the system would correspond to the graph given in Fig. 3(left).
Such a graph can be automatically extracted from the system using standard
techniques, which would guarantee that the language of traces described by the
graph is an over-approximation of traces that the system can produce7.

By simply composing the original ppDATE specification (Fig. 2) using a
quasi-synchronous composition8 with the control-flow graph (Fig. 3(left)), we can
obtain a leaner specification (Fig. 3(right)). Further, albeit more sophisticated,
analysis can also enable us to discard the bottom state.

The soundness of the optimisation rests on (i) the fact that the control-flow
graph provides an over-approximation of possible system behaviour; (ii) taking a
quasi-synchronous composition of a ppDATE with a control-flow graph effectively
results in a ppDATE which represents the conjunction of the original property
and the property that the system’s behaviour remains within the control-flow
graph; and (iii) if we know that a system satisfies a property C (the control-flow
graph), then verifying a property π is equivalent to verifying π ∧ C.

This approach is closely related to the optimisations used in Clara [7, 6], and
we could introduce control-flow optimisation before the data-based static analysis
is applied, as depicted in Fig. 4.

7 Note that, any event not appearing on any outgoing transition from a state is taken
to mean that while in that state, that event is guaranteed not to occur. This visual
notation contrasts with ppDATEs, in which, the semantics entail event not triggering
any outgoing transition may occur, and leave the ppDATE in the same state.

8 By quasi-synchronous composition, we mean the restriction of a ppDATE with an
automaton, such that a ppDATE transition triggered by event e synchronises with a
transition labelled e on the automaton, no matter what the condition and action are.
Furthermore, the synchronisation is unidirectional, in that we limit the behaviour
of the ppDATE, obtaining a ppDATE which is necessarily smaller, rather than the
Cartesian product of the states of the ppDATE and the automaton.

Program P

ppDATE

Deduc&ve	
Verifier	

Specifica&on	
Transla&on	

Pre-‐/post-‐
Condi&on	
Generator	

(Partial)
Proofs

Code	
Instrumenta&on	

S

Par&al	 	
Specifica&on	
Evalua&on	

ppDATE S’

Program P’

DATE

D

Run&me	
Verifier	

Monitored
program

Control-‐
flow	

Analysis	

Control-‐flow	
Property	
Reduc&on	

S

Fig. 4. High-level description of the StaRVOOrS framework workflow enriched with
control-flow analysis

4 Episode II, Trailer ‘Distributed StaRVOOrS’

The days of stand-alone software applications are largely over. Cloud solutions and
mobile applications are perhaps the most prominent instances of a development
towards ever more distributed computing. But this trend is equally dominant in
areas less visible to end users. For instance, instead of singular embedded systems
interacting largely with their physical environment, modern vehicles carry internal
networks of interacting programmed units. Distributed software is ubiquitous. The
overwhelming combinatorial complexity of possible interactions and interleavings
makes distributed software systems particularly prone to unforeseen, unintended
behaviour of multiple criticality. This makes system analysis and verification
efforts even more important than in the stand-alone case. At the same time,
distributed computational scenarios pose enormous challenges to static analysis
and verification. There exist many approaches in the literature, partly supported
by tools. But in general, sufficiently powerful methods tend to be heavy from
a developer’s perspective. We believe that the key to significantly advancing
the state-of-the-art lies in a carefully designed interplay of static and runtime
techniques both on the local and the global level of the distributed system. On
either level, properties which are a bottleneck for static verification shall be
addressed by runtime verification. On the other hand, properties which require
too much overhead for runtime checking shall be addressed by static verification.
This way, we can increase both the scope and the feasibility of verification in
the realm of distributed systems. To achieve this, we will exploit the potential of
compositional assume-guarantee (AG) reasoning [23, 18, 26], so far only used in
the realm of static verification, in the context of combined static and runtime
verification.

4.1 Static Verification of Distributed Software

The two main schools of static software verification are model checking and
deductive verification. Of those, model checking has been extensively applied to

distributed scenarios. We refrain from giving an overview here, but mention the
SPIN model checker [15] as an archetypal tool for model checking (asynchronous)
distributed scenarios. However, our next steps will not necessarily be based on
model checking on the static side. One of the reasons is that model checking is used
to verify abstractions of concrete systems, whereas runtime verification verifies
runs of concrete systems. In addition, we aim at also verifying data-oriented,
functional properties of distributed systems. For those, deductive methods are
better suited.

