
Synthesising Implicit Contracts∗

Gordon J. Pace
Departament of Computer Science

University of Malta, Malta
gordon.pace@um.edu.mt

Fernando Schapachnik
Departamento de Computación, FCEyN
Universidad de Buenos Aires, Argentina

fschapachnik@dc.uba.ar

ABSTRACT
In regulated interactive systems, one party’s behaviour may impose
restrictions on how others may behave when interacting with it.
These restrictions may be seen as implicit contracts which the af-
fected party has to conform to and may thus be considered inap-
propriate or excessive if they overregulate one of the parties. In
this paper we characterise such implicit contracts and present an
algorithmic way of synthesising them using a formalism based on
contract automata to regulate interactive action-based systems.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]: Formal Lan-
guages; D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Theory, Languages

Keywords
Automated Legislative Drafting,Contract Synthesis

1. INTRODUCTION
Consider the contract that binds a customer and a bank, which

stipulates that opening new accounts is free of charge. And yet, at
the moment of opening an account, the bank requires the release
of personal information and allowance to send the customer pro-
motional material. The bank is not strictly breaching the contract,
but maybe it is asking “too much”. Can this “too much” be quan-
tified? As another example consider an airline, which compensates
for missed connections due to delays by providing the traveller with
food and lodging. However, the airline has a policy of not provid-
ing this service unless the customers explicitly demands for it. In a
way, the airline is turning its unconditional obligation of providing
aid into a conditional or restricted one: given that the customer asks
for help, support will be provided.

∗Partially supported by UBACyT 20020100200103.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In interactive systems involving different parties, the behaviour
of each party is inherently affected by the behaviour of the others.
In particular, other parties may restrict or enforce behaviour result-
ing in the affected party having to behave in a different manner than
if it were to act independently. In interactive systems regulated by
contracts, each party thus may be seen to be restricted through the
explicitly agreed upon contracts, but furthermore by the implicit
constraints induced through the nature of interaction and the other
parties’ behaviour. These implicit constraints can be seen as ‘invis-
ible’ (or unspoken) agreements or contracts a party has to agree to
and adhere to if they choose to participate in the interaction.

As the imposed behaviour gets stricter, it drifts from being com-
pliant up to the point of being close to breaching the contract. Can
this drifting be measured? As a first step, in this paper we develop
techniques so that, given two interacting parties bounded by a con-
tract, we can infer the implicit contract being enforced by one party
on the other.

This approach is useful also during contract negotiation: given
multiple service providers, a party may base her choice of provider
not only upon the signed agreement, but also taking into consider-
ation the implicit contract imposed on her.

To present these notions, we use contract automata (Section 2),
a formalism based on the notion of synchronising automata from
computer science, that provides well understood and clear seman-
tics to model interaction among parties. An automata-based for-
malism allows to model not only deontic formulae but also the
choices that each party has and how decisions affect the other par-
ties.

Implicitly enforced behaviour of a party is presented in Sec-
tion 3, together with an algorithm to compute it. The next sec-
tion explains the extra challenges that arise when considering non-
deterministic systems, and why, consequently, the algorithm only
copes with deterministic ones. Finally, Section 5 surveys related
work before concluding the article in Section 6.

2. INTERACTING TWO-PARTY SYSTEMS
In [6] we presented a model for contracts between interacting

parties, based on the notion of synchronous composition [1] and
multi-action labels on transitions.1 This section summarises the
key aspects of our model.

DEFINITION 2.1. A multi-action automaton S is a 4-tuple with
components 〈Σ, Q, q0, →〉, where Σ is the alphabet of actions, Q
is the set of states, q0 ∈ Q is the initial state and→⊆ Q×2Σ×Q

is the transition relation. We will write q
A−→ q′ for (q,A, q′) ∈→,

1The use of multi-actions allows the modelling of contracts such
as ones in which both parties have different obligations at the same
time.

acts(q) to be the set of all action sets on the outgoing transitions

from q (defined to be {A | ∃q′ · q
A−→ q′}).We will write w

=⇒ for
the transitive closure of−→ (with w ∈ (2Σ)∗), and for deterministic
automata, we will write q

w
=⇒ to indicate the unique state q′ such

that q w
=⇒ q′.

