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2 Dept. of Informatis, University of Oslo, Oslo, Norway.{gordon.pae�um.edu.mt; gerardo�ifi.uio.no}Abstrat. Polygonal hybrid systems (SPDIs) are planar hybrid sys-tems, whose dynamis are de�ned in terms of onstant di�erential in-lusions, with di�erent for eah of a number of polygonal regions par-titioning the plane. The reahability problem for SPDIs is known to bedeidable, but depends on the goodness assumption � whih states thatthe dynamis do not allow a trajetory to both enter and leave a regionthrough the same edge. In this paper we extend the deidability result togeneralised SPDIs (GSPDI), SPDIs not satisfying the goodness property,and give an algorithmi solution to deide reahability of suh systems.1 IntrodutionA hybrid system is one in whih disrete and ontinuous behaviours interat.Some systems are inherently hybrid � onsider a robot, with di�erential equa-tions determining, for instane, its speed, together with an embedded omputertaking disrete deisions based on the ontinuous input values oming from sen-sors. In other ases, a system onsisting only of ontinuous behaviour, an behybridised, introduing disrete behaviour in order to failitate the analysis. Forexample, exat solutions an be di�ult to obtain for a non-linear di�erentialequation, making a qualitative and approximative analysis neessary.In general, the main problem with the analysis of hybrid systems is that forproperties suh as reahability, their veri�ation is undeidable. For instane,the reahability problem for planar PCDs (deterministi systems with PieewiseConstant Derivatives) is known to be deidable [MP93℄, but beomes undeidablein three and higher dimensions [AMP95℄. Slight extensions of suh deidablelasses have been proved to be undeidable or equivalent to problems for whihdeidability or undeidability is not known [AS02,MP05℄.An interesting lass of hybrid systems for whih the reahability question isknown to be deidable, is the lass of Polygonal Hybrid Systems (SPDIs) � asublass of hybrid systems on the plane whose dynamis is de�ned by onstantdi�erential inlusions [ASY01,ASY07,Sh02℄. Informally, an SPDI onsists of a
⋆ An appendix with the detailed proofs of the results whih ould not be inludedfor spae reasons is being inluded at the end of the paper. Should the paper beaepted for publiation, the main paper merged with the proofs will be publishedas a tehnial report for referene. Please do not ount the appendix towards thepage limit.
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Fig. 1. (a) Example of an SPDI; (b) Good and bad regions.partition of the plane into polygonal regions, eah of whih enfores di�erentdynamis given by two vetors determining the possible diretions a trajetorymight take; a simple SPDI is depited in �gure 1-(a). A onstrutive proof fordeiding reahability on SPDIs an be found in [ASY07℄. The proof is restritedto SPDIs whih have the so-alled goodness property � the dynamis of anyregion of the SPDI do not allow a trajetory to traverse any edge of the polygonalregion in opposite diretions (see �gure 1-(b)). Tehnially this is equivalentto the property that the diretion vetor of eah edge annot be obtained asa positive linear ombination of the vetors de�ning the dynamis. An SPDIwithout the goodness property is alled Generalised SPDI (GSPDI).In this paper, we present a onstrutive deidable algorithm for solving the reah-ability problem for GSPDIs. This deidability result ontributes towards narrow-ing the undeidability frontier of low dimension hybrid systems [AS02,MP05℄.At the same time our positive result allows GSPDIs to be used to approximateplanar non-linear di�erential equations.The paper is organised as follows. In the next setion, we informally disussthe motivation behind relaxing goodness, and explain what tehnial problemsarise when doing so. In setion 3 we de�ne the notation used, and outline def-initions and results about SPDIs. Setion 4 is onerned with the extension ofthese results to enable analysis of GSPDIs, inluding the deision algorithm forreahability. We onlude in the last setion.2 On GoodnessIn this setion we disuss informally why goodness is good for deiding the reah-ability problem of SPDI and what are the problems when relaxing it. More formalde�nitions will be given in setion 3.See �gure 1-(b) for an example of a good and a `bad' region (here `bad' indiatesthat the region does not satisfy the goodness riterion). In the �gure on the leftwe an see a good region, where the two vetors a and b make it impossiblefor a trajetory to enter and leave the region P through the same edge of thepolygon delimiting the region. On the other hand, the �gure on the right showsa bad region: Both e2 and e5 an be rossed in both diretions by a trajetoryentering and leaving P , as shown in the �gure.



2.1 On Why Goodness is GoodThe algorithm presented in [ASY07℄ for deiding reahability on SPDI dependson pre-proessing of trajetory segments and a qualitative analysis to guaranteethat it is possible to review the behaviour of all the possible signatures1, bylooking at only a �nite set of abstrat signatures. Informally, this is ahieved asfollows:1. Trajetory segments are simpli�ed � it is su�ient to look at trajetoriesmade up of straight segments aross regions, and whih do not ross them-selves.2. Trajetory segments are abstrated into signatures, onsisting of just thesequene of traversed edges. This result is based on the Poinaré map [HS74℄,that relates n-dimensional ontinuous-time systems with (n−1)-dimensionaldisrete-time systems.3. It is shown that it is su�ient to look at signatures whih onsist only ofsequenes of edges and simple yles.4. Suh signatures an be abstrated into types of signatures � signatureswhih do not take into aount the number of times eah simple yle isiterated.Many of the lemmas for proving that the above guarantee the �niteness of typesof signatures ritially depend on the goodness assumption, whih propagate thisdependeny to the onstrutive proof given for deiding reahability of SPDIswhih satis�es the goodness assumption.2.2 On Why We'd Rather Not be GoodRestriting oneself only to SPDIs satisfying the goodness assumption makes itvery di�ult to model real-life examples. Unfortunately, extending the SPDImodel in most ways, suh as allowing jumps with resets (from one edge to an-other remote one), inreasing the number of dimensions and allowing non-lineardi�erential inlusions, have been shown to make the model undeidable [AS02℄.A potentially interesting and useful appliation of SPDIs is that of the approx-imation and analysis of two-dimensional non-linear di�erential equations. Bysplitting the plane into polygons, and by setting the dynamis of eah polygonto be over-approximations of the non-linear di�erential equation in that region,one an ask reahability questions about the equation, and obtain answers a-ordingly. When over-approximating the dynamis, a negative reahability an-swer implies a negative answer in the exat equation. Using more and smallerpolygons enables more preise approximations.The problem with using this approah is that for most di�erential equations,using a �xed partition breaks the goodness assumption, sine almost invariably,some edges of some regions will lie within the di�erential inlusion of that region.1 We all signature the sequene of traversed edges by the trajetory. A more formalde�nition will be given in a later setion.



