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t. Polygonal hybrid systems (SPDIs) are planar hybrid sys-tems, whose dynami
s are de�ned in terms of 
onstant di�erential in-
lusions, with di�erent for ea
h of a number of polygonal regions par-titioning the plane. The rea
hability problem for SPDIs is known to bede
idable, but depends on the goodness assumption � whi
h states thatthe dynami
s do not allow a traje
tory to both enter and leave a regionthrough the same edge. In this paper we extend the de
idability result togeneralised SPDIs (GSPDI), SPDIs not satisfying the goodness property,and give an algorithmi
 solution to de
ide rea
hability of su
h systems.1 Introdu
tionA hybrid system is one in whi
h dis
rete and 
ontinuous behaviours intera
t.Some systems are inherently hybrid � 
onsider a robot, with di�erential equa-tions determining, for instan
e, its speed, together with an embedded 
omputertaking dis
rete de
isions based on the 
ontinuous input values 
oming from sen-sors. In other 
ases, a system 
onsisting only of 
ontinuous behaviour, 
an behybridised, introdu
ing dis
rete behaviour in order to fa
ilitate the analysis. Forexample, exa
t solutions 
an be di�
ult to obtain for a non-linear di�erentialequation, making a qualitative and approximative analysis ne
essary.In general, the main problem with the analysis of hybrid systems is that forproperties su
h as rea
hability, their veri�
ation is unde
idable. For instan
e,the rea
hability problem for planar PCDs (deterministi
 systems with Pie
ewiseConstant Derivatives) is known to be de
idable [MP93℄, but be
omes unde
idablein three and higher dimensions [AMP95℄. Slight extensions of su
h de
idable
lasses have been proved to be unde
idable or equivalent to problems for whi
hde
idability or unde
idability is not known [AS02,MP05℄.An interesting 
lass of hybrid systems for whi
h the rea
hability question isknown to be de
idable, is the 
lass of Polygonal Hybrid Systems (SPDIs) � asub
lass of hybrid systems on the plane whose dynami
s is de�ned by 
onstantdi�erential in
lusions [ASY01,ASY07,S
h02℄. Informally, an SPDI 
onsists of a
⋆ An appendix with the detailed proofs of the results whi
h 
ould not be in
ludedfor spa
e reasons is being in
luded at the end of the paper. Should the paper bea

epted for publi
ation, the main paper merged with the proofs will be publishedas a te
hni
al report for referen
e. Please do not 
ount the appendix towards thepage limit.
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Fig. 1. (a) Example of an SPDI; (b) Good and bad regions.partition of the plane into polygonal regions, ea
h of whi
h enfor
es di�erentdynami
s given by two ve
tors determining the possible dire
tions a traje
torymight take; a simple SPDI is depi
ted in �gure 1-(a). A 
onstru
tive proof forde
iding rea
hability on SPDIs 
an be found in [ASY07℄. The proof is restri
tedto SPDIs whi
h have the so-
alled goodness property � the dynami
s of anyregion of the SPDI do not allow a traje
tory to traverse any edge of the polygonalregion in opposite dire
tions (see �gure 1-(b)). Te
hni
ally this is equivalentto the property that the dire
tion ve
tor of ea
h edge 
annot be obtained asa positive linear 
ombination of the ve
tors de�ning the dynami
s. An SPDIwithout the goodness property is 
alled Generalised SPDI (GSPDI).In this paper, we present a 
onstru
tive de
idable algorithm for solving the rea
h-ability problem for GSPDIs. This de
idability result 
ontributes towards narrow-ing the unde
idability frontier of low dimension hybrid systems [AS02,MP05℄.At the same time our positive result allows GSPDIs to be used to approximateplanar non-linear di�erential equations.The paper is organised as follows. In the next se
tion, we informally dis
ussthe motivation behind relaxing goodness, and explain what te
hni
al problemsarise when doing so. In se
tion 3 we de�ne the notation used, and outline def-initions and results about SPDIs. Se
tion 4 is 
on
erned with the extension ofthese results to enable analysis of GSPDIs, in
luding the de
ision algorithm forrea
hability. We 
on
lude in the last se
tion.2 On GoodnessIn this se
tion we dis
uss informally why goodness is good for de
iding the rea
h-ability problem of SPDI and what are the problems when relaxing it. More formalde�nitions will be given in se
tion 3.See �gure 1-(b) for an example of a good and a `bad' region (here `bad' indi
atesthat the region does not satisfy the goodness 
riterion). In the �gure on the leftwe 
an see a good region, where the two ve
tors a and b make it impossiblefor a traje
tory to enter and leave the region P through the same edge of thepolygon delimiting the region. On the other hand, the �gure on the right showsa bad region: Both e2 and e5 
an be 
rossed in both dire
tions by a traje
toryentering and leaving P , as shown in the �gure.



2.1 On Why Goodness is GoodThe algorithm presented in [ASY07℄ for de
iding rea
hability on SPDI dependson pre-pro
essing of traje
tory segments and a qualitative analysis to guaranteethat it is possible to review the behaviour of all the possible signatures1, bylooking at only a �nite set of abstra
t signatures. Informally, this is a
hieved asfollows:1. Traje
tory segments are simpli�ed � it is su�
ient to look at traje
toriesmade up of straight segments a
ross regions, and whi
h do not 
ross them-selves.2. Traje
tory segments are abstra
ted into signatures, 
onsisting of just thesequen
e of traversed edges. This result is based on the Poin
aré map [HS74℄,that relates n-dimensional 
ontinuous-time systems with (n−1)-dimensionaldis
rete-time systems.3. It is shown that it is su�
ient to look at signatures whi
h 
onsist only ofsequen
es of edges and simple 
y
les.4. Su
h signatures 
an be abstra
ted into types of signatures � signatureswhi
h do not take into a

ount the number of times ea
h simple 
y
le isiterated.Many of the lemmas for proving that the above guarantee the �niteness of typesof signatures 
riti
ally depend on the goodness assumption, whi
h propagate thisdependen
y to the 
onstru
tive proof given for de
iding rea
hability of SPDIswhi
h satis�es the goodness assumption.2.2 On Why We'd Rather Not be GoodRestri
ting oneself only to SPDIs satisfying the goodness assumption makes itvery di�
ult to model real-life examples. Unfortunately, extending the SPDImodel in most ways, su
h as allowing jumps with resets (from one edge to an-other remote one), in
reasing the number of dimensions and allowing non-lineardi�erential in
lusions, have been shown to make the model unde
idable [AS02℄.A potentially interesting and useful appli
ation of SPDIs is that of the approx-imation and analysis of two-dimensional non-linear di�erential equations. Bysplitting the plane into polygons, and by setting the dynami
s of ea
h polygonto be over-approximations of the non-linear di�erential equation in that region,one 
an ask rea
hability questions about the equation, and obtain answers a
-
ordingly. When over-approximating the dynami
s, a negative rea
hability an-swer implies a negative answer in the exa
t equation. Using more and smallerpolygons enables more pre
ise approximations.The problem with using this approa
h is that for most di�erential equations,using a �xed partition breaks the goodness assumption, sin
e almost invariably,some edges of some regions will lie within the di�erential in
lusion of that region.1 We 
all signature the sequen
e of traversed edges by the traje
tory. A more formalde�nition will be given in a later se
tion.