The synchronous composition of two automata S1 and S2 (with
Si = 〈Qi, q0i, →i〉), both with alphabet Σ and synchronis-
ing over alphabet G, written S1‖GS2, is defined to be 〈Q1 ×
Q2, (q01, q02),→〉, where→ is the classical synchronous compo-
sition relation defined in [1]. Actions in G are called shared while
actions in Gc are called local. We will assume that all systems are
well-formed, i.e., do not deadlock.

We can now define contracts to be automata with each state tagged
with the clauses which will be in force at that point. The contracts
will be able to refer to both presence and absence of actions.

Contract clauses are either (i) obligation clauses of the formOp(a)
or Op(!a), which say that party p is obliged to perform or not per-
form action a respectively; or (ii) permission clauses which can be
either of the form of Pp(a) or Pp(!a) (party p is permitted to per-
form, or not perform action a respectively). Given an alphabet of
actions Σ, we write Σ! to refer to the alphabet extended with ac-
tions preceded with an exclamation mark ! to denote their absence:

Σ!
df
= Σ ∪ {!a | a ∈ Σ}. We will use variables x, y and z to stand

for either presence or absence of an action e.g. Pp(x) would match
both Pp(a) and Pp(!a).

DEFINITION 2.2. A contract automaton is a total and determin-
istic multi-action automaton S = 〈Q, q0, →〉, together with a to-
tal function contract ∈ Q→ 2Clause assigning a set of clauses to
each state.
A contract automaton A is said to be p-specific if all the clauses
refer to party p i.e. Op(x) or Pp(x).
Two contract automataA1 andA2 are said to be deontically equiv-
alent, written A1 ≡ A2, if for all traces w ∈ (2Clause)∗, the
clauses of the reached states are equal: contract1(q01

w
=⇒) =

contract2(q02
w
=⇒).

2.1 Contract Satisfaction
Given a two-party system (S1, S2), and a contract automaton
A, we can now define whether or not either party is violating the
contract when a particular state is reached or a transition is taken.

DEFINITION 2.3. Functions Op(qA) and Fp(qA) give the set
of actions respectively obliged to be performed and obliged not to
be performed by party p. They are defined in terms of the con-
tract clauses in the state. Action set A is said to be viable for
party p in a contract automaton state qA, written viablep(qA, A),
if (i) all her obliged actions are included in A but; (ii) no ac-
tions which the party is obliged not to perform are included in A:

viablep(qA, A)
df
= Op(qA) ⊆ A ∧ Fp(qA) ∩A = ∅

Since we would like to be able to place blame in the case of a vi-
olation, we parametrise contract satisfaction and violation by party.
It is also worth noting that while obligation to perform an action,
for instance, is violated in a transition which does not include the
action, permission is violated by a state in which the opportunity to
perform the permitted action is not present. The satisfaction pred-
icate will thus be overloaded to be applicable to both states and
transitions. The predicate satAp (X) will denote that the contract
automatonA, reaching state X or traversing transition X , does not
constitute a violation for party p.

Permission.
If party p is permitted2 to perform shared action a, then the other

party p must provide p with at least one viable outgoing transition
which contains a but does not include any forbidden actions. Per-
mission to perform local actions cannot be violated.