Fig. 2. Approximating a non-linear di�erential equation desribing a pendulum usingdi�erent partitioning of the plane.One solution would be to try to derive an intelligent partition of the plane whihmaintains goodness, whih in some ases may be impossible, or by extending theSPDI analysis algorithms by relaxing the goodness assumption, thus enablingthe modelling of non-linear di�erential equations in a straightforward manner.As a simple example, onsider a pendulum with frition oe�ient k, mass M ,pendulum length R and gravitational onstant g. If θ is the angle subtended withthe vertial, the behaviour of suh a pendulum is desribed by the di�erentialequation: MR2θ̈+kθ̇+MgR sin θ = 0. By taking x = θ, and y = θ̇, we get ẋ = yand ẏ = − ky

MR2 − g sin(x)
R

.Using these formulae, we an produe SPDIs expressing these onstraints, possi-bly with di�erent plane partitions. Figure 2 gives two suh partitions for k = 1,
R = 10, M = 10, and g = −10. Visual inspetion of the SPDIs, shows that vari-ous polygons fail the goodness assumption. By presenting an algorithm showingthe deidability of reahability on Generalised SPDIs, we an automatially anal-yse suh systems.3 Polygonal Hybrid Systems (SPDIs)In this setion we reall the main de�nitions and onepts required in the restof the paper, and give an outline of the results for SPDIs, upon whih theresults presented in this paper are built. For a more detailed presentation see[ASY07,Sh02℄.In the rest of this setion, we will use a = (a1, a2) and x = (x1, x2) to represent2-dimensional vetors (a,x ∈ R

2). An angle ∠
b

a
on the plane, de�ned by two non-zero vetors a and b is the set of all positive linear ombinations x = α a+ β b,with α, β ≥ 0, and α + β > 0. We an always assume that b is situated in theounter-lokwise diretion from a.



De�nition 1. A polygonal hybrid system (SPDI) is a pair H = 〈P, F〉, where
P is a �nite partition of the plane (with eah P ∈ P being a onvex polygon),alled the regions of the SPDI, and F is a funtion whih assoiates a pair ofvetors to eah polygon: F(P ) = (aP ,bP ).In an SPDI every point on the plane has its dynamis de�ned aording to whihpolygon it belongs to: if x ∈ P , then ẋ ∈ ∠

bP
aP

.Example 1. Consider the SPDI illustrated in �gure 1-(a), with eight regions
R1, R2, . . . , R8. A pair of vetors (ai,bi) is also assoiated to eah region Ri:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2 ), a3 = (−1, 11
60 ) and b3 = (−1,− 1

4 ),
a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1).We de�ne E(P ) to be the set of edges of region P . We say that an edge e(e ∈ E(P )) is an entry-only of P if for all x ∈ e and for all c ∈ ∠

bP
aP

, x + cǫ ∈ Pfor some ǫ > 0. We say that e is an exit-only of P if the same ondition holds forsome ǫ < 0. Intuitively, an entry-only (exit-only) edge of a region P allows at leasta trajetory in P starting (terminating) on edge e, but allows no trajetories in Pterminating (starting) on edge e. We write In(P ) (In(P ) ⊆ E(P )) to denote theset of all entry-only edges of P and Out(P )(Out(P ) ⊆ E(P )) to denote the setof exit-only edges of P . From the de�nition, it follows immediately that no edgean be both an entry-only and an exit-only edge of a region: In(P )∩Out(P ) = ∅.A region P is said to be good, if all the edges of that region are either entry-onlyor exit-only: E(P ) = In(P ) ∪ Out(P ). An SPDI is said to be good, or satisfythe goodness property, if it onsists of only good regions: ∀P ∈ P · E(P ) =In(P ) ∪Out(P ).Assumption 1 In the rest of this setion, we will onsider only good SPDIs.Example 2. In �gure 1-(b), the region P shown on the left is good sine all edgesare either entry-only or exit-only. The region depited on the right shows a regionthat is not good, sine neither edge e2 nor edge e5 are in In(P ) ∪Out(P ).We will use the notation eP
� to indiate the direted edge e suh that it followsa lokwise diretion in region P , and similarly eP

	 to indiate the direted edge
e following an antilokwise diretion in region P . Given a direted edge e, itsinverse will be written as e−1.De�nition 2. The set of direted edges of an SPDI H with partition P, written
Ed(H), is de�ned to be:

Ed(H) = {eP
� | P ∈ P, e ∈ In(P )} ∪ {eP

	 | P ∈ P, e ∈ Out(P )}.Similarly, we de�ne Ind(P ) and Outd(P ) to orrespond to In(P ) and Out(P )but with direted edges.Sine an edge typially appears in two adjaent regions, the diretion indued inthe two regions may be di�erent. However, it was proved that edges whih are



entry-only in one region, and exit-only in the other result in mathing indueddiretions: e ∈ Ed(H) or e−1 ∈ Ed(H), but not both [MP93,Sh02℄. In an SPDIsatisfying goodness, the only ase where one an have both e and e−1 is whenthe dynamis of the regions result in e being either both an entry-only or anexit-only edge in the two adjaent regions it belongs to.A trajetory segment of an SPDI H, is a ontinuous funtion ξ ∈ [0, T ] → R
2suh that for all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ ∠

bP
aP

. Thesignature of a trajetory segment ξ, written Sig(ξ), is the ordered sequene ofedges traversed by the trajetory, that is, e1, e2, . . . en resulting from ξ ∩Ed(H).One of the more important results presented in [ASY07℄ is that the behaviourof any trajetory is equivalent to the behaviour of some trajetory whih doesnot ross itself and follows straight-line segments within regions.Lemma 1. Given a trajetory segment ξ ∈ [0, T ] → R
2, there exists anothertrajetory segment ξ′ ∈ [0, T ′] → R