Fig. 2. Approximating a non-linear di�erential equation des
ribing a pendulum usingdi�erent partitioning of the plane.One solution would be to try to derive an intelligent partition of the plane whi
hmaintains goodness, whi
h in some 
ases may be impossible, or by extending theSPDI analysis algorithms by relaxing the goodness assumption, thus enablingthe modelling of non-linear di�erential equations in a straightforward manner.As a simple example, 
onsider a pendulum with fri
tion 
oe�
ient k, mass M ,pendulum length R and gravitational 
onstant g. If θ is the angle subtended withthe verti
al, the behaviour of su
h a pendulum is des
ribed by the di�erentialequation: MR2θ̈+kθ̇+MgR sin θ = 0. By taking x = θ, and y = θ̇, we get ẋ = yand ẏ = − ky

MR2 − g sin(x)
R

.Using these formulae, we 
an produ
e SPDIs expressing these 
onstraints, possi-bly with di�erent plane partitions. Figure 2 gives two su
h partitions for k = 1,
R = 10, M = 10, and g = −10. Visual inspe
tion of the SPDIs, shows that vari-ous polygons fail the goodness assumption. By presenting an algorithm showingthe de
idability of rea
hability on Generalised SPDIs, we 
an automati
ally anal-yse su
h systems.3 Polygonal Hybrid Systems (SPDIs)In this se
tion we re
all the main de�nitions and 
on
epts required in the restof the paper, and give an outline of the results for SPDIs, upon whi
h theresults presented in this paper are built. For a more detailed presentation see[ASY07,S
h02℄.In the rest of this se
tion, we will use a = (a1, a2) and x = (x1, x2) to represent2-dimensional ve
tors (a,x ∈ R

2). An angle ∠
b

a
on the plane, de�ned by two non-zero ve
tors a and b is the set of all positive linear 
ombinations x = α a+ β b,with α, β ≥ 0, and α + β > 0. We 
an always assume that b is situated in the
ounter-
lo
kwise dire
tion from a.



De�nition 1. A polygonal hybrid system (SPDI) is a pair H = 〈P, F〉, where
P is a �nite partition of the plane (with ea
h P ∈ P being a 
onvex polygon),
alled the regions of the SPDI, and F is a fun
tion whi
h asso
iates a pair ofve
tors to ea
h polygon: F(P ) = (aP ,bP ).In an SPDI every point on the plane has its dynami
s de�ned a

ording to whi
hpolygon it belongs to: if x ∈ P , then ẋ ∈ ∠

bP
aP

.Example 1. Consider the SPDI illustrated in �gure 1-(a), with eight regions
R1, R2, . . . , R8. A pair of ve
tors (ai,bi) is also asso
iated to ea
h region Ri:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2 ), a3 = (−1, 11
60 ) and b3 = (−1,− 1

4 ),
a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1).We de�ne E(P ) to be the set of edges of region P . We say that an edge e(e ∈ E(P )) is an entry-only of P if for all x ∈ e and for all c ∈ ∠

bP
aP

, x + cǫ ∈ Pfor some ǫ > 0. We say that e is an exit-only of P if the same 
ondition holds forsome ǫ < 0. Intuitively, an entry-only (exit-only) edge of a region P allows at leasta traje
tory in P starting (terminating) on edge e, but allows no traje
tories in Pterminating (starting) on edge e. We write In(P ) (In(P ) ⊆ E(P )) to denote theset of all entry-only edges of P and Out(P )(Out(P ) ⊆ E(P )) to denote the setof exit-only edges of P . From the de�nition, it follows immediately that no edge
an be both an entry-only and an exit-only edge of a region: In(P )∩Out(P ) = ∅.A region P is said to be good, if all the edges of that region are either entry-onlyor exit-only: E(P ) = In(P ) ∪ Out(P ). An SPDI is said to be good, or satisfythe goodness property, if it 
onsists of only good regions: ∀P ∈ P · E(P ) =In(P ) ∪Out(P ).Assumption 1 In the rest of this se
tion, we will 
onsider only good SPDIs.Example 2. In �gure 1-(b), the region P shown on the left is good sin
e all edgesare either entry-only or exit-only. The region depi
ted on the right shows a regionthat is not good, sin
e neither edge e2 nor edge e5 are in In(P ) ∪Out(P ).We will use the notation eP
� to indi
ate the dire
ted edge e su
h that it followsa 
lo
kwise dire
tion in region P , and similarly eP

	 to indi
ate the dire
ted edge
e following an anti
lo
kwise dire
tion in region P . Given a dire
ted edge e, itsinverse will be written as e−1.De�nition 2. The set of dire
ted edges of an SPDI H with partition P, written
Ed(H), is de�ned to be:

Ed(H) = {eP
� | P ∈ P, e ∈ In(P )} ∪ {eP

	 | P ∈ P, e ∈ Out(P )}.Similarly, we de�ne Ind(P ) and Outd(P ) to 
orrespond to In(P ) and Out(P )but with dire
ted edges.Sin
e an edge typi
ally appears in two adja
ent regions, the dire
tion indu
ed inthe two regions may be di�erent. However, it was proved that edges whi
h are



entry-only in one region, and exit-only in the other result in mat
hing indu
eddire
tions: e ∈ Ed(H) or e−1 ∈ Ed(H), but not both [MP93,S
h02℄. In an SPDIsatisfying goodness, the only 
ase where one 
an have both e and e−1 is whenthe dynami
s of the regions result in e being either both an entry-only or anexit-only edge in the two adja
ent regions it belongs to.A traje
tory segment of an SPDI H, is a 
ontinuous fun
tion ξ ∈ [0, T ] → R
2su
h that for all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ ∠

bP
aP

. Thesignature of a traje
tory segment ξ, written Sig(ξ), is the ordered sequen
e ofedges traversed by the traje
tory, that is, e1, e2, . . . en resulting from ξ ∩Ed(H).One of the more important results presented in [ASY07℄ is that the behaviourof any traje
tory is equivalent to the behaviour of some traje
tory whi
h doesnot 
ross itself and follows straight-line segments within regions.Lemma 1. Given a traje
tory segment ξ ∈ [0, T ] → R
2, there exists anothertraje
tory segment ξ′ ∈ [0, T ′] → R