In the case of a single permission, this can be expressed as fol-
lows:

(q1, q2)qA `p Pp(a)
df
=

a ∈ G =⇒ ∃A ∈ acts(qp), ∃A′ ⊆ Gc ·
a ∈ A ∧ viablep(qA, A ∪A′)

Similarly, if party p is permitted to not perform action a, then
the other party p must provide p with at least one viable outgoing
transition which does not include a nor any forbidden action. Per-
mission to perform local actions can never be violated. In the case
of a single permission, this can be expressed as follows:

(q1, q2)qA `p Pp(!a)
df
=

a ∈ G =⇒ ∃A ∈ acts(qp), ∃A′ ⊆ Gc ·
a /∈ A ∧ viablep(qA, A ∪A′)

While actual obligation violations occur when an action is not per-
formed, violations of a permission occur when no appropriate ac-
tion is possible.
To combine all permissions in a state, we simply take the conjunc-
tion of all conditions:

satPp ((q1, q2)qA)
df
= ∀Pp(x) ∈ qA · (q1, q2)qA `p Pp(x)

We say that ((q1, q2)qA , A) `p Pp(a) if A ∈ acts(qp) is the ac-
tion set that exists to satisfy (q1, q2)qA `p Pp(a). We use similar
definitions for ((q1, q2)qA , A) `p Pp(a) and absence of actions.

Obligation.
Obligations bring in constraints on both parties. Given that party

p is obliged to perform action a in a state means that (i) party p
must include the action in any outgoing transition in the composed
system in which it participates; and (ii) the other party p must pro-
vide a viable synchronisation action set which, together with other
asynchronous actions performed by p, allows p to perform all its
obligations, positive and negative. Obligation to not perform action
a (Op(!a)) can be similarly expressed. We combine all positive and
negative obligations in the following definition:

satOp ((q1, q2)qA
A−→ (q′1, q

′
2)q′A)

df
= viablep(qA, A)

satOp ((q1, q2)qA)
df
=

∃A ∈ acts(qp), ∃A′ ⊆ Gc · viablep(qA, A ∪A′)

We can now define the rest of the deontic modalities:

• Party p not being permitted to perform an action is equivalent
to p being obliged not to perform the action:

!Pp(a)
df
= Op(!a) !Pp(!a)

df
= Op(a)

• Party p not being obliged to perform an action is equivalent
to p being permitted not to perform the action:

!Op(a)
df
= Pp(!a) !Op(!a)

df
= Pp(a)

2Some people are more comfortable with the term right instead of
permission when it imposes some type of behaviour on the other
party. However, as with all terms in deontic literature, many slight
and not-so-slight variations of its meaning are used by different
authors. For instance, do they last in time? Is the other party re-
sponsibility unavoidable or only subject to “best-effort”? While in
a philosophical essay it might make sense to dispute over the ap-
propriate name, we use formal semantics to dissolve all doubts.

Fj(transfer), Pj(login)

Pj(transfer)

Fj(login), Fj(transfer)

login logout

malicious cleared

Figure 1: Internet banking contracts

• Prohibition contract clauses Fp(a) and Fp(!a), prohibiting
party p from performing and not performing a respectively,
can be expressed in terms of permission:

Fp(a)
df
= !Pp(a) Fp(!a)

df
= !Pp(!a)

• Prohibition to perform an action is equivalent to obligation
not to perform the action: Fp(x) = Op(!x).

General contract satisfaction.
It is defined as: satp(X)

df
= satPp (X) ∧ satOp (X).

Example 1: If the contract of Jane (p) with her bank permits her
to withdraw money, permits her not to deposit money, obliges her
to pay a fee, and obliges her not to steal (Pp(w), Pp(!d), Op(f),
Op(!s)), the bank (p) should provide at least one transition that
contains both a w and an f action and contains neither a d nor an
s.
Example 2: Now consider John signing a contract with his bank.
The contract says that (i) whenever John is logged into his Inter-
net banking account he is to be permitted to make money transfers;
and (ii) if a malicious attempt to log in to his account is identified,
logging in and making transfers will be prohibited until the situa-
tion is cleared. The two statements can be expressed in the contract
automaton shown in Figure 1.