2 starting and �nishing at the same pointsas ξ (ξ(0) = ξ′(0) and ξ(T ) = ξ′(T ′)) suh that (i) ξ′ does not ross itself (ξ isinjetive); and (ii) ξ′ follows straight-line segments inside regions. ⊓⊔This result shows that to deide reahability, it is su�ient to look at non-self-rossing trajetories onsisting of straight-line segments. In the rest of thedisussion, we will restrit our use of trajetory to mean `a non-self-rossing tra-jetory omposed of straight-line segments between edges'. Similarly, the termsignature will be used to indiate the signature of a trajetory with these on-straints. Note that the result is true of any SPDI, not only ones satisfying thegoodness onstraint.Trunated A�ne Multi-Valued Funtions An a�ne funtion f ∈ R → Ris suh that f(x) = ax + b. If a > 0 we say that f is positive a�ne, and if a < 0we say that f is negative a�ne; we all this the parity of the a�ne funtion.An a�ne multivalued funtion (AMF) F ∈ R → 2R, written F = 〈fl, fu〉, isde�ned by F (x) = 〈fl(x), fu(x)〉 where fl and fu are a�ne and 〈·, ·〉 denotes aninterval. For notational onveniene, we do not make expliit whether intervalsare open, losed, left-open or right-open, unless required for omprehension. Foran interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉.An inverted a�ne multivalued funtion F ∈ R → 2R, written F = 〈fl, fu〉, isde�ned by F (x) = 〈fu(x), fl(x)〉 where fl and fu are both negative a�ne and
〈·, ·〉 denotes an interval.Given an AMF F and two intervals S ⊆ R

+ and J ⊆ R
+, a trunated a�nemultivalued funtion (TAMF) FF,S,J ∈ R → 2R is de�ned as follows: FF,S,J(x) =

F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows we will write Finstead of FF,S,J whenever no onfusion may arise. Moreover, in the rest of thepaper F will always denote an AMF and F a TAMF. For onveniene we write
F(x) = F ({x} ∩ S) ∩ J instead of F(x) = F (x) ∩ J if x ∈ S. We overload theappliation of a TAMF on an interval I: F(I) = F (I ∩ S)∩ J . We say that F isnormalised if S = Dom(F) = {x | F (x) ∩ J 6= ∅} and J = Im(F) = F(S).



As in the ase of a�ne multivalued funtions, an inverted trunated a�ne mul-tivalued funtion (inverted TAMF) is similar to a TAMF, but de�ned in termsof an inverted a�ne multivalued funtion as opposed to a normal one. An im-portant result is that normal TAMFs are losed under omposition.Theorem 1. The omposition of two normal TAMFs F1(I) = F1(I ∩ S1) ∩ J1and F2(I) = F2(I ∩ S2)∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S)∩ J ,where F = F2 ◦ F1, S = S1 ∩ F−1
1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). ⊓⊔The following orollary extends the above result.Corollary 1. The omposition of two inverted TAMFs gives a normal TAMF.Conversely, the omposition of one normal and one inverted TAMF (in eitherorder) gives an inverted TAMF. ⊓⊔To avoid having to reason about the length of every edge, we normalise everyedge e suh that its TAMF has the domain [0, 1] (that is, the normalised versionof e has length 1, with 0 orresponding to the starting point of the direted edge,and 1 to the end point).Suessors Given an SPDI, we �x a one-dimensional oordinate system oneah edge to represent points lying on edges. For notational onveniene, we willuse e to denote both the direted edge and its one-dimensional representation.Aordingly, we write x ∈ e and x ∈ e, to mean �point x lies on edge e� and�oordinate x in the one-dimensional oordinate system of e� respetively. Thesame onvention applied to sets of points of e represented as intervals (for exam-ple, x ∈ I and x ∈ I, where I ⊆ e) and to trajetories (for example, �ξ startingat x� or �ξ starting at x�).Consider a polygon P ∈ P, with e0 ∈ Ind(P ) and e1 ∈ Outd(P ). For I ⊆ e0,

Succe0e1
(I) is de�ned to be the set of all points lying on e1 reahable from somepoint in I by a trajetory segment ξ ∈ [0, t] → R

2 in P (that is, ξ(0) ∈ I ∧ ξ(t) ∈
e1 ∧ Sig(ξ) = e0e1). Given I = [l, u], Succe0e1

(I) = F (I ∩ Se0e1
) ∩ Je0e1

, where
Se0e1

and Je0e1
are intervals, F ([l, u]) = 〈fl(l), fu(u)〉 and fl and fu are positivea�ne funtions. Suessors are thus normal TAMFs.Qualitative analysis of simple edge-yles Let σ = (e1 . . . ek) be a simpleedge-yle � that is, a signature that an be repeated a number of times, andsuh that all edges are distint (ei 6= ej for all 1 ≤ i < j ≤ k). Let Succσ(I) =

F (I ∩ Sσ) ∩ Jσ with F = 〈fl, fu〉.We assume that neither of the two funtions fl, fu is the identity funtion. Thefollowing analysis, taken from [ASY01℄, allows us to alulate the behaviourof yles provided that the path along the yle has a normal (not inverted)TAMF. Sine, in good SPDIs, the TAMF between a pair of edges is normal, andthe omposition of two normal TAMFs is itself a normal TAMF, this approahis universally appliable as long as the goodness assumption holds.



Let σ be a simple yle, and l∗ and u∗ be the �x-points2 of fl and fu, respetively,and Sσ ∩ Jσ = 〈L, U〉. It an be shown that σ is of one of the following types:STAY. The yle is not abandoned neither by the leftmost nor the rightmosttrajetory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost trajetory exits the yle through the left (onsequently theleftmost one also exits) or the leftmost trajetory exits the yle through theright (onsequently the rightmost one also exits), that is, u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost trajetory exits the yle through the left and therightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost trajetory exits the yle (through the left) but therightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost trajetory exits the yle (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The lassi�ation above provides useful information about the qualitative be-haviour of trajetories. Any trajetory that enters a yle of type DIE will even-tually leave it after a �nite number of turns. In the ase of a yle is of typeSTAY, all trajetories that happen to enter it will keep turning inside it forever.In all other ases, some trajetories will turn for a while and then exit, andothers will ontinue turning forever. This information is ruial for solving thereahability problem for SPDIs. Also note that the above analysis gives us anon-iterative solution of yle behaviour for most yles. An important result toprove the deidability of SPDIs is that any valid signature an be expressed ina normal form, onsisting of alternating sequential paths and simple loops:Theorem 2. Given an SPDI with the goodness onstraint, any edge signature
σ = e1 . . . ep an be written as σA = r1s

