
Meta-Functional Embedded Languages for

Verification of Parametrised Hardware

Descriptions

Gordon J. Pace, Christian Tabone

University of Malta

Abstract

In the literature, one finds various uses of the use of functional pro-
gramming languages, combined with embedded language techniques for
the design and description of circuits. In this paper we explore the use
of a meta-programming language to extend this approach to have access
to information about the underlying circuit generators, and not just the
circuits themselves. We show the applicability of this approach by using
circuit generator analysis techniques to extract information from a hard-
ware compiler to enable verification, through the use of model-checking, of
compiler invariants. This enables automatic verification of whole families

of circuits, an approach which we apply to verify control path sanity of
an Esterel hardware compiler.

1 Introduction

The functional paradigm has long been paired with the design and verification
of circuits, typically by developing a hardware description language embedded
in functional languages like Haskell. Lava [BCSS98], Hydra [O’D06] and Hawk
[LLC99] are such hardware description languages, and are evidence of the fact
that functional languages are not only ideal host languages for the embedding of
any domain specific language, but accommodate the semantics of circuit descrip-
tions in conjunction with the required abstractions with striking similarities to
functional language features [She05]. These embeddings enable various abstrac-
tion techniques which enable the description of generators for generic circuits,
such as parametrised circuits and connection patterns. However, despite the
advantages gained from this two-stage language environment the approach still
does not give direct access to the circuit generators themselves — restricting
hardware designers from performing certain operations within the embedded
language itself. For instance, whenever a circuit generator is invoked, the hier-
archical structure of the circuit descriptions is lost completely, and unless ex-
plicitly annotated, the resulting circuits lack information about their generators

1

which can be used for placement and other non-functional analysis. Further-
more, not having access to the generators restricts us from applying formal
reasoning on the circuit generators. For example, the verification of a hard-
ware compiler as advocated in [PC05], may involve the description of a separate
translation function to perform all the necessary logical changes to produce an
appropriate observer circuit for the compiler implementation itself, and despite
the close relation between the translation function and the hardware compiler,
the respective generators are subject to possible inconsistencies, simply because
the applied reasoning and manipulations are done manually by the hardware
designer.

In earlier work, we have argued that a functional language with meta-programming
constructs such as reFLect [GMO06], can be used to embed a hardware de-
scription language capable of maintaining hierarchical block markings of sub-
components within structural circuit descriptions [PT08]. In this paper, we
build on these results by enabling placement combinators, similar to those found
in Wired [ACS05] and DualEval [BW97], to be added to the block markings,
without disrupting the functional style of the circuit descriptions. Furthermore,
we propose the use of the meta-programming features of reFLect to automat-
ically generate and extract verification models from the circuit generators of
hardware compilers. Quoting the hardware compilers provides direct access
to the circuit generators, enabling us to apply reasoning on the actual circuit
generators. Hence, by means of the meta-constructs in conjunction with pat-
tern matching, transformations are applied over the circuit generator in order
to produce observer circuits suitable for verifying hardware compiler properties
by structural induction. Reflection enables us to provide a framework in which
user intervention is minimised, thus ensuring that changes to the hardware com-
piler reflect faithfully the observer circuits required for the structural induction
reasoning. To further illustrate the proposed approach, a number of invariant
properties are presented for a subset of the Esterel hardware compiler [Ber99].

2 Embedding a HDL in reFLect

Typically, when embedding a DSL, a deep embedding is required since one
would want not only to describe programs, but allow the possibility to give
them different interpretations as may be necessary, thus complex data objects
are defined to provide access to the underlying syntax of the DSL. On the other
hand, in a meta-programming language a shallow representation is sufficient
since the language constructs can be quoted, resulting in having access to the
described programs as data objects.

reFLect [GMO06] is a strongly-typed functional language with meta-programming
capabilities. reFLect was developed as part of the Forte tool [SJO+05]; a hard-
ware verification system used by Intel. reFLect provides quotation and an-
tiquotation constructs, allowing the composition and decomposition of uneval-

2

uated expressions, defined in terms of the reFLect language itself. These meta-
programming constructs allow a form of reflection within a typed functional
paradigm setting, enabling direct access to the structure of object programs.
This is made possible by giving access to the internal representation of the
abstract syntax tree of the quoted expressions. Traditional pattern matching
can even be used on this representation, allowing the structure of unevaluated
expressions to be inspected and interpreted according to the developer’s require-
ments. Antiquotation constructs are available which can be used in conjunction
with the pattern matching mechanism to compose or decompose object pro-
grams, permitting the developer to modify or transform the quoted expression
at runtime before evaluation.