Concerning deductive methods for distributed systems, we have process
calculi and contract based methods. Process calculi are still rather abstract for
the targeted combination with runtime analysis, and mostly lack integration
to real world paradigms (like object-orientation). Highly relevant, however, for
our project are contract based deductive methods for distributed systems, in
particular the compositional ‘assume-guarantee’ (AG) approach to verification of
distributed systems, first introduced by Misra and Chandy [23]. Compositionality
means that the implementation of each component in the distributed system can
be verified independent of the implementation of other components, against local
contracts which state ‘assumptions’ on the environment and ‘guarantees’ of the
component itself. This technique builds on principles of Hoare logic, and thereby
can be instantiated for many concrete programming language of interest. The
difference is that the contracts do not (only) talk about pre/post-states of some
code, but also about the in- and outgoing communication during the execution
of a component’s implementation. Verifying each component’s local compliance
with its own contract, while assuming the other component’s contracts (but not
their implementation), proves correctness of the entire system.

Given a system which is composed by components communicating via (some
form of) message passing, the implementation of each component can be specified
by, and verified against, a local contract which states: a) assumptions about
the messages and data sent from the environment, and b) guarantees about
messages and data sent to the environment. Some variants of AG, including the
work in [2], do not distinguish between assumption resp. guarantee formulas,
but represent both in one invariant over the communication history. Intuitively,
a component has to guarantee that outgoing messages maintain the invariant,
given that incoming messages do so. In the case of object-oriented distributed
systems, messages are method calls (with parameters) and method returns (with
return values). Assumptions talk about incoming messages, i.e., method calls from
callers of this object, and method returns from callees of this object. Similarly,
guarantees talk about outgoing messages, i.e., method calls to callees of this

object, and returns to callers of this object. This is true for both synchronous
and asynchronous method execution.

When this principle is applied to modern software artefacts, it has to also
cope with information hiding, by refining conditions on the communication to
conditions on the internal (object) state. For instance, a positive account balance
can be expressed externally in terms of summing up parameters of deposit
resp. withdrawal messages, without reference to the internal state. An internal

invariant can then refine the status of the event history to the internal state
representation. For a comprehensive account on assume-guarantee style reasoning,
see [11].

Among the recent contribution to integrating assume-guarantee style (static)
verification of distributed software into contemporary verification technology are
extensions [2, 13] of the KeY verifier to the asynchronous distributed languages
Creol [17] and ABS [16].

4.2 Runtime Verification of Distributed Software

Concerning runtime verification of distributed systems, some of the issues dis-
cussed in the literature are: (i) characteristics of properties and systems such that
the former are monitorable on the latter [22]; (ii) dedicated formalisms tailored
for distributed runtime monitoring, [27, 28]; (iii) the choice of location of the
runtime monitors [14].

Concerning formalisms for writing properties about distributed systems, a
reference is past-time Distributed Temporal Logic (ptDTL) introduced by Sen et
al. [28], and the more recent logic DTL [27]. DTL combines the three-valued linear
temporal logic (LTL3 [4]) with ptDTL, and is able to express more properties
than ptDTL, like Boolean combinations of safety properties.

The choice of locations of the monitors is quite an important issue because
communication across locations is usually expensive and information-sensitive.
A good discussion about this choice is presented in [14], where a theoretical
framework is presented for comparing those choices. Studying this aspect is not
an exclusivity from the runtime verification community; it has been studied in
other communities before, as for instance in security. The papers [20, 25] provide
a clear survey of those techniques for usage control.

From the practical side, a taxonomy of software-fault runtime verification tools
is presented in [12], including some targeting distributed and parallel systems.
Among those, it is worth mentioning the Java Runtime Timing-constraint Monitor
(JRTM) [24]. JRTM monitors timing properties (written in Real Time Logic
—RTL) of distributed, real-time systems written in Java. Zhou et al. [31] presents
DMaC, a distributed monitoring and checking platform built upon: (i) the
Monitoring and Checking (MaC) framework (providing means to monitor and
check running systems against formal requirements), and (ii) a declarative domain-
specific approach for specifying and implementing distributed network protocols.
DMaC uses a formal specification language called MEDL, similar to past-time
LTL, in which it is possible to specify safety properties of a distributed system.

4.3 Combined Static and Runtime Verification
of Distributed Software

Our work on combining static and runtime verification of distributed software
will be based on the following existing approaches, methods, and tools:

– The assume-guarantee paradigm for (static) distributed systems verification
in general [23, 26, 11], and for (static) distributed objects verification in
particular [2].

– Approaches to the scope and placement of runtime monitors in a distributed
system [14].

– The results of our StaRVOOrS (Episode I) project for combined static and
runtime verification of sequential object-oriented programs [1, 8]. In particular,
we will extend to the distributed case:
• The general principle of using complete and incomplete static proofs,

analysing the latter to refine the original specs by path conditions which
prevent runtime verification of statically verified cases [3];

• The language ppDATE, combining automata-style control-flow oriented
specification with data-oriented specification in form of (state-dependent)
Hoare triples [1];

• Experience gained in implementing and using the StaRVOOrS tool [8].