k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤

n + 1, ri is a sequene of pairwise di�erent edges and for all 1 ≤ i ≤ n, si is asimple yle (no edges are repeated within si). ⊓⊔This representation of signatures is the base to obtain types of signatures withthe following properties:Lemma 2. Given a good SPDI, let σ = e0 . . . ep be a feasible signature, then itstype, type(σ) = r1, s1, . . . , rn, sn, rn+1 satis�es the following properties:
P1 For every 1 ≤ i < j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i < j ≤ n, si and sj are di�erent. ⊓⊔The �niteness of the di�erent types of signatures is the basis of the proof of de-idability of (good) SPDI reahability, and of the termination of the reahabilityalgorithm (together with aeleration results for simple loops).Theorem 3. The reahability problem in SPDIs satisfying the goodness on-straint is deidable.2 The �x-point x∗ of a funtion f is the set of solutions to the equation f(x∗) = x∗.
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Fig. 3. (a) An SPDI with mathing order of edges; (b) a GSPDI showing that the orderbreaks the ontiguity of the edge diretions.4 Relaxing Goodness: Generalised SPDIsThe original proof of the deidability of the reahability question for SPDIs, de-pended on the onept of monotoniity of TAMFs and their omposition. Beforestarting the analysis, the algorithm �xed the diretion of the edges separating re-gions. An interesting result guaranteed that the orientation of the edges resultedin eah polygon split into two ontiguous sequenes of paths � one being theinput edges, the other being the output edges. Furthermore, the orientation ofan edge in one region is guaranteed to math the orientation of the same edge inthe adjaent region3, as shown in �gure 3-(a). When one moves on to GSPDIs,inout edges break this result, sine the diretion of an edge when onsideredas an input edge lashes with the diretion it is given when used as an outputedge in the same region. The previous result however, still guaranteed that theentry-only edges and the exit-only edges an be assigned in one �xed diretion(see �gure 3-(b)).To solve this problem, we use direted edges, and di�erentiate between the edgeused as an input, and when it is used as an output, just as though they weretwo di�erent edges in the GSPDI. Figure 4-(a) shows how an inout edge an beseen in this manner. Note that edge e1 is an input edge in region R1, but anoutput edge in region R2, and similarly, e−1
1 is an output edge in region R1 andan input edge in region R2. In other words, any path passing through the edge3 As we have already pointed out, there are speial ases when an edge is an entry-onlyto a region and an exit-only to an adjaent regions. From the reahability point ofview this does not ause any problem as these ases an be identi�ed and treatedaordingly.
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Fig. 4. (a) A GSPDI with a dupliated inout edge; (b) a path through the GSPDIusing edge e1 in both diretions.suh as σ = e0e1e2 . . . e3e
−1
1 e4 (see �gure 4-(b)) an be analysed as before, andthrough monotoniity, one an dedue that Succσ is a positive TAMF. e1 and

e−1
1 are onsidered distint edges, and the above path ontains no loop.It an be seen that the standard analysis for SPDIs works well for suh ases.However, paths an now `boune' o� an edge. Reall that any pair of edges e0e1is part of a path if e0 is an input edge of a region, and e1 is an output edge ofthe same region. One an alulate the TAMF for suh a trajetory. However,

ee−1 an now be a valid path, whose behaviour annot be expressed as a normalTAMF. This breaks the analysis used in SPDIs, to aelerate the analysis ofloops. The standard SPDI analysis thus needs to be extended to handle suh`bounes' in paths.4.1 Preliminary ResultsThe goodness restrition (assumption 1) was originally introdued to simplifytreatment of trajetories and to guarantee, amongst other things, that eah re-gion an be partitioned into entry-only and exit-only edges in an ordered way,fat used in the proof of deidability of the reahability problem. We will in-trodue in this setion further bakground, and provide new results onerningGSPDIs, needed to prove our deidability result.De�nition 3. An edge e ∈ P is an inout edge of P if e is neither an entry-onlynor an exit-only edge of P .An SPDI without the goodness restrition is alled aGeneralised SPDI (GSPDI).Thus, in GSPDIs there are three kinds of edges: inouts, entry-only and exit-only.



Self-rossing of trajetory segments of SPDIs an be eliminated whih allow usto onsider only non-rossing trajetory (segments). Lemma 1 (the full proofof whih an be found in [ASY07℄) also applies to GSPDIs. Therefore, in whatfollows, we will onsider only trajetory segments without self-rossings.Note that on GSPDIs, a trajetory an �interset� an edge at an in�nite numberof points by sliding along it. A trae is thus no longer a sequene of points, butrather, a sequene of intervals.De�nition 4. The trae of a trajetory ξ is the sequene trace(ξ) = I0I1 . . . Inof the intersetion intervals of ξ with the set of edges: Ii ⊆ ξ ∩ Ed(H).De�nition 5. An edge signature (or simply a signature) of a GSPDI is a se-quene of edges. The edge signature of a trajetory ξ, Sig(ξ), is the ordered se-quene of traversed edges by the trajetory segment, that is, Sig(ξ) = e0e1 . . . en,with trace(ξ) = I0I1 . . . In and Ii ⊆ ei.Note that, in many ases, the intervals of a trae are in fat points. We saythat a trajetory with edge signature Sig(ξ) = e0e1 . . . en and trae trace(ξ) =
I0I1 . . . In interval-rosses edge ei if Ii is not a point.Given a trajetory segment, we will distinguish between proper inout edges andsliding edges.De�nition 6. Let ξ be a trajetory segment from point x0 ∈ e0 to xf ∈ ef , withedge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P . We saythat ei is a sliding edge of P for ξ if ξ interval-rosses ei, otherwise e is said tobe a proper inout edge of P for ξ.We say that a trajetory segment ξ slides along an edge e, if e is a sliding edge of
P for ξ, and that ξ is a sliding trajetory if it ontains at least one sliding edge.The signatures that we will be analysing in GSPDIs are similar to ones in SPDIs,exept that they may inlude onseutive inverted edges of the form ee−1. Thebehaviour between suh edges does not orrespond to a normal TAMF, and thushas to be analysed separately.One interesting property of inout edges is that the dynamis of the region theyare in allow us to slide along the edge to one of the end-points of the edge.Proposition 1. If e is an inout edge, then any trajetory reahing the edge analways slide on the edge (in one or the other diretion, or both). ⊓⊔As for SPDIs, we have the following property of Succ: for any edge signatures
σ1 and σ2 and edge e: Succeσ1