2.2 Contract Strength

DEFINITION 2.4. A party p is said to be incapable of breaching
a contract in a regulated two-party system R = 〈S1, S2〉AG , writ-
ten breachIncapablep(R), if p cannot be in violation in any of the
reachable states and transitions of R. We write breachIncapable(R)
if it holds for both parties.

A contract automaton A′ is said to be stricter than contract au-
tomaton A for party p (or A said to be more lenient than A′ for
party p), written A vp A′, if for any systems S1 and S2, p being
incapable of breaching A′ implies that p is incapable of breaching
A. We say that two contract automataA andA′ are equivalent for
party p, written A =p A′, if A vp A′ and A′ vp A. Similarly,
we define strictly more lenient relation <p as vp \ =p. We define
global contract strictnessA v A′ to hold ifA vp A′ holds for all
parties p, and similarly global contract equivalence A = A′.

DEFINITION 2.5. Given two contract clauses C and C′, the re-
lation over contract automata [C → C′] ⊆ CA × CA relates two
contract automata A and A′ if A is equivalent to A′ except possi-
bly for a number of instances of clause C replaced by C′.

We extend the notion of strictness to contract clauses. We say that
clause C′ is stricter than clause C for party p, written C vp C′,
if for any contract automata A and A′ such that (A,A′) ∈ [C →

C′], it follows that A vp A′. We similarly extend the notion of
strictness for all parties v.

2.3 Restricted Permission
In this article we introduce restricted permissions in a rather ab-

stract way. The intended meaning is to permit some action provided
some other action takes place in the same action set. In real cases
one would like various different types of predicates in order to ex-
press the condition that should hold for the action to be permitted.
Typical cases include propositional predicates over variables that
hold in states (e.g., “John is permitted to withdraw money (wm) if
there is a positive balance (pb)”), over sequences of precedent ac-
tions (e.g., “Mary is permitted to use the service (us) provided she
had acquired a ticket (at) and presented it in the front office (pfo)
in the same day”), etc.

It is important to note that we do not aim for a formalism that
people would use directly to express their contracts, but rather for
a formalism where those contracts could be compiled into, much
like Kripke structures, or the program control structures used in
program analysis (e.g. see [8]).

To simplify presentation of the examples, we use multi-actions
for actions which take place in a narrow time interval. For exam-
ple, action set {pb, wm} encodes John’s withdrawal when he has
a positive balance, action set {at, pfo, us} can represent Mary’s
rightful usage of the service, while {at, us}, {pfo, us} and {wm}
are examples of violations.

Restricting Permissions.
We want to capture the notion of party p being permitted do to

action a only if action set C ⊆ 2Σ! is present as well. We will write
it Pp(C . a) and call C the condition. More precisely Pp(C . a)
holds iff there is no way of doing a without doing C as well, and
there is also a transition which makes it possible to do Pp(a) and
also contains C.

Note that the C set can contain either local or synchronised ac-
tions. That allows to express requirements to the same individual
(e.g., “you need to raise your hand before asking questions”), or
even more complex interactions requiring the other party involve-
ment (e.g., “you need to raise your hand and be acknowledged be-
fore asking questions”).

requiresp(q, C, a)
df
=

∀A ∈ acts(q), a ∈ A · ((C ∩ (Σp ∪G)) ⊆ A)

(q1, q2)qA `p Pp(C . a)
df
=

requiresp(qp, C, a)

(q1, q2)qA `p Pp(C . a)
df
=

requiresp(qp, C, a) ∧
∃A ∈ acts(qp), ∃A′ ⊆ Gc ·

viablep(qA, A ∪A′) ∧ C ⊆ (A ∪A′) ∧
((q1, q2)qA , A) `p Pp(a)

Party p complies with Pp(C .a) if all of its outgoing transitions
that contain an a also contain the actions in C that are either local
or shared. On the other hand, party p needs to satisfy the same, plus
allowing at least one viable transition containing the whole C and
at the same time permitting a.