We are convinced that compositional assume-guarantee (AG) specification
and reasoning, so far only used in the realm of static verification, has enormous
potential in the context of combined static and runtime verification. We will
exploit this potential in a number of ways. AG was conceived and used solely
as a means for static verification. One bottleneck of AG is that the reduction of
properties of the outer communication to properties of the inner state can require
smart proof engineering. In our future work, however, we will refer sub-properties
which are difficult to establish statically to runtime verification. Another, very
severe bottleneck for practical applicability of AG is that it requires full access
to the implementation of all components. Even if the implementation of indi-
vidual components can be verified without knowledge of the other components’
implementation (after all, the method is compositional by design), still the imple-
mentation of all components must be verified to establish the correctness of the
overall system. But in real distributed scenarios, we often only know the internals
of certain components, not of others. (Those may be legacy systems, binaries,
or remote proprietary services.) We can, however, formalise the documented
external behaviour of such closed components with AG contracts. Actual compli-
ance of closed components with such contracts can then be checked by runtime
verification. At the same time, these contracts can be used, as assumptions, in
the verification of open components interacting with the closed ones. The latter
can be done statically, or at runtime, or with a combination.

5 Conclusions

In this paper we have reported on our previous results concerning StaRVOOrS, a
framework for the combination of static and runtime techniques for the verification
of data- and control-oriented properties. We have also identified two main research
directions: i) optimisation of our framework by using static analysis techniques to
reduce runtime overheads, and ii) extending StaRVOOrS to a distributed setting.
We briefly present here a roadmap for achieving this endeavour.

Optimisation using control-flow static analysis. As described in Section 3, the
runtime monitor may be further optimised by considering additional constraints
of the program being analysed. In particular, we will use standard techniques
to get an automata based on the control-flow of the program and apply quasi-
synchronisation to compose it with the ppDATE. We will explore the connection,
and eventual combination, with techniques like the one used in Clara [6].

Control- and data-oriented property language for distributed components. Any
formalism for stating assumptions/guarantees/invariants has to be capable of
expressing conditions on the history of communication events, including the
carried data. The formalisms typically used are either of too limited expressiveness
or too difficult to use for formalisation and reasoning. We will extend and adapt
the control- and data-oriented property language ppDATE [1] to the distributed
setting. The native support for properties of data and events will be even more
profitable in the distributed setting than it already is in the sequential setting,
because typical AG contracts require characterisation of event histories together
with the carried data.

Identify and adapt static verification methods and tools. Neither the method
nor the tool will be developed from scratch (one starting point can be [2]), but
serious adaptions need to be made.

Identify and adapt a runtime verification method and tool. Neither the method
nor the tool will be developed from scratch. The prime candidate is Larva [10]
(which employs aspect-oriented programming), but extended to the distributed
setting. Among the issues will be strategies for placing (or even moving) runtime
monitors within the distributed system, see [14].

Integrating static and runtime verification of distributed components. Develop
a methodology and corresponding tool support which identifies sub-properties
where static verification will be tried, analyses the result, and deploys the system
for runtime monitoring of sub-properties which are not statically verified.

Tune the balance of static vs. runtime verification of distributed behaviour. The
‘effort level’ for static verification can be guided by the mixed criticality levels of
components and their services in the distributed system. And it can be guided
by limits in time, budget, and education in the software ecosystem using our
method. Note that, in particular, we will support the effort level ‘full automation’,
resulting in many unfinished proofs. Still, our current results show that even that
can limit the runtime overhead by a factor of up to 800 [8] (through automated
analysis of unfinished proofs).

Investigate synchronous vs. asynchronous communication. Crosscutting the above
concerns, we aim to investigate both synchronous and asynchronous commu-
nication. The choice has implications for all of the above. In terms of target
languages/architectures, we will use Java-RMI (remote method invocation) for

the synchronous case, and ABS [16] (an extension of Creol) or Active Objects
[19] for the asynchronous case.

Case Studies. Will will also have running case studies, to experiment with, and
evaluate. When more machinery is in place, we will use a bigger, realistic scenario
to evaluate the overall approach. A possible candidate is from the automotive
domain in connection with a big car manufacturer.

Acknowledgements

This research has been partially supported by the Swedish Research Council
(Vetenskapsr̊adet) under the project StaRVOOrS: Unified Static and Runtime
Verification of Object-Oriented Software, no. 2012-4499. We would like to thank
Jesús Mauricio Chimento, for his substantial contributions to the the work we
recapitulate in Sect. 2 (StaRVOOrS — Episode I), in particular the StaRVOOrS
tool and the experiments.