◦ Succσ2e = Succσ2eσ1
.The following lemma shows that the edge-to-edge suessor funtion is a normalTAMF whenever the two edges are not the inverse of eah other. It followsdiretly from the similar result for SPDIs [ASY07℄, whih makes no assumptionregarding goodness.Lemma 3. For any two edges e0 and e1, Succe0e1
is always a normal TAMF,whenever e1 6= e−1

0 . ⊓⊔



A boune is a part of a trajetory whih rosses an edge twie in immediatesuession. We de�ne bounes formally within a signature as follows:De�nition 7. Given a signature σ = e0e1 . . . en, a pair of edges eiei+1 is saidto be a boune if ei+1 = e−1
i . We say that a signature e0e1 . . . en ontains mbounes, if there are exatly m distint indies I = {i1, i2, . . . im} suh forevery i ∈ I, ei = e−1

i+1.Let Flip[l, u] = [1 − u, 1 − l] be an interval funtion. The following result estab-lishes that the suessor funtion for bounes an be de�ned in terms of the Flipfuntion. The result follows diretly from the de�nition of e−1:Lemma 4. The behaviour of going from an edge e to its inverse e−1 is equival-end to Flip: Succee−1 = Flip.One of the useful properties of SPDIs is that the suessor funtion of any givensignature is a normal TAMF. For GSPDIs, however, we need to take into aountbounes, and hene analyse the omposition of normal TAMFs with Flip:Lemma 5. Composing Flip with an inverted TAMF gives a normal TAMF andan inverted TAMF if we ompose it with a normal TAMF. ⊓⊔The parity of the number of bounes ourring in a given signature in�uenesthe form of the underlying TAMF, as shown in the following result, whose prooffollows immediately by indution on the number of bounes.Corollary 2. Any signature with an even number of bounes has its behaviourharaterised by a normal TAMF, while a signature with an odd number ofbounes is haraterised by an inverted TAMF. ⊓⊔Given a simple yle σ, let σ+ be the yle iterated one or more times. Reallthat the analysis of simple yle behaviour given for SPDIs depended only onthe assumption that the TAMF of the yle body is a normal one. From theprevious result, it thus follows that whenever the number of bounes is even ona given yli signature, the omposed TAMF is a normal one, meaning that theloop analysis an be onduted as for SPDIs:Lemma 6. Given a loop σ ontaining an even number of bounes, its iteratedbehaviour σ+ an be alulated as for SPDIs. ⊓⊔Sine we slide along inout edges, and an only boune o� inout edges, we anprove that loops whih inlude at least one boune are never STAY loops:Lemma 7. Loops whih inlude bounes are not STAY loops. ⊓⊔This leaves only simple yles with an odd number of bounes to be analysed.Considering the ase when a boune appears as the �rst pair of elements of a loopbody, we an aelerate the analysis by running through the loop only one. Theproof follows from the fat that the initial boune enables a slide, thus allowingus to identify the limits through only one appliation of the loop body:



Lemma 8. Given a signature σ = e0(e1e
−1
1 e2 . . . en)ke1 (i) with only one loop;(ii) with k > 0; (iii) whih has an odd number of bounes; and (iv) starts with aboune; the behaviour of signature is equivalent to following the loop only oneas in σ′ = e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ . ⊓⊔Based on the above lemma, we an prove that any loop ontaining an odd numberof bounes an be aelerated. The proof works by unwinding the loop body topush the �rst boune to the beginning, and then applying the previous lemma:Lemma 9. Given a loop s with an odd number of bounes, we an alulate thelimit of s+ without iterating. ⊓⊔Therefore, we an now analyse any type of signature in GSPDIs using the resultsfrom lemma 3 (to deal with inout edges), and lemmas 6 and 9 (to deal withbounes).Theorem 4. We an ompute the behaviour of a signature r1s

+
1 r2s

+
2 . . . rn. ⊓⊔4.2 DeidabilityThe following lemma guarantees that it is su�ient to onsider simple yleswhih our in a type of signature only under ertain patterns. Any type ofsignature ontaining two ourrenes of the same simple yle an be redued toanother type of signature where the simple yle s ours only one, providedthe yle with the edges in reverse order (denoted reverse(s)) does not ourbetween them. The proof is based on the fat that, assuming the path does notross itself, between two instanes of a repeated loop, one an always �nd either(i) the reverse of the yle; or (ii) a boune. In the latter ase, it an be shownthat the boune an be eliminated to avoid leaving the loop.Lemma 10. Given a GSPDI, and assuming only trajetories without self-rossing,if there is a type of signature where a simple yle s = (e0, e1, . . . , en) appearstwie, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′ , then if there is noreverse(s) between the two ourrenes of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′. ⊓⊔We also prove that a trajetory whih takes a loop (any number of times),then takes it again (one again any number of times) but in reverse order, and�nally takes it a number of times in the forward diretion, an be simulated byanother trajetory whih simply takes the loop a number of times. The proofis based on the fat that whihever diretion the �rst edge of the simple yleunder onsideration allows sliding in, it is possible to obtain a type of signaturepreserving reahability without suh pattern.Lemma 11. Given a GSPDI, if there is a trajetory segment ξ : [0, T ] →
R

2, with ξ(0) = x and ξ(t) = x
′ for some t > 0, suh that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = s−1
1 and s3 = s1, then it is always possible to �nda trajetory segment ξ′ : [0, T ] → R

2 suh that ξ′(0) = x and ξ′(t) = x
′ for some

t > 0, and type(Sig(ξ)) = r1s
k′

1

1 r′4. ⊓⊔



Based on these last two results, we an onlude now that for GSPDIs we analways transform a type of signatures into one where simple loops are not re-peated.Corollary 3. Given a GSPDI, let σ be an edge signature, then it an always bewritten as σA = r1s
k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤ n + 1, si is a simpleyle (i.e., without repetition of edges), and for every 1 ≤ i < j ≤ n, si and sjare di�erent. ⊓⊔The following lemma, ensuring that there are a �nite number of types of sig-natures in GSPDIs, follows from the previous results and it is the basis for thetermination proof of the reahability algorithm.Corollary 4. The number of di�erent types of abstrat signatures of a givenGSPDI is �nite. ⊓⊔4.3 AlgorithmThe reahability algorithm for a GSPDI H, Reah(H,x0,xf ), onsists of thefollowing steps:1. Generate the �nite set of types of signatures Σ = {σ0, . . . , σn} taking intoaount e and e−1 as di�erent edges, and suh that the loop signatures areall distint;2. Apply the funtion Reachσi