2 starting and �nishing at the same pointsas ξ (ξ(0) = ξ′(0) and ξ(T ) = ξ′(T ′)) su
h that (i) ξ′ does not 
ross itself (ξ isinje
tive); and (ii) ξ′ follows straight-line segments inside regions. ⊓⊔This result shows that to de
ide rea
hability, it is su�
ient to look at non-self-
rossing traje
tories 
onsisting of straight-line segments. In the rest of thedis
ussion, we will restri
t our use of traje
tory to mean `a non-self-
rossing tra-je
tory 
omposed of straight-line segments between edges'. Similarly, the termsignature will be used to indi
ate the signature of a traje
tory with these 
on-straints. Note that the result is true of any SPDI, not only ones satisfying thegoodness 
onstraint.Trun
ated A�ne Multi-Valued Fun
tions An a�ne fun
tion f ∈ R → Ris su
h that f(x) = ax + b. If a > 0 we say that f is positive a�ne, and if a < 0we say that f is negative a�ne; we 
all this the parity of the a�ne fun
tion.An a�ne multivalued fun
tion (AMF) F ∈ R → 2R, written F = 〈fl, fu〉, isde�ned by F (x) = 〈fl(x), fu(x)〉 where fl and fu are a�ne and 〈·, ·〉 denotes aninterval. For notational 
onvenien
e, we do not make expli
it whether intervalsare open, 
losed, left-open or right-open, unless required for 
omprehension. Foran interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉.An inverted a�ne multivalued fun
tion F ∈ R → 2R, written F = 〈fl, fu〉, isde�ned by F (x) = 〈fu(x), fl(x)〉 where fl and fu are both negative a�ne and
〈·, ·〉 denotes an interval.Given an AMF F and two intervals S ⊆ R

+ and J ⊆ R
+, a trun
ated a�nemultivalued fun
tion (TAMF) FF,S,J ∈ R → 2R is de�ned as follows: FF,S,J(x) =

F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows we will write Finstead of FF,S,J whenever no 
onfusion may arise. Moreover, in the rest of thepaper F will always denote an AMF and F a TAMF. For 
onvenien
e we write
F(x) = F ({x} ∩ S) ∩ J instead of F(x) = F (x) ∩ J if x ∈ S. We overload theappli
ation of a TAMF on an interval I: F(I) = F (I ∩ S)∩ J . We say that F isnormalised if S = Dom(F) = {x | F (x) ∩ J 6= ∅} and J = Im(F) = F(S).



As in the 
ase of a�ne multivalued fun
tions, an inverted trun
ated a�ne mul-tivalued fun
tion (inverted TAMF) is similar to a TAMF, but de�ned in termsof an inverted a�ne multivalued fun
tion as opposed to a normal one. An im-portant result is that normal TAMFs are 
losed under 
omposition.Theorem 1. The 
omposition of two normal TAMFs F1(I) = F1(I ∩ S1) ∩ J1and F2(I) = F2(I ∩ S2)∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S)∩ J ,where F = F2 ◦ F1, S = S1 ∩ F−1
1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). ⊓⊔The following 
orollary extends the above result.Corollary 1. The 
omposition of two inverted TAMFs gives a normal TAMF.Conversely, the 
omposition of one normal and one inverted TAMF (in eitherorder) gives an inverted TAMF. ⊓⊔To avoid having to reason about the length of every edge, we normalise everyedge e su
h that its TAMF has the domain [0, 1] (that is, the normalised versionof e has length 1, with 0 
orresponding to the starting point of the dire
ted edge,and 1 to the end point).Su

essors Given an SPDI, we �x a one-dimensional 
oordinate system onea
h edge to represent points lying on edges. For notational 
onvenien
e, we willuse e to denote both the dire
ted edge and its one-dimensional representation.A

ordingly, we write x ∈ e and x ∈ e, to mean �point x lies on edge e� and�
oordinate x in the one-dimensional 
oordinate system of e� respe
tively. Thesame 
onvention applied to sets of points of e represented as intervals (for exam-ple, x ∈ I and x ∈ I, where I ⊆ e) and to traje
tories (for example, �ξ startingat x� or �ξ starting at x�).Consider a polygon P ∈ P, with e0 ∈ Ind(P ) and e1 ∈ Outd(P ). For I ⊆ e0,

Succe0e1
(I) is de�ned to be the set of all points lying on e1 rea
hable from somepoint in I by a traje
tory segment ξ ∈ [0, t] → R

2 in P (that is, ξ(0) ∈ I ∧ ξ(t) ∈
e1 ∧ Sig(ξ) = e0e1). Given I = [l, u], Succe0e1

(I) = F (I ∩ Se0e1
) ∩ Je0e1

, where
Se0e1

and Je0e1
are intervals, F ([l, u]) = 〈fl(l), fu(u)〉 and fl and fu are positivea�ne fun
tions. Su

essors are thus normal TAMFs.Qualitative analysis of simple edge-
y
les Let σ = (e1 . . . ek) be a simpleedge-
y
le � that is, a signature that 
an be repeated a number of times, andsu
h that all edges are distin
t (ei 6= ej for all 1 ≤ i < j ≤ k). Let Succσ(I) =

F (I ∩ Sσ) ∩ Jσ with F = 〈fl, fu〉.We assume that neither of the two fun
tions fl, fu is the identity fun
tion. Thefollowing analysis, taken from [ASY01℄, allows us to 
al
ulate the behaviourof 
y
les provided that the path along the 
y
le has a normal (not inverted)TAMF. Sin
e, in good SPDIs, the TAMF between a pair of edges is normal, andthe 
omposition of two normal TAMFs is itself a normal TAMF, this approa
his universally appli
able as long as the goodness assumption holds.



Let σ be a simple 
y
le, and l∗ and u∗ be the �x-points2 of fl and fu, respe
tively,and Sσ ∩ Jσ = 〈L, U〉. It 
an be shown that σ is of one of the following types:STAY. The 
y
le is not abandoned neither by the leftmost nor the rightmosttraje
tory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost traje
tory exits the 
y
le through the left (
onsequently theleftmost one also exits) or the leftmost traje
tory exits the 
y
le through theright (
onsequently the rightmost one also exits), that is, u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost traje
tory exits the 
y
le through the left and therightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost traje
tory exits the 
y
le (through the left) but therightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost traje
tory exits the 
y
le (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The 
lassi�
ation above provides useful information about the qualitative be-haviour of traje
tories. Any traje
tory that enters a 
y
le of type DIE will even-tually leave it after a �nite number of turns. In the 
ase of a 
y
le is of typeSTAY, all traje
tories that happen to enter it will keep turning inside it forever.In all other 
ases, some traje
tories will turn for a while and then exit, andothers will 
ontinue turning forever. This information is 
ru
ial for solving therea
hability problem for SPDIs. Also note that the above analysis gives us anon-iterative solution of 
y
le behaviour for most 
y
les. An important result toprove the de
idability of SPDIs is that any valid signature 
an be expressed ina normal form, 
onsisting of alternating sequential paths and simple loops:Theorem 2. Given an SPDI with the goodness 
onstraint, any edge signature
σ = e1 . . . ep 
an be written as σA = r1s