Note that an alternative definition could also be given — one
where there is no need for a transition to effectively exist. Also note
that the given definition trivialises if C is the empty set, because its
role as requirement becomes void.

The definitions just given can be generalised so that party p, in
order to do action a, is restricted to comply with not one give set of
conditions, but one from a set of sets as in Pp(C1 ∨ . . . ∨Cn . a).

3. CONTRACT SYNTHESIS
Through their very nature, interacting systems affect the behaviour

of each other through imposed synchronisation, with a party’s be-
haviour sometimes forcing or disabling certain behaviour from the
other party.

3.1 Implicitly Enforced Behaviour
Since synchronised actions cannot take place without the partic-

ipation of both parties, and both parties must ensure progress, the
behaviour of one party can force the other to behave in a particular
way. In this manner, a party may force the co-party to behave as
though a particular contract was being enforced. For instance, if
airport management staff only allow a synchronised boardAircraft
action only after a passenger performs a bodySearch action, from
the point of view of the passenger it is as though he or she is pro-
hibited from boarding the aircraft unless he or she allows a body
search to take place.

DEFINITION 3.1. Given a party p with behaviour S and syn-
chronising on alphabet G, a p-specific and conflict-free contractA
is said to be implicitly enforced on p if due to the composition with
S, A will not be violated no matter what the behaviour of p is:

∀S′ · breachIncapable(〈S, S′〉AG)
We say that an implicitly enforced contractA (with behaviour S of
party p) is said to be maximal if there is no other implicitly enforced
contract A′ such that A <p A′.

Althoughvp is not a total order, implicitly enforced contracts have
a unique maximum up to =p.

THEOREM 3.1. Any two maximal implicitly enforced contracts
of party p with behaviour S are equivalent up to =p.

Computing one of these maximal elements for a deterministic sys-
tem can be done using the algorithm of Definition 3.3. Non-deterministic
system impose non-trivial challenges that we discuss in Section 4.
Before presenting the algorithm we need the notion of Implicit
Conditional Permission.

Implicit Restricted Permission.
Think of a transition labelled {a, b, c}. In order to do a, the other

party p needs to do b and c as well. If there is another transition
labelled {a, d, e}, then we can conclude thatPp({d, e}∨{b, c}.a)
and also Pp({a, c} . b), Pp({a, b} . c), etc.

Generalising, the idea is that each shared action appearing in an
outgoing transition can only be exercised by the other party if she
also performs all of the other shared actions that come with the
transition.

Now consider that another transition is added, labelled only with
a. The algorithm proposed so far would synthesise Pp({d, e} ∨
{b, c} ∨ ∅ . a). However, a restricted permission with an empty
condition removes the imposition of doing other actions in order to
do a.

Considering all the above gives raise to the algorithm of Defini-
tion 3.2.

DEFINITION 3.2. The algorithm to synthesise the restricted per-
missions imposed by p to any other party p in a given state qp is as
follows.

1. Construct the alphabet used in its outgoing transitions (the
‘local’ alphabet): Σqp =

⋃
A∈acts(qp) A.

2. For each action a ∈ (Σqp ∩G)

(a) Let C be an empty set of sets of actions.

(b) For each A ∈ acts(qp)

i. if a ∈ A, then add (A ∩G)− {a} to C

(c) Let C1 . . . Cn be the members of C.

(d) If there is not 1 ≤ i ≤ n such that Ci = ∅, then add
Pp(C1 ∨ . . . ∨ Cn . a)

The algorithm works as follows: for every shared action a that
appears in an outgoing transition from qp, visit every outgoing tran-
sition (step 2b). If the action is part of that transition’s action set
then we have probably found a new condition for doing a: the
rest of the shared actions in that action set (step 2b.i). If a can
be done without further restrictions in this transition, then the just
mentioned set becomes empty and there is not restriction for doing
a. That is checked in step 2d.