(x0,xf ) for eah σi ∈ Σ;3. If for at least one σi ∈ Σ, Reachσi
(x0,xf ) = Yes, then Reah(H,x0,xf ) =

Yes, otherwise the answer is No.We note that in step 2 we apply Succ progressively on the abstrat signature,using theorems 6 and 9 to ompute the suessor of a loop with bounes, andthe Succ funtion as in the ase of SPDIs for the rest. Based on these results, itis possible to show termination, orretness and ompleteness of GSPDI reah-ability.Lemma 12. Reah(H,x0,xf ) is a terminating, orret and omplete algorithmalulating GSPDI reahability. ⊓⊔From this, the main theoretial result of our paper follows immediately:Theorem 5. The reahability problem for GSPDIs is deidable. ⊓⊔5 ConlusionsWe have proved that the reahability question for GSPDIs is deidable. Theproof is a onstrutive one, giving an algorithm whih extends the one given in[ASY07℄ for SPDIs. The key lies in showing that the previous analysis works inall ases exept when a loop ontains an odd number of bounes. The algorithm



is extended to deal with suh ases. Inout edges enable sliding in one or bothdiretions. Although the algorithm needs to be extended to deal with these ases,the overall e�et of suh edges is to aelerate the analysis of an SPDI, sine (atleast) one end of the edge is immediately overed one the edge is reahed.Reahability analysis of GSPDIs is not easy. In [Sh07℄ a semi-deision algo-rithm has been presented by reduing reahability of GSPDI to reahability ofan exponential number of SPDIs. The main idea behind suh an algorithm isthat in most ases reahability is preserved when �xing inout edges as entry-onlyor exit-only edges, and then onsidering all the possible permutations of SPDIsgenerated from suh a pre-proessing, reduing then the problem to SPDI reah-ability. The main problem with the approah is that there are ases where it isnot possible to eliminate inout edges while preserving reahability.The main ontribution of our paper is an interesting one in a theoretial sense,sine it extends the lass of deidable hybrid systems, narrowing further the gapbetween what is known to be be deidable and what is known to be undeidable[AS02,MP05℄. The result is, however, also interesting in a pratial sense, sine itprovides a good foundation to approximate planar non-linear di�erential equa-tions (as disussed in setion 2.2). The next step is to implement the algorithm,extending the SPeeDI+ tool [APSY02,Spe℄ to treat GSPDIs, and use in real asestudies using non-linear di�erential equations.Referenes[AMP95℄ E. Asarin, O. Maler, and A. Pnueli. Reahability analysis of dynamialsystems having pieewise-onstant derivatives. TCS, 138:35�65, 1995.[APSY02℄ E. Asarin, G. Pae, G. Shneider, and S. Yovine. SPeeDI: a veri�ationtool for polygonal hybrid systems. In CAV'02, volume 2404 of LNCS, pages354�358. Springer-Verlag, July 2002.[AS02℄ E. Asarin and G. Shneider. Widening the boundary between deidable andundeidable hybrid systems. In CONCUR'02, volume 2421 of LNCS, pages193�208. Springer-Verlag, 2002.[ASY01℄ E. Asarin, G. Shneider, and S. Yovine. On the deidability of the reaha-bility problem for planar di�erential inlusions. In HSCC'01, number 2034in LNCS, pages 89�104. Springer-Verlag, 2001.[ASY07℄ E. Asarin, G. Shneider, and S. Yovine. Algorithmi Analysis of PolygonalHybrid Systems. Part I: Reahability. Theoretial Computer Siene, 379(1-2):231�265, 2007.[HS74℄ M.W. Hirsh and S. Smale. Di�erential Equations, Dynamial Systems andLinear Algebra. Aademi Press In., 1974.[MP93℄ O. Maler and A. Pnueli. Reahability analysis of planar multi-linear systems.In CAV, number 697 in LNCS, pages 194�209. Springer-Verlag, 1993.[MP05℄ V. Mysore and A. Pnueli. Re�ning the undeidability frontier of hybridautomata. In FSTTCS, volume 3821 of LNCS. Springer-Verlag, 2005.[Sh02℄ G. Shneider. Algorithmi Analysis of Polygonal Hybrid Systems. PhD thesis,VERIMAG � UJF, Grenoble, Frane, July 2002.[Sh07℄ G. Shneider. On the deidability of the reahability problem for GSPDIs.Tehnial Report 359, Dept. of Informatis, Univ. of Oslo, June 2007.[Spe℄ SpeeDI+. http://www.s.um.edu.mt/speedi/.



A Proofs of Lemmas, Theorems and PropositionsThis appendix is for reviewing purposes only. It ontains the detailed proofs ofthe results whih ould not be inluded for spae reasons is being inluded at theend of the paper. Should the paper be aepted for publiation, the main papermerged with the proofs will be published as a tehnial report for referene.Setion 3Corollary 1 Composition of two TMAFs gives a TMAF. The omposition oftwo inverted TAMFs gives a normal TAMF. Conversely, the omposition of onenormal and one inverted TAMF (in either order) gives an inverted TAMF.Proof Sketh. The proof follows similarly to Theorem 1, where we note that theresulting a�ne funtions are swithed when one of the TAMFs is inverted, andthe gradient is the produt of the original two gradient values (hene positivewhen both positive or negative, and negative otherwise). ⊓⊔Setion 4.1Proposition 1 If e is an inout edge, then any trajetory reahing the edge analways slide on the edge (in one or the other diretion, or both).Proof. The results follows from the fat that the diretor vetor of e an beexpressed as the positive linear ombination of the two vetors of the region inonsideration. ⊓⊔Proposition 2. If e0 is an inout edge, then for any other edge e1, and interval
I, suh that Succe1e0

(I) is not empty, all suh applied suessors inlude the leftor all inlude the right end of the edge (equal to one of (0, x〉 or 〈x, 1) for somevalue of x � depending on one of I's extremities). ⊓⊔Proof. This is a diret onsequene of Proposition 1. ⊓⊔Lemma 5 Composition of the funtion Flip with an inverted TAMF results ina normal TAMF and in an inverted TAMF if we ompose Flip with a normalTAMF.Proof. Consider a normal TAMF f :