k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤

n + 1, ri is a sequen
e of pairwise di�erent edges and for all 1 ≤ i ≤ n, si is asimple 
y
le (no edges are repeated within si). ⊓⊔This representation of signatures is the base to obtain types of signatures withthe following properties:Lemma 2. Given a good SPDI, let σ = e0 . . . ep be a feasible signature, then itstype, type(σ) = r1, s1, . . . , rn, sn, rn+1 satis�es the following properties:
P1 For every 1 ≤ i < j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i < j ≤ n, si and sj are di�erent. ⊓⊔The �niteness of the di�erent types of signatures is the basis of the proof of de-
idability of (good) SPDI rea
hability, and of the termination of the rea
habilityalgorithm (together with a

eleration results for simple loops).Theorem 3. The rea
hability problem in SPDIs satisfying the goodness 
on-straint is de
idable.2 The �x-point x∗ of a fun
tion f is the set of solutions to the equation f(x∗) = x∗.
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Fig. 3. (a) An SPDI with mat
hing order of edges; (b) a GSPDI showing that the orderbreaks the 
ontiguity of the edge dire
tions.4 Relaxing Goodness: Generalised SPDIsThe original proof of the de
idability of the rea
hability question for SPDIs, de-pended on the 
on
ept of monotoni
ity of TAMFs and their 
omposition. Beforestarting the analysis, the algorithm �xed the dire
tion of the edges separating re-gions. An interesting result guaranteed that the orientation of the edges resultedin ea
h polygon split into two 
ontiguous sequen
es of paths � one being theinput edges, the other being the output edges. Furthermore, the orientation ofan edge in one region is guaranteed to mat
h the orientation of the same edge inthe adja
ent region3, as shown in �gure 3-(a). When one moves on to GSPDIs,inout edges break this result, sin
e the dire
tion of an edge when 
onsideredas an input edge 
lashes with the dire
tion it is given when used as an outputedge in the same region. The previous result however, still guaranteed that theentry-only edges and the exit-only edges 
an be assigned in one �xed dire
tion(see �gure 3-(b)).To solve this problem, we use dire
ted edges, and di�erentiate between the edgeused as an input, and when it is used as an output, just as though they weretwo di�erent edges in the GSPDI. Figure 4-(a) shows how an inout edge 
an beseen in this manner. Note that edge e1 is an input edge in region R1, but anoutput edge in region R2, and similarly, e−1
1 is an output edge in region R1 andan input edge in region R2. In other words, any path passing through the edge3 As we have already pointed out, there are spe
ial 
ases when an edge is an entry-onlyto a region and an exit-only to an adja
ent regions. From the rea
hability point ofview this does not 
ause any problem as these 
ases 
an be identi�ed and treateda

ordingly.
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Fig. 4. (a) A GSPDI with a dupli
ated inout edge; (b) a path through the GSPDIusing edge e1 in both dire
tions.su
h as σ = e0e1e2 . . . e3e
−1
1 e4 (see �gure 4-(b)) 
an be analysed as before, andthrough monotoni
ity, one 
an dedu
e that Succσ is a positive TAMF. e1 and

e−1
1 are 
onsidered distin
t edges, and the above path 
ontains no loop.It 
an be seen that the standard analysis for SPDIs works well for su
h 
ases.However, paths 
an now `boun
e' o� an edge. Re
all that any pair of edges e0e1is part of a path if e0 is an input edge of a region, and e1 is an output edge ofthe same region. One 
an 
al
ulate the TAMF for su
h a traje
tory. However,

ee−1 
an now be a valid path, whose behaviour 
annot be expressed as a normalTAMF. This breaks the analysis used in SPDIs, to a

elerate the analysis ofloops. The standard SPDI analysis thus needs to be extended to handle su
h`boun
es' in paths.4.1 Preliminary ResultsThe goodness restri
tion (assumption 1) was originally introdu
ed to simplifytreatment of traje
tories and to guarantee, amongst other things, that ea
h re-gion 
an be partitioned into entry-only and exit-only edges in an ordered way,fa
t used in the proof of de
idability of the rea
hability problem. We will in-trodu
e in this se
tion further ba
kground, and provide new results 
on
erningGSPDIs, needed to prove our de
idability result.De�nition 3. An edge e ∈ P is an inout edge of P if e is neither an entry-onlynor an exit-only edge of P .An SPDI without the goodness restri
tion is 
alled aGeneralised SPDI (GSPDI).Thus, in GSPDIs there are three kinds of edges: inouts, entry-only and exit-only.



Self-
rossing of traje
tory segments of SPDIs 
an be eliminated whi
h allow usto 
onsider only non-
rossing traje
tory (segments). Lemma 1 (the full proofof whi
h 
an be found in [ASY07℄) also applies to GSPDIs. Therefore, in whatfollows, we will 
onsider only traje
tory segments without self-
rossings.Note that on GSPDIs, a traje
tory 
an �interse
t� an edge at an in�nite numberof points by sliding along it. A tra
e is thus no longer a sequen
e of points, butrather, a sequen
e of intervals.De�nition 4. The tra
e of a traje
tory ξ is the sequen
e trace(ξ) = I0I1 . . . Inof the interse
tion intervals of ξ with the set of edges: Ii ⊆ ξ ∩ Ed(H).De�nition 5. An edge signature (or simply a signature) of a GSPDI is a se-quen
e of edges. The edge signature of a traje
tory ξ, Sig(ξ), is the ordered se-quen
e of traversed edges by the traje
tory segment, that is, Sig(ξ) = e0e1 . . . en,with trace(ξ) = I0I1 . . . In and Ii ⊆ ei.Note that, in many 
ases, the intervals of a tra
e are in fa
t points. We saythat a traje
tory with edge signature Sig(ξ) = e0e1 . . . en and tra
e trace(ξ) =
I0I1 . . . In interval-
rosses edge ei if Ii is not a point.Given a traje
tory segment, we will distinguish between proper inout edges andsliding edges.De�nition 6. Let ξ be a traje
tory segment from point x0 ∈ e0 to xf ∈ ef , withedge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P . We saythat ei is a sliding edge of P for ξ if ξ interval-
rosses ei, otherwise e is said tobe a proper inout edge of P for ξ.We say that a traje
tory segment ξ slides along an edge e, if e is a sliding edge of
P for ξ, and that ξ is a sliding traje
tory if it 
ontains at least one sliding edge.The signatures that we will be analysing in GSPDIs are similar to ones in SPDIs,ex
ept that they may in
lude 
onse
utive inverted edges of the form ee−1. Thebehaviour between su
h edges does not 
orrespond to a normal TAMF, and thushas to be analysed separately.One interesting property of inout edges is that the dynami
s of the region theyare in allow us to slide along the edge to one of the end-points of the edge.Proposition 1. If e is an inout edge, then any traje
tory rea
hing the edge 
analways slide on the edge (in one or the other dire
tion, or both). ⊓⊔As for SPDIs, we have the following property of Succ: for any edge signatures
σ1 and σ2 and edge e: Succeσ1

◦ Succσ2e = Succσ2eσ1
.The following lemma shows that the edge-to-edge su

essor fun
tion is a normalTAMF whenever the two edges are not the inverse of ea
h other. It followsdire
tly from the similar result for SPDIs [ASY07℄, whi
h makes no assumptionregarding goodness.Lemma 3. For any two edges e0 and e1, Succe0e1
is always a normal TAMF,whenever e1 6= e−1