Synthesis Algorithm.
The idea behind the algorithm is as follows: Suppose a is a

shared action. If a given state of S does not have a-transitions,
then any system synchronising with S will be forbidden to perform
an a, thus Fp(a) should be synthesised. On the other hand, if all of
its outgoing transitions have an a, then a is mandatory for the other
party, etc.

DEFINITION 3.3. An implicitly enforced contract of a deter-
ministic system S = 〈Σ, Q, q0, →〉 can be computed to be the
contract automaton enforced(S) in the following manner:

1. We start with an automaton (states, initial state and transi-
tion relation) identical to S.

2. We add a new state ∆ to the automaton. Furthermore, for
any state q and action set A such that A /∈ acts(q), we add

the transition q
A−→ ∆. For any action set A, ∆

A−→ ∆. This
step is needed to guarantee that the resulting automaton is
total, which is required by Definition 2.2.

3. For any state q (with q 6= ∆), contract(q) contains Fp(a) if
and only if in the original automaton ∀A ∈ acts(q) · a /∈ A.

4. For any state q (with q 6= ∆), contract(q) contains Op(a) if
and only if in the original automaton ∀A ∈ acts(q) · a ∈ A.

5. For any state q (with q 6= ∆), contract(q) contains Pp(a) if
and only if in the original automaton ∃A ∈ acts(q) · a ∈ A.

6. For any state q (with q 6= ∆), contract(q) contains the re-
stricted permissions given by Definition 3.2.

THEOREM 3.2. The above algorithm synthesises a maximal im-
plicitly enforced contract of party p.

3.2 Comparing Contracts
In a scenario where party p is negotiating a contract with party p,

or has already engaged into one, p could compare the expected be-
haviour and the one that p would actually bring about as computed
in Definition 3.3. Such comparison could highlight plain incom-
patibilities but also “deviations”, such as a permission turned into a
restricted one. During contract negotiation, this comparison could
be used to select the more convenient option among various bid-
ders.

Getting back to the case of the airline obliged to provide assis-
tance to passengers, suppose airline A satisfies every customer’s
demand, while airline B also does so but only if the customer calls

q0 q1 q3

q2 q4

b a

b

c

Figure 2: Example of non-deterministic system

B’s headquarters, thus adding an extra condition on the customer in
order to exercise its permission to request assistance. Despite this
difference, it can be argued that both airlines satisfy the regulation,
yet with varying degrees.

4. DIFFICULTIES FOR NON-
DETERMINISTIC SYNTHESIS

Synthesising contracts for non-deterministic systems posses some
difficulties. Consider a system S1 with shared alphabet G = {a, b, c},
like the one in Figure 2.

Looking at state q1 we can synthesise {O2(a),F2(c)}. State q2

gives the opposite: {O2(c),F2(a)} (both also give F2(b) but it is
immaterial for the example).

That means that after performing b from q0 party S2 is either
obliged to do action a or action c. However, contract automata
are deterministic in our model. One option would be to apply the
algorithm of Definition 3.3 to obtain a pseudo-contract automaton
A and then mix the resulting states qA1 and qA2 into qA1,2, but that
gives the conflicting set {O2(a),F2(c),O2(c),F2(a)}.

Another option would be to determinise S1 by merging q1 and
q2 into q1,2 and then computing the enforced contract. That would
synthesise {P2(a),P2(c)} for the corresponding state. That would
also be incorrect: it could be the case that a given S2 synchronises
with S1, and after doing action b ends up in q1 being forbidden to
do action c.

As can be seen from the given example, synthesising contracts
for non-deterministic systems remains an open issue that should be
further researched.

5. RELATED WORK
Although contracts are a long-covered topic in deontic literature

(e.g., [4, 5, 6]), we are not aware of work on synthesising implicit
contracts. Process calculi (e.g., [2]) or even petri nets (e.g., [9])
have been used before to model “contracts”. However, the term
contract is used there in the sense of interface, as way to guaran-
tee services interoperability, but they are not rich enough for other
types of contracts because they do not support deontic operators.