(Flip◦f)[x, y]
= { by de�nition of TAMFs }

Flip([alx
′ + bl, ary

′ + br] ∩ J) where [x′, y′] = [x, y] ∩ S

= { J = [Jl, Jr] and by de�nition of intersetion }
Flip[max{alx

′ + bl, Jl}, min{ary
′ + br, Jr}] where [x′, y′] = [x, y] ∩ S

= { de�nition of Flip }
[1 − min{ary

′ + br, Jr}, 1 − max{alx
′ + bl, Jl}] where [x′, y′] = [x, y] ∩ S

= { sine −min{x, y} = max{−x,−y}, similarly for max }
[1 + max{−(ary

′ + br),−Jr}, 1 + min{−(alx
′ + bl),−Jl)] where [x′, y′] = [x, y] ∩ S

= { sine a + max{x, y} = max{a + x, a + y}, similarly for min }
[max{1 − (ary

′ + br), 1 − Jr}, min{1 − (alx
′ + bl), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= arithmeti }
[max{−ary

′ − (1 + br), 1 − Jr}, min{−alx
′ + (1 − bl)), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= { de�nition of intersetion }
[−ary

′ − (1 + br),−alx
′ + (1 − bl)] ∩ [1 − Jr, 1 − Jl] where [x′, y′] = [x, y] ∩ S.Note that the result is also an inverted TAMF. The other result follows identi-ally. ⊓⊔Corollary 2 Any signature with an even number of bounes has its behaviourharaterised by a normal TAMF, while a signature with an odd number ofbounes is haraterised by an inverted TAMF.Proof. The proof follows by indution on the number of edges appearing in thesignature.The base ase is when the signature onsists of exatly two edges (shorter se-quenes of edges are not signatures by de�nition). Let the signature be σ = e0e1.Now either (i) e1 = e−1

0 , in whih ase we have an odd number (exatly one)boune, and Succσ = Flip (by de�nition 7) whih is an inverted TAMF (by de�-nition of Flip); or (ii) e1 6= e−1
0 , in whih ase we have an odd number of bounes(zero) and Succσ is a normal TAMF by the result in [ASY07℄. In both ases, theresult holds.Now let us assume that the result holds for signatures of length n, and we willonsider a signature of length n + 1, namely: σ = e0e1 . . . en. One again, either

en = e−1
n−1 or it is not. We will onsider the ases separately:� If en = e−1

n−1, then the signature e0e1 . . . en−1 ontains one boune less thatthe original signature.
Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1

= { de�nition of Succ on a boune }
Flip ◦ Succe0e1...en−1Now, if e0e1 . . . en has an even number of bounes, e0e1 . . . en−1 has an oddnumber of bounes (sine the last pair were a boune), and thus, by theindutive hypothesis, Succe0e1...en−1

is an inverted TAMF. But by the above



equational reasoning, and lemma 5, it follows that Succe0e1...en
is a normalTAMF.The ase when e0e1 . . . en has an odd number of bounes follows similarly.� On the other hand, if en 6= e−1

n−1, then the signature e0e1 . . . en−1 ontainsthe same number of bounes as the original signature.
Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1As before, if e0e1 . . . en ontains an even number of bounes, so thus e0e1 . . . en−1(sine the last pair were not a boune), and thus, by the indutive hypothesis,

Succe0e1...en−1
is a normal TAMF. But by the above equational reasoning,and lemma 1, it follows that Succe0e1...en

is a normal TAMF.The ase when e0e1 . . . en has an odd number of bounes follows similarly.
⊓⊔Lemma 7 Loops whih inlude bounes are not STAY loops.Proof. The proof follows from Proposition 1, whih guarantees that one wereah the �rst inout edge, we an always slide to one end of the edge. Hene anyloop ontaining suh edge annot be a STAY, by de�nition. ⊓⊔Lemma 6 The behaviour of any loop σ ontaining an even number of bounesan be alulated as for SPDIs.Proof. Corollary 2 ensures that Succσ is a normal TAMF. Earlier, in Setion 3,we have summarised the analysis from [ASY01℄ whih enables us to alulatethe behaviour of a yle whose TAMF is not inverted, in a non-iterative manner.We an thus use this tehnique to alulate the iterated behaviour of σ in anon-iterative way. ⊓⊔Lemma 8 Given a signature with one loop σ = e0(e1e

−1
1 e2 . . . en)ke1 (with

k > 0, whih has an odd number of bounes, and starts with a boune), thebehaviour of signature is equivalent to following the loop only one as in σ′ =
e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ .Proof. Sine e1 is an inout edge, by proposition 2, we know that we an slidein (at least) one diretion. without loss of generality, let's assume that for any

e, Succee1
(I) = (0, x). Note that due to the de�nition of TAMFs, x is onlydependant on the right bound of I.Let F = Succe

−1

1
e2...ene1

. Sine this inludes an even number of bounes, om-posed TAMF (thus F ) is a normal (non-inverted) TAMF. Moreover, sine F (I) =
Succene1

(Succe
−1

1
e2...en

(I)), then F (I) = (0, x) for some value of x. Finally, wenote that sine F is a normal TAMF, x is dependant only on the right bound of
I, we an onlude that there exists α suh that for any x, F (x, 1) = (0, α).



We an now proeed to prove the result by indution on k. Trivially, the resultholds for k = 1. Now onsider k > 1:
Succe0(e1e

−1

1
e2...en)ke1

(I)

= { k > 1 }
Succe0(e1e

−1

1
e2...en)(e1e

−1

1
e2...en)k−1e1

(I)

= { by indution }
Succe0(e1e

−1

1
e2...en)(e1e

−1

1
e2...en)e1

(I)

= { by de�nition of Succ and F }
F ◦ Succe1e−1

◦ FSucce1e−1
◦ Succe0e1

(I)
= { by de�nition of Flip }

F ◦ Flip ◦ F ◦ Flip ◦ Succe0e1
(I)

= { by sliding argument given above }
F ◦ Flip ◦ F ◦ Flip(0, x)

= { by de�nition of Flip }
F ◦ Flip ◦ F (1 − x, 1)

= { by property of F given above }
F ◦ Flip(0, α)

= { by de�nition of Flip }
F (1 − α, 1)

= { by property of F given above }
(0, α)

= { by property of F given above }
F (1 − x′, 1)

= { by de�nition of Flip }
F ◦ Flip(0, x′)

= { by sliding argument given above }
F ◦ Flip ◦ Succe0e1

(I)
= { by de�nition of Flip }

F ◦ Succe1e
−1

1

◦ Succe0e1
(I)