0 . ⊓⊔



A boun
e is a part of a traje
tory whi
h 
rosses an edge twi
e in immediatesu

ession. We de�ne boun
es formally within a signature as follows:De�nition 7. Given a signature σ = e0e1 . . . en, a pair of edges eiei+1 is saidto be a boun
e if ei+1 = e−1
i . We say that a signature e0e1 . . . en 
ontains mboun
es, if there are exa
tly m distin
t indi
es I = {i1, i2, . . . im} su
h forevery i ∈ I, ei = e−1

i+1.Let Flip[l, u] = [1 − u, 1 − l] be an interval fun
tion. The following result estab-lishes that the su

essor fun
tion for boun
es 
an be de�ned in terms of the Flipfun
tion. The result follows dire
tly from the de�nition of e−1:Lemma 4. The behaviour of going from an edge e to its inverse e−1 is equival-end to Flip: Succee−1 = Flip.One of the useful properties of SPDIs is that the su

essor fun
tion of any givensignature is a normal TAMF. For GSPDIs, however, we need to take into a

ountboun
es, and hen
e analyse the 
omposition of normal TAMFs with Flip:Lemma 5. Composing Flip with an inverted TAMF gives a normal TAMF andan inverted TAMF if we 
ompose it with a normal TAMF. ⊓⊔The parity of the number of boun
es o

urring in a given signature in�uen
esthe form of the underlying TAMF, as shown in the following result, whose prooffollows immediately by indu
tion on the number of boun
es.Corollary 2. Any signature with an even number of boun
es has its behaviour
hara
terised by a normal TAMF, while a signature with an odd number ofboun
es is 
hara
terised by an inverted TAMF. ⊓⊔Given a simple 
y
le σ, let σ+ be the 
y
le iterated one or more times. Re
allthat the analysis of simple 
y
le behaviour given for SPDIs depended only onthe assumption that the TAMF of the 
y
le body is a normal one. From theprevious result, it thus follows that whenever the number of boun
es is even ona given 
y
li
 signature, the 
omposed TAMF is a normal one, meaning that theloop analysis 
an be 
ondu
ted as for SPDIs:Lemma 6. Given a loop σ 
ontaining an even number of boun
es, its iteratedbehaviour σ+ 
an be 
al
ulated as for SPDIs. ⊓⊔Sin
e we slide along inout edges, and 
an only boun
e o� inout edges, we 
anprove that loops whi
h in
lude at least one boun
e are never STAY loops:Lemma 7. Loops whi
h in
lude boun
es are not STAY loops. ⊓⊔This leaves only simple 
y
les with an odd number of boun
es to be analysed.Considering the 
ase when a boun
e appears as the �rst pair of elements of a loopbody, we 
an a

elerate the analysis by running through the loop only on
e. Theproof follows from the fa
t that the initial boun
e enables a slide, thus allowingus to identify the limits through only one appli
ation of the loop body:



Lemma 8. Given a signature σ = e0(e1e
−1
1 e2 . . . en)ke1 (i) with only one loop;(ii) with k > 0; (iii) whi
h has an odd number of boun
es; and (iv) starts with aboun
e; the behaviour of signature is equivalent to following the loop only on
eas in σ′ = e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ . ⊓⊔Based on the above lemma, we 
an prove that any loop 
ontaining an odd numberof boun
es 
an be a

elerated. The proof works by unwinding the loop body topush the �rst boun
e to the beginning, and then applying the previous lemma:Lemma 9. Given a loop s with an odd number of boun
es, we 
an 
al
ulate thelimit of s+ without iterating. ⊓⊔Therefore, we 
an now analyse any type of signature in GSPDIs using the resultsfrom lemma 3 (to deal with inout edges), and lemmas 6 and 9 (to deal withboun
es).Theorem 4. We 
an 
ompute the behaviour of a signature r1s

+
1 r2s

+
2 . . . rn. ⊓⊔4.2 De
idabilityThe following lemma guarantees that it is su�
ient to 
onsider simple 
y
leswhi
h o

ur in a type of signature only under 
ertain patterns. Any type ofsignature 
ontaining two o

urren
es of the same simple 
y
le 
an be redu
ed toanother type of signature where the simple 
y
le s o

urs only on
e, providedthe 
y
le with the edges in reverse order (denoted reverse(s)) does not o

urbetween them. The proof is based on the fa
t that, assuming the path does not
ross itself, between two instan
es of a repeated loop, one 
an always �nd either(i) the reverse of the 
y
le; or (ii) a boun
e. In the latter 
ase, it 
an be shownthat the boun
e 
an be eliminated to avoid leaving the loop.Lemma 10. Given a GSPDI, and assuming only traje
tories without self-
rossing,if there is a type of signature where a simple 
y
le s = (e0, e1, . . . , en) appearstwi
e, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′ , then if there is noreverse(s) between the two o

urren
es of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′. ⊓⊔We also prove that a traje
tory whi
h takes a loop (any number of times),then takes it again (on
e again any number of times) but in reverse order, and�nally takes it a number of times in the forward dire
tion, 
an be simulated byanother traje
tory whi
h simply takes the loop a number of times. The proofis based on the fa
t that whi
hever dire
tion the �rst edge of the simple 
y
leunder 
onsideration allows sliding in, it is possible to obtain a type of signaturepreserving rea
hability without su
h pattern.Lemma 11. Given a GSPDI, if there is a traje
tory segment ξ : [0, T ] →
R

2, with ξ(0) = x and ξ(t) = x
′ for some t > 0, su
h that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = s−1
1 and s3 = s1, then it is always possible to �nda traje
tory segment ξ′ : [0, T ] → R

2 su
h that ξ′(0) = x and ξ′(t) = x
′ for some

t > 0, and type(Sig(ξ)) = r1s
k′

1

1 r′4. ⊓⊔



Based on these last two results, we 
an 
on
lude now that for GSPDIs we 
analways transform a type of signatures into one where simple loops are not re-peated.Corollary 3. Given a GSPDI, let σ be an edge signature, then it 
an always bewritten as σA = r1s
k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤ n + 1, si is a simple
y
le (i.e., without repetition of edges), and for every 1 ≤ i < j ≤ n, si and sjare di�erent. ⊓⊔The following lemma, ensuring that there are a �nite number of types of sig-natures in GSPDIs, follows from the previous results and it is the basis for thetermination proof of the rea
hability algorithm.Corollary 4. The number of di�erent types of abstra
t signatures of a givenGSPDI is �nite. ⊓⊔4.3 AlgorithmThe rea
hability algorithm for a GSPDI H, Rea
h(H,x0,xf ), 
onsists of thefollowing steps:1. Generate the �nite set of types of signatures Σ = {σ0, . . . , σn} taking intoa

ount e and e−1 as di�erent edges, and su
h that the loop signatures areall distin
t;2. Apply the fun
tion Reachσi