The automata community is well aware of many different tech-
niques for synthesising different types of automata (e.g., [7]), but
our setting is very different that theirs. There usually is one automa-
ton P called plant and a property ϕ it is expected to comply with.
The problem is to synthesise another automaton C called controller
such that P ||C |= ϕ, i.e., such that the controller limits the plant
so it complies with ϕ. In our setting there are two important differ-
ences: on one hand, there is no “|=” operator but degrees of com-
pliance to a contract. On the other hand, both parties’ systems are
given, and also is the contract. As there are degrees of compliance
it is interesting to see how “good” a co-party is. Take for instance
the case mentioned earlier of an airline being obliged by interna-
tional regulation to provide food and lodging to customers whose
flight get delayed more than a certain amount hours and demand
assistance. Airline A satisfies every customer’s demand. Airline B

would only do so if customers call B’s headquarters, adding an ex-
tra condition on the customer in order to exercise its permission to
request assistance. Despite this difference, it could be argued that
both airlines satisfy the regulation.

Some authors discuss “implicit deontic effects” (e.g., [3]), but
the concept treated is entirely different, as an example clarifies: “If
agent i orders a product from agent j then he implicitly authorises
j to demand payment upon delivery of the goods”.

6. CONCLUSIONS
We have presented the notion of implicitly enforced behaviour of

a party in a two-party contract setting, together with an algorithm
to synthesise it. Although the concept is interesting in itself, it be-
comes more interesting when one starts to compare this implicitly
enforced behaviour to what a given contract demands, as a tool to
highlight not only potential breaches but also subtle differences.

Such a comparison permits the view of a continuum going from
plain incompatibility to full compliance, with a lattice of possibili-
ties in between — for instance, when one party restricts a permis-
sion of the other party by only allowing the permitted action after
certain extra actions are performed.

To further explore implicitly enforced behaviour, synthesis for
non-deterministic systems, as discussed in Section 4, is still an
open problem. Future research directions also includes the dual
of implicitly enforced behaviours, intrinsic well-behaviour: given
the behaviour of a system, induce a contract which it obeys under
all circumstances. Such a notion could, for instance, be useful to
use to figure out how much more one can ask from the other party
without them having to change their behaviour.

7. REFERENCES
[1] A. Arnold. Nivat’s processes and their synchronization. Theor.

Comput. Sci., 281:31–36, June 2002.
[2] M. Bravetti and G. Zavattaro. Contract based multi-party

service composition. In International Symposium on
Fundamentals of Software Engineering, pages 207–222.
Springer, 2007.

[3] F. Dignum. Autonomous agents with norms. Artificial
Intelligence and Law, 7(1):69–79, 1999.

[4] G. Governatori and Z. Milosevic. Dealing with contract
violations: formalism and domain specific language. In EDOC
Enterprise Computing Conference, 2005 Ninth IEEE
International, pages 46–57. IEEE, 2005.

[5] O. Marjanovic and Z. Milosevic. Towards formal modeling of
e-contracts. In Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing,
EDOC ’01, pages 59–, Washington, DC, USA, 2001. IEEE
Computer Society.

[6] G. Pace and F. Schapachnik. Contracts for interacting
two-party systems. In FLACOS 2012: Sixth Workshop on
Formal Languages and Analysis of Contract-Oriented
Software, sep 2012.

[7] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller
synthesis for timed automata. In Proc. System Structure and
Control. Elsevier. Citeseer, 1998.

[8] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. In ACM SIGPLAN Notices,
volume 36, pages 12–23. ACM, 2001.

[9] W. M. Van Der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and
K. Wolf. From public views to private
views–correctness-by-design for services. In Web Services
and Formal Methods, pages 139–153. Springer, 2008.