= { by de�nition of Succ and F }
Succe0(e1e

−1

1
e2...en)e1

(I)By indution the result thus follows.
⊓⊔Lemma 9 Given a loop σ with an odd number of bounes, we an alulate thelimit of σ+ without iterating.Proof. Let σ = e0e1 . . . eie

−1
i ei+1 . . . en, where eie

−1
i is the �rst boune of thesequene. Sine σ ontains inout edges, it annot be a STAY loop, and we onlyonsider the ase where the loop �nally exits. Consider the exiting loop σ+e′.The ase when σ is never repeated or repeated only one, an be easily han-dled. When the number of repetitions is at least twie, we an use the followingreasoning:



Succσke′

= { de�nition of σ }
Succ(e0e1...eie

−1

i
ei+1...en)ke′

= { de�nition of path repetition }
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)k−1eie

−1

i
ei+1...e′

= { using Lemma 8 }
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)eie

−1

i
ei+1...ene′This redues the analysis of suh loops to a simple path analysis whih we knowhow to perform. ⊓⊔Theorem 4 We an (onstrutively) ompute the behaviour of a signature

r1s
+
1 r2s

+
2 . . . rn.Proof. We use the standard tehniques presented in [ASY07℄, but use Theorems6 and 9 to analyse loops with bounes. ⊓⊔Setion 4.2Lemma 10Given a GSPDI, and assuming only trajetories without self-rossing,if there is a type of signature where a simple yle s = (e0, e1, . . . , en) ap-pears twie, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′ , then if there is noreverse(s) between the two ourrenes of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′.Proof Sketh. There are two ases:1. σ′′ = skrsk′′ : In this ase r must be of the form e−1
n e−1

n−1 . . . e−1
i with i > 0.We must have a bouning at e−1

i , then we an slide and we get σ′′ = sk′′′ .2. σ′′ = skωsk′′ : Here ω is any �nite sequene of alternating r's and s′s. Itan be shown that either we redue to the previous ase, or ω must ontainreverse(s), or there must be a self-rossing. ⊓⊔Lemma 11 Given a GSPDI, if there is a trajetory segment ξ : [0, T ] →
R

2, with ξ(0) = x and ξ(t) = x
′ for some t > 0, suh that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = reverse(s1) and s3 = s1, then it is always possibleto �nd a trajetory segment ξ′ : [0, T ] → R
2 suh that ξ′(0) = x and ξ′(t) = x

′for some t > 0, and type(Sig(ξ)) = r1s
k′

1

1 r′4.Proof Sketh. Let s1 = (e0, e1, . . . , en) be a simple yle where ξ is a lokwisespiral turning inwards. Due to Proposition 1, we have the following two ases:1. e0 allows sliding inwards.We an always eliminate the �rst s, i.e., type(Sig(ξ)) =
r′1s

k2

2 r3s
k3

3 r4. See Fig. 7.2. e0 allows sliding outwards. Two ases:(a) reverse(s1) loops outwards. In this ase we an eliminate s2 sineone we start that loop, we an slide outwards till s3 starts, and weget type(Sig(ξ)) = r1s
k1

1 sk3

3 r4, whih is type(Sig(ξ)) = r1s
k′

1 r4. See Fig.5-(a).
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e3Fig. 5. Proof of Lemma 11 - Case sliding outwards: (a) ase reverse(s) looping out-wards; (b) ase reverse(s) looping inwards and exiting.(b) reverse(s1) loops inwards. Two ases:i. r2 ontains only edges in s1 and s2. This implies bouning. Twoases.A. Bouning inwards. Implies sliding inwards, whih ontraditsthe assumption. See Fig. 6-(a).B. Bouning outwards. Implies reverse(s1) must loop outwards,ontradits the assumption that reverse(s1) loops inwards. SeeFig. 6-(b).ii. r2 ontains edges not in s1 and s2. This means that the trajetoryexit s1 through the 'right'. Let us assume the last visited point in s1is x ∈ en, and that x
′ ∈ e suh that ξ(t) = x and ξ(t′) = x

′ with
Sig(ξ[t..t′]) = ene, where e ∈ first(r2). Then the segment of line
xx′ partition the region R into two subregions R1 and R2. Clearlythe only way to have r2s2 with s2 going inwards is from a trajetorysegment from region R1 to R2 by rossing xx′, whih breaks theassumption of non-rossing trajetories. Thus the pattern s2r3s3 isnot possible in this ase. See Fig. 5-(b). ⊓⊔Corollary 3 Given a GSPDI, let σ = e1 . . . ep be an edge signature, then it analways be written as σA = r1s

k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤ n + 1, siis a simple yle (i.e., without repetition of edges), and for every 1 ≤ i 6= j ≤ n,

si and sj are di�erent.Proof. If there are i 6= j suh that si = sj , the only possibility is to satisfy orthe assumptions of Lemma 10 or Lemma 11. In both ases we an always obtaina signature without repeating si. ⊓⊔Corollary 4 The number of di�erent types of abstrat signatures of a givenGSPDI is �nite.
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e3Fig. 6. Proof of Lemma 11 - Case sliding outwards: (a) ase bouning inwards; (b) asebouning outwards.
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e3Fig. 7. Proof of Lemma 11 �Case sliding inwards.Proof. Based on Lemma 3, it su�es to analyse signatures of the form σA =
r1s

+
1 . . . rns+

n rn+1 suh that provided that i 6= j, si 6= sj and with eah rkontaining no repeated edges. Hene, sine the number of edges is �nite, thenumber of possible values eah rk an take is �nite. Similarly, the number ofdistint simple loops is �nite. Therefore, the number of abstrat signatures toanalyse is �nite. ⊓⊔Setion 4.3Lemma 12 Reah(H,x0,xf ) is a terminating, orret and omplete algorithmalulating GSPDI reahability.Proof. Termination of step 1 follows from the fat that GSPDIs have �nite par-titions. Step 2 terminates by orollary 4. Using Theorems 9 and 6 we an alsoompute steps 3 and 4, hene guaranteeing termination of the algorithm.



Corretness of the algorithm follows from Theorems 9 and 6 (on aeleratingloops with bounes) and the results in [Sh02,ASY07℄ on the orretness of SPDIreahability heking.Finally, ompleteness is guaranteed by Theorem 4.Therefore, Reah(Hi,x0,xf ) (for all Hi ∈ Hred, 1 ≤ i ≤ n), is a terminatingomplete and sound algorithm for deiding GSPDI reahability. ⊓⊔