(x0,xf ) for ea
h σi ∈ Σ;3. If for at least one σi ∈ Σ, Reachσi
(x0,xf ) = Yes, then Rea
h(H,x0,xf ) =

Yes, otherwise the answer is No.We note that in step 2 we apply Succ progressively on the abstra
t signature,using theorems 6 and 9 to 
ompute the su

essor of a loop with boun
es, andthe Succ fun
tion as in the 
ase of SPDIs for the rest. Based on these results, itis possible to show termination, 
orre
tness and 
ompleteness of GSPDI rea
h-ability.Lemma 12. Rea
h(H,x0,xf ) is a terminating, 
orre
t and 
omplete algorithm
al
ulating GSPDI rea
hability. ⊓⊔From this, the main theoreti
al result of our paper follows immediately:Theorem 5. The rea
hability problem for GSPDIs is de
idable. ⊓⊔5 Con
lusionsWe have proved that the rea
hability question for GSPDIs is de
idable. Theproof is a 
onstru
tive one, giving an algorithm whi
h extends the one given in[ASY07℄ for SPDIs. The key lies in showing that the previous analysis works inall 
ases ex
ept when a loop 
ontains an odd number of boun
es. The algorithm



is extended to deal with su
h 
ases. Inout edges enable sliding in one or bothdire
tions. Although the algorithm needs to be extended to deal with these 
ases,the overall e�e
t of su
h edges is to a

elerate the analysis of an SPDI, sin
e (atleast) one end of the edge is immediately 
overed on
e the edge is rea
hed.Rea
hability analysis of GSPDIs is not easy. In [S
h07℄ a semi-de
ision algo-rithm has been presented by redu
ing rea
hability of GSPDI to rea
hability ofan exponential number of SPDIs. The main idea behind su
h an algorithm isthat in most 
ases rea
hability is preserved when �xing inout edges as entry-onlyor exit-only edges, and then 
onsidering all the possible permutations of SPDIsgenerated from su
h a pre-pro
essing, redu
ing then the problem to SPDI rea
h-ability. The main problem with the approa
h is that there are 
ases where it isnot possible to eliminate inout edges while preserving rea
hability.The main 
ontribution of our paper is an interesting one in a theoreti
al sense,sin
e it extends the 
lass of de
idable hybrid systems, narrowing further the gapbetween what is known to be be de
idable and what is known to be unde
idable[AS02,MP05℄. The result is, however, also interesting in a pra
ti
al sense, sin
e itprovides a good foundation to approximate planar non-linear di�erential equa-tions (as dis
ussed in se
tion 2.2). The next step is to implement the algorithm,extending the SPeeDI+ tool [APSY02,Spe℄ to treat GSPDIs, and use in real 
asestudies using non-linear di�erential equations.Referen
es[AMP95℄ E. Asarin, O. Maler, and A. Pnueli. Rea
hability analysis of dynami
alsystems having pie
ewise-
onstant derivatives. TCS, 138:35�65, 1995.[APSY02℄ E. Asarin, G. Pa
e, G. S
hneider, and S. Yovine. SPeeDI: a veri�
ationtool for polygonal hybrid systems. In CAV'02, volume 2404 of LNCS, pages354�358. Springer-Verlag, July 2002.[AS02℄ E. Asarin and G. S
hneider. Widening the boundary between de
idable andunde
idable hybrid systems. In CONCUR'02, volume 2421 of LNCS, pages193�208. Springer-Verlag, 2002.[ASY01℄ E. Asarin, G. S
hneider, and S. Yovine. On the de
idability of the rea
ha-bility problem for planar di�erential in
lusions. In HSCC'01, number 2034in LNCS, pages 89�104. Springer-Verlag, 2001.[ASY07℄ E. Asarin, G. S
hneider, and S. Yovine. Algorithmi
 Analysis of PolygonalHybrid Systems. Part I: Rea
hability. Theoreti
al Computer S
ien
e, 379(1-2):231�265, 2007.[HS74℄ M.W. Hirs
h and S. Smale. Di�erential Equations, Dynami
al Systems andLinear Algebra. A
ademi
 Press In
., 1974.[MP93℄ O. Maler and A. Pnueli. Rea
hability analysis of planar multi-linear systems.In CAV, number 697 in LNCS, pages 194�209. Springer-Verlag, 1993.[MP05℄ V. Mysore and A. Pnueli. Re�ning the unde
idability frontier of hybridautomata. In FSTTCS, volume 3821 of LNCS. Springer-Verlag, 2005.[S
h02℄ G. S
hneider. Algorithmi
 Analysis of Polygonal Hybrid Systems. PhD thesis,VERIMAG � UJF, Grenoble, Fran
e, July 2002.[S
h07℄ G. S
hneider. On the de
idability of the rea
hability problem for GSPDIs.Te
hni
al Report 359, Dept. of Informati
s, Univ. of Oslo, June 2007.[Spe℄ SpeeDI+. http://www.
s.um.edu.mt/speedi/.



A Proofs of Lemmas, Theorems and PropositionsThis appendix is for reviewing purposes only. It 
ontains the detailed proofs ofthe results whi
h 
ould not be in
luded for spa
e reasons is being in
luded at theend of the paper. Should the paper be a

epted for publi
ation, the main papermerged with the proofs will be published as a te
hni
al report for referen
e.Se
tion 3Corollary 1 Composition of two TMAFs gives a TMAF. The 
omposition oftwo inverted TAMFs gives a normal TAMF. Conversely, the 
omposition of onenormal and one inverted TAMF (in either order) gives an inverted TAMF.Proof Sket
h. The proof follows similarly to Theorem 1, where we note that theresulting a�ne fun
tions are swit
hed when one of the TAMFs is inverted, andthe gradient is the produ
t of the original two gradient values (hen
e positivewhen both positive or negative, and negative otherwise). ⊓⊔Se
tion 4.1Proposition 1 If e is an inout edge, then any traje
tory rea
hing the edge 
analways slide on the edge (in one or the other dire
tion, or both).Proof. The results follows from the fa
t that the dire
tor ve
tor of e 
an beexpressed as the positive linear 
ombination of the two ve
tors of the region in
onsideration. ⊓⊔Proposition 2. If e0 is an inout edge, then for any other edge e1, and interval
I, su
h that Succe1e0

(I) is not empty, all su
h applied su

essors in
lude the leftor all in
lude the right end of the edge (equal to one of (0, x〉 or 〈x, 1) for somevalue of x � depending on one of I's extremities). ⊓⊔Proof. This is a dire
t 
onsequen
e of Proposition 1. ⊓⊔Lemma 5 Composition of the fun
tion Flip with an inverted TAMF results ina normal TAMF and in an inverted TAMF if we 
ompose Flip with a normalTAMF.Proof. Consider a normal TAMF f :