References

1. W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider. A specification language
for static and runtime verification of data and control properties. In FM’15, volume
9109 of LNCS, pages 108–125. Springer, 2015.

2. W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, 2010.

3. W. Ahrendt, G. Pace, and G. Schneider. A Unified Approach for Static and Runtime
Verification: Framework and Applications. In ISoLA’12, LNCS 7609. Springer,
2012.

4. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

5. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

6. E. Bodden and P. Lam. Clara: Partially evaluating runtime monitors at compile
time - tutorial supplement. In RV’10, volume 6418 of LNCS, pages 74–88, 2010.

7. E. Bodden, P. Lam, and L. J. Hendren. Clara: A framework for partially evaluating
finite-state runtime monitors ahead of time. In RV’10, volume 6418 of LNCS, pages
183–197, 2010.

8. J. M. Chimento, W. Ahrendt, G. J. Pace, and G. Schneider. StaRVOOrS: A Tool for
Combined Static and Runtime Verification of Java. In E. Bartocci and R. Majumdar,
editors, Runtime Verification, volume 9333 of Lecture Notes in Computer Science,
pages 297–305. Springer International Publishing, 2015.

9. C. Colombo, G. J. Pace, and G. Schneider. Dynamic Event-Based Runtime Mon-
itoring of Real-Time and Contextual Properties. In FMICS’08, volume 5596 of
LNCS, pages 135–149. Springer-Verlag, September 2009.

10. C. Colombo, G. J. Pace, and G. Schneider. LARVA - A Tool for Runtime Monitoring
of Java Programs. In SEFM’09, pages 33–37. IEEE Computer Society, 2009.

11. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Number 54 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, UK, Nov. 2001.

12. N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Trans. Software Eng., 30(12):859–872, 2004.

13. C. C. Din, S. L. Tapia Tarifa, R. Hähnle, and E. B. Johnsen. History-based
specification and verification of scalable concurrent and distributed systems. In
M. Butler, S. Conchon, and F. Zäıdi, editors, Proc. 17th International Conference
on Formal Engineering Methods (ICFEM 2015), volume 9407 of Lecture Notes in
Computer Science, pages 217–233. Springer-Verlag, 2015.

14. A. Francalanza, A. Gauci, and G. J. Pace. Distributed system contract monitoring.
The Journal of Logic and Algebraic Programming, 82(57):186 – 215, 2013. Formal
Languages and Analysis of Contract-Oriented Software (FLACOS’11).

15. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

16. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, FMCO, Graz, Austria. Revised Papers, LNCS. Springer, 2010.

17. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

18. C. B. Jones. Development Methods for Computer Programs Including a Notion of
Interference. PhD thesis, Oxford University, UK, 1981.

19. R. G. Lavender and D. C. Schmidt. Active object: An object behavioral pattern for
concurrent programming. In J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors,
Pattern Languages of Program Design 2. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1996.

20. A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security: A
survey. Computer Science Review, 4(2):81–99, 2010.

21. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. JML Reference Manual. Draft 2344,
2013.

22. S. Malakuti Khah Olun Abadi, M. Akşit, and C. M. Bockisch. Runtime verification
in distributed computing. Journal of Convergence, 2(1):1–10, June 2011.

23. J. Misra and K. Chandy. Proofs of networks and processes. IEEE Transactions on
Software Engineering, 7(7):417–426, 1981.

24. A. K. Mok and G. Liu. Efficient run-time monitoring of timing constraints. In
RTAS’97, pages 252–262. IEEE Computer Society, 1997.

25. Å. A. Nyre. Usage control enforcement - A survey. In ARES’11, volume 6908 of
LNCS, pages 38–49. Springer, 2011.

26. A. Pnueli. In transition from global to modular temporal reasoning about programs.
In K. R. Apt, editor, Logics and Models of Concurrent Systems. Springer, 1985.

27. T. Scheffel and M. Schmitz. Three-valued asynchronous distributed runtime verifi-
cation. In Formal Methods and Models for Codesign (MEMOCODE), 2014 Twelfth
ACM/IEEE International Conference on, pages 52–61, Oct 2014.

28. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring
of safety in distributed systems. In 26th International Conference on Software
Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom, pages
418–427, 2004.

29. I. Tonin. Verifying the Mondex case study. The KeY approach. Technical Report
2007-4, Universität Karlsruhe, 2007.

30. J. Woodcock. First Steps in the Verified Software Grand Challenge. In SEW’06,
pages 203–206. IEEE Computer Society, 2006.

31. W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC : Distributed monitoring and
checking. In RV’09, volume 5779 of LNCS, pages 184–201. Springer, 2009.