(Flip◦f)[x, y]
= { by de�nition of TAMFs }

Flip([alx
′ + bl, ary

′ + br] ∩ J) where [x′, y′] = [x, y] ∩ S

= { J = [Jl, Jr] and by de�nition of interse
tion }
Flip[max{alx

′ + bl, Jl}, min{ary
′ + br, Jr}] where [x′, y′] = [x, y] ∩ S

= { de�nition of Flip }
[1 − min{ary

′ + br, Jr}, 1 − max{alx
′ + bl, Jl}] where [x′, y′] = [x, y] ∩ S

= { sin
e −min{x, y} = max{−x,−y}, similarly for max }
[1 + max{−(ary

′ + br),−Jr}, 1 + min{−(alx
′ + bl),−Jl)] where [x′, y′] = [x, y] ∩ S

= { sin
e a + max{x, y} = max{a + x, a + y}, similarly for min }
[max{1 − (ary

′ + br), 1 − Jr}, min{1 − (alx
′ + bl), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= arithmeti
 }
[max{−ary

′ − (1 + br), 1 − Jr}, min{−alx
′ + (1 − bl)), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= { de�nition of interse
tion }
[−ary

′ − (1 + br),−alx
′ + (1 − bl)] ∩ [1 − Jr, 1 − Jl] where [x′, y′] = [x, y] ∩ S.Note that the result is also an inverted TAMF. The other result follows identi-
ally. ⊓⊔Corollary 2 Any signature with an even number of boun
es has its behaviour
hara
terised by a normal TAMF, while a signature with an odd number ofboun
es is 
hara
terised by an inverted TAMF.Proof. The proof follows by indu
tion on the number of edges appearing in thesignature.The base 
ase is when the signature 
onsists of exa
tly two edges (shorter se-quen
es of edges are not signatures by de�nition). Let the signature be σ = e0e1.Now either (i) e1 = e−1

0 , in whi
h 
ase we have an odd number (exa
tly one)boun
e, and Succσ = Flip (by de�nition 7) whi
h is an inverted TAMF (by de�-nition of Flip); or (ii) e1 6= e−1
0 , in whi
h 
ase we have an odd number of boun
es(zero) and Succσ is a normal TAMF by the result in [ASY07℄. In both 
ases, theresult holds.Now let us assume that the result holds for signatures of length n, and we will
onsider a signature of length n + 1, namely: σ = e0e1 . . . en. On
e again, either

en = e−1
n−1 or it is not. We will 
onsider the 
ases separately:� If en = e−1

n−1, then the signature e0e1 . . . en−1 
ontains one boun
e less thatthe original signature.
Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1

= { de�nition of Succ on a boun
e }
Flip ◦ Succe0e1...en−1Now, if e0e1 . . . en has an even number of boun
es, e0e1 . . . en−1 has an oddnumber of boun
es (sin
e the last pair were a boun
e), and thus, by theindu
tive hypothesis, Succe0e1...en−1

is an inverted TAMF. But by the above



equational reasoning, and lemma 5, it follows that Succe0e1...en
is a normalTAMF.The 
ase when e0e1 . . . en has an odd number of boun
es follows similarly.� On the other hand, if en 6= e−1

n−1, then the signature e0e1 . . . en−1 
ontainsthe same number of boun
es as the original signature.
Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1As before, if e0e1 . . . en 
ontains an even number of boun
es, so thus e0e1 . . . en−1(sin
e the last pair were not a boun
e), and thus, by the indu
tive hypothesis,

Succe0e1...en−1
is a normal TAMF. But by the above equational reasoning,and lemma 1, it follows that Succe0e1...en

is a normal TAMF.The 
ase when e0e1 . . . en has an odd number of boun
es follows similarly.
⊓⊔Lemma 7 Loops whi
h in
lude boun
es are not STAY loops.Proof. The proof follows from Proposition 1, whi
h guarantees that on
e werea
h the �rst inout edge, we 
an always slide to one end of the edge. Hen
e anyloop 
ontaining su
h edge 
annot be a STAY, by de�nition. ⊓⊔Lemma 6 The behaviour of any loop σ 
ontaining an even number of boun
es
an be 
al
ulated as for SPDIs.Proof. Corollary 2 ensures that Succσ is a normal TAMF. Earlier, in Se
tion 3,we have summarised the analysis from [ASY01℄ whi
h enables us to 
al
ulatethe behaviour of a 
y
le whose TAMF is not inverted, in a non-iterative manner.We 
an thus use this te
hnique to 
al
ulate the iterated behaviour of σ in anon-iterative way. ⊓⊔Lemma 8 Given a signature with one loop σ = e0(e1e

−1
1 e2 . . . en)ke1 (with

k > 0, whi
h has an odd number of boun
es, and starts with a boun
e), thebehaviour of signature is equivalent to following the loop only on
e as in σ′ =
e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ .Proof. Sin
e e1 is an inout edge, by proposition 2, we know that we 
an slidein (at least) one dire
tion. without loss of generality, let's assume that for any

e, Succee1
(I) = (0, x). Note that due to the de�nition of TAMFs, x is onlydependant on the right bound of I.Let F = Succe

−1

1
e2...ene1

. Sin
e this in
ludes an even number of boun
es, 
om-posed TAMF (thus F ) is a normal (non-inverted) TAMF. Moreover, sin
e F (I) =
Succene1

(Succe
−1

1
e2...en

(I)), then F (I) = (0, x) for some value of x. Finally, wenote that sin
e F is a normal TAMF, x is dependant only on the right bound of
I, we 
an 
on
lude that there exists α su
h that for any x, F (x, 1) = (0, α).



We 
an now pro
eed to prove the result by indu
tion on k. Trivially, the resultholds for k = 1. Now 
onsider k > 1:
Succe0(e1e

−1

1
e2...en)ke1

(I)

= { k > 1 }
Succe0(e1e

−1

1
e2...en)(e1e

−1

1
e2...en)k−1e1

(I)

= { by indu
tion }
Succe0(e1e

−1

1
e2...en)(e1e

−1

1
e2...en)e1

(I)

= { by de�nition of Succ and F }
F ◦ Succe1e−1

◦ FSucce1e−1
◦ Succe0e1

(I)
= { by de�nition of Flip }

F ◦ Flip ◦ F ◦ Flip ◦ Succe0e1
(I)

= { by sliding argument given above }
F ◦ Flip ◦ F ◦ Flip(0, x)

= { by de�nition of Flip }
F ◦ Flip ◦ F (1 − x, 1)

= { by property of F given above }
F ◦ Flip(0, α)

= { by de�nition of Flip }
F (1 − α, 1)

= { by property of F given above }
(0, α)

= { by property of F given above }
F (1 − x′, 1)

= { by de�nition of Flip }
F ◦ Flip(0, x′)

= { by sliding argument given above }
F ◦ Flip ◦ Succe0e1

(I)
= { by de�nition of Flip }

F ◦ Succe1e
−1

1

◦ Succe0e1
(I)

= { by de�nition of Succ and F }
Succe0(e1e

−1

1
e2...en)e1

(I)By indu
tion the result thus follows.
⊓⊔Lemma 9 Given a loop σ with an odd number of boun
es, we 
an 
al
ulate thelimit of σ+ without iterating.Proof. Let σ = e0e1 . . . eie

−1
i ei+1 . . . en, where eie

−1
i is the �rst boun
e of thesequen
e. Sin
e σ 
ontains inout edges, it 
annot be a STAY loop, and we only
onsider the 
ase where the loop �nally exits. Consider the exiting loop σ+e′.The 
ase when σ is never repeated or repeated only on
e, 
an be easily han-dled. When the number of repetitions is at least twi
e, we 
an use the followingreasoning:



Succσke′

= { de�nition of σ }
Succ(e0e1...eie

−1

i
ei+1...en)ke′

= { de�nition of path repetition }
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)k−1eie

−1

i
ei+1...e′

= { using Lemma 8 }
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)eie

−1

i
ei+1...ene′This redu
es the analysis of su
h loops to a simple path analysis whi
h we knowhow to perform. ⊓⊔Theorem 4 We 
an (
onstru
tively) 
ompute the behaviour of a signature

r1s
+
1 r2s

+
2 . . . rn.Proof. We use the standard te
hniques presented in [ASY07℄, but use Theorems6 and 9 to analyse loops with boun
es. ⊓⊔Se
tion 4.2Lemma 10Given a GSPDI, and assuming only traje
tories without self-
rossing,if there is a type of signature where a simple 
y
le s = (e0, e1, . . . , en) ap-pears twi
e, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′ , then if there is noreverse(s) between the two o

urren
es of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′.Proof Sket
h. There are two 
ases:1. σ′′ = skrsk′′ : In this 
ase r must be of the form e−1
n e−1

n−1 . . . e−1
i with i > 0.We must have a boun
ing at e−1

i , then we 
an slide and we get σ′′ = sk′′′ .2. σ′′ = skωsk′′ : Here ω is any �nite sequen
e of alternating r's and s′s. It
an be shown that either we redu
e to the previous 
ase, or ω must 
ontainreverse(s), or there must be a self-
rossing. ⊓⊔Lemma 11 Given a GSPDI, if there is a traje
tory segment ξ : [0, T ] →
R

2, with ξ(0) = x and ξ(t) = x
′ for some t > 0, su
h that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = reverse(s1) and s3 = s1, then it is always possibleto �nd a traje
tory segment ξ′ : [0, T ] → R
2 su
h that ξ′(0) = x and ξ′(t) = x

′for some t > 0, and type(Sig(ξ)) = r1s
k′

1

1 r′4.Proof Sket
h. Let s1 = (e0, e1, . . . , en) be a simple 
y
le where ξ is a 
lo
kwisespiral turning inwards. Due to Proposition 1, we have the following two 
ases:1. e0 allows sliding inwards.We 
an always eliminate the �rst s, i.e., type(Sig(ξ)) =
r′1s

k2

2 r3s
k3

3 r4. See Fig. 7.2. e0 allows sliding outwards. Two 
ases:(a) reverse(s1) loops outwards. In this 
ase we 
an eliminate s2 sin
eon
e we start that loop, we 
an slide outwards till s3 starts, and weget type(Sig(ξ)) = r1s
k1

1 sk3

3 r4, whi
h is type(Sig(ξ)) = r1s
k′

1 r4. See Fig.5-(a).



(b)(a)

xx

x
′ x

′

e0

e1

e2

e3
e0

e1

e2

e3Fig. 5. Proof of Lemma 11 - Case sliding outwards: (a) 
ase reverse(s) looping out-wards; (b) 
ase reverse(s) looping inwards and exiting.(b) reverse(s1) loops inwards. Two 
ases:i. r2 
ontains only edges in s1 and s2. This implies boun
ing. Two
ases.A. Boun
ing inwards. Implies sliding inwards, whi
h 
ontradi
tsthe assumption. See Fig. 6-(a).B. Boun
ing outwards. Implies reverse(s1) must loop outwards,
ontradi
ts the assumption that reverse(s1) loops inwards. SeeFig. 6-(b).ii. r2 
ontains edges not in s1 and s2. This means that the traje
toryexit s1 through the 'right'. Let us assume the last visited point in s1is x ∈ en, and that x
′ ∈ e su
h that ξ(t) = x and ξ(t′) = x

′ with
Sig(ξ[t..t′]) = ene, where e ∈ first(r2). Then the segment of line
xx′ partition the region R into two subregions R1 and R2. Clearlythe only way to have r2s2 with s2 going inwards is from a traje
torysegment from region R1 to R2 by 
rossing xx′, whi
h breaks theassumption of non-
rossing traje
tories. Thus the pattern s2r3s3 isnot possible in this 
ase. See Fig. 5-(b). ⊓⊔Corollary 3 Given a GSPDI, let σ = e1 . . . ep be an edge signature, then it 
analways be written as σA = r1s

k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤ n + 1, siis a simple 
y
le (i.e., without repetition of edges), and for every 1 ≤ i 6= j ≤ n,

si and sj are di�erent.Proof. If there are i 6= j su
h that si = sj , the only possibility is to satisfy orthe assumptions of Lemma 10 or Lemma 11. In both 
ases we 
an always obtaina signature without repeating si. ⊓⊔Corollary 4 The number of di�erent types of abstra
t signatures of a givenGSPDI is �nite.



(b)(a)

xx

x
′ x

′

e0

e1

e2

e3
e0

e1

e2

e3Fig. 6. Proof of Lemma 11 - Case sliding outwards: (a) 
ase boun
ing inwards; (b) 
aseboun
ing outwards.
x

x
′

e0

e1

e2

e3Fig. 7. Proof of Lemma 11 �Case sliding inwards.Proof. Based on Lemma 3, it su�
es to analyse signatures of the form σA =
r1s

+
1 . . . rns+

n rn+1 su
h that provided that i 6= j, si 6= sj and with ea
h rk
ontaining no repeated edges. Hen
e, sin
e the number of edges is �nite, thenumber of possible values ea
h rk 
an take is �nite. Similarly, the number ofdistin
t simple loops is �nite. Therefore, the number of abstra
t signatures toanalyse is �nite. ⊓⊔Se
tion 4.3Lemma 12 Rea
h(H,x0,xf ) is a terminating, 
orre
t and 
omplete algorithm
al
ulating GSPDI rea
hability.Proof. Termination of step 1 follows from the fa
t that GSPDIs have �nite par-titions. Step 2 terminates by 
orollary 4. Using Theorems 9 and 6 we 
an also
ompute steps 3 and 4, hen
e guaranteeing termination of the algorithm.



Corre
tness of the algorithm follows from Theorems 9 and 6 (on a

eleratingloops with boun
es) and the results in [S
h02,ASY07℄ on the 
orre
tness of SPDIrea
hability 
he
king.Finally, 
ompleteness is guaranteed by Theorem 4.Therefore, Rea
h(Hi,x0,xf ) (for all Hi ∈ Hred, 1 ≤ i ≤ n), is a terminating
omplete and sound algorithm for de
iding GSPDI rea
hability. ⊓⊔