2.1 Shade

Shade is a HDL we have developed, as an embedding in reFLect. Circuits are
strongly typed, but are internally stored as quoted reFLect terms. In a language
without reflection a deep embedding of a language one usually transforms de-
scriptions into data objects. Through the use of the reflection features in reFLect,
we use quoted shallow embedded descriptions which still allow us access to the
circuit structure. The conservation of an unevaluated expression of a circuit
definition, provides the actual structural description that is required, which can
still be interpreted directly to obtain an output, thus also achieving circuit simu-
lation. Unevaluated terms thus become the primary type of embedded programs
which, in our case, contain circuit descriptions with the potential to evaluate
to any structure of signals. Phantom types are used to keep track of the types
of the quoted expression, thus still achieving strong typing, and enabling type
checking over quoted expressions.

lettype *a signal = Signal term;

The primitive gates ensure that the signals are of the correct structure and type,
whilst decomposing the structure within the type term into the appropriate
input signals. These signals or sub-expressions are hence used to compose the
required expression.

inv :: bool sig -> bool sig

let inv (Signal {| 8 a |}) = Signal {| NOT 8 a |};

and2 :: (bool, bool) sig -> bool sig

let and2 (Signal {| (8 a, 8 b) |}) = Signal {| 8 a AND 8 b |};

Other primitive gates, are defined using functions similar to the above, which
can be presented to the end user to be used for other circuit descriptions. The

3

constant expressions high and low represent the constantly high, and constantly
low signals respectively, and the delay gate (parametrised by a boolean value)
produces a stream of values identical to the input except that it is delayed by
one clock cycle. The boolean parameter is used as the initial value of the output
stream.

high, low :: bool sig

delay :: bool -> bool sig -> bool sig

Note that internally, the primitive gates are composed by quoted versions of their
boolean operator counterparts, using antiquotations to deal with quotations in
their parameters. However, from the perspective of the end user, who sees only
the signature of these functions, all use of meta-programming features is hidden
away.

When defining larger circuits, these primitive functions are used in a functional
approach, with no reference to the meta-programming features. Note that, the
and2 gate takes one input stream made up of pairs of boolean values. This
approach of having wires of structures as used, for instance, in Hawk [LLC99],
requires explicit use of functions, to convert the signal structure back and forth
to the structure values using the polymorphic functions zipp and unzipp func-
tions1. For instance a two-bit multiplexer circuit would be defined as follows:

let mux s_ab =

val (s, ab) = unzipp s_ab inn

val (a, b) = unzipp ab inn

or2 (zipp (and2 (zipp (inv s, a)),

and2 (zipp (s, b))));

To create loops in a circuit, Shade provides a fix-point operator illustrated in
the following circuit:

let setRegister s_n =

val (set, new) = unzipp s_n inn

loop now . let old = delay low now inn

mux (zipp (set, zipp (old, new)));

Note that the reuse of user defined circuit components is identical to the use of
the primitive components. Another two examples, which will be used later on
in this paper are the circuits sometimes (and always), which given an input,
output a high signal if the input was true sometime (always) in the past up to,
and including, the current point in time:

1For simplicity, most of the examples given in this paper do not include the zipping and

unzipping functions

4

let sometimes x = loop ok . or2 (zipp(x, delay F ok))

let always x = loop ok . and2 (zipp(x, delay T ok))

Other similar circuits, such as never (the input has never been true up to and
including now) and once (the input has been true exactly once in the past up
to and including now) can be similarly defined.

2.2 Circuit Interpretations

One particular aspect of having a deep embedding of a HDL is the ability to
provide multiple interpretations to the same circuit description [She05]. Shade
provides various interpretations for the described circuits. Internally a circuit
description is simply a quoted function denoting both the structural details
and the actual functionality, therefore simulation can be achieved by unquot-
ing this function and applying appropriate input values. Other interpretations
involve traversing the circuit structure using the meta-programming charac-
teristics found in reFLect and performing an appropriate interpretation. The
possibility to apply pattern matching over quoted expressions, enables us to
inspect, analyse and translate the structure into other formats, such as netlist
generation from reFLect circuit descriptions.

Apart from simulation and netlist generation, Shade also supports circuit ver-
ification though the use of external model checkers. Instead of embedding a
property language, we follow an observer-based approach, in which properties
are also described as circuits which take the inputs and outputs of the circuit to
be verified and outputs a single boolean output. Hence, for a circuit to satisfy a
property, the observer circuit has to output a constant high value. Although this
limits the verifiable class of properties to safety properties, this approach avoids
the need of an additional embedded language. Currently, Shade is connected to
the SMV model checker [McM92].

For instance, consider a property to verify that if both inputs of a multiplexer
are equal, then no matter what the value of the sector wire is, the output is
equal to the common input values. This property can be expressed as follows.
Note that equality (===) and implication (==>) operators are built using the
primitive gates.

let obs_mux ((s, (a, b)), o) = (a === b) ==> (o === a)

Passing this observer as an input to the SMV interpretation function writeToSMV

generates an SMV model which can then be verified.

5

3 Hardware Compilers

The characteristics of embedded languages provides ways to advance to higher
levels of abstraction used for circuit descriptions. In the case of regular circuits,
concise descriptions in the host language can be used to describe large, complex
circuits, using modularity and abstraction techniques from the host language.
However, in such approaches the abstraction layers that are achieved still lead
to a structural description of the circuit. An alternative approach which is
increasingly being used, is that of automatic hardware synthesis, or compilation;
from a high level algorithmic description directly into a structural description.

Pace and Claessen [CP02] present a framework in which such algorithmic, or
behavioural descriptions can be merged within the structural descriptions, by
following the embedding approach. The idea is to develop another layer on top
of the already existing embedded HDL. The behavioural description language
is embedded by specifying the syntax in terms of a datatype, and the structural
description for each of the language constructs are described. The compilation
procedure corresponds to a circuit parametrised by the data object representing
the language constructs.

An ongoing issue with hardware compilation is that the compilation procedure
should ideally be verified to be correct. In practise this can be a long and
tedious process. Developing various high level DSLs to solve a problem, is in-
creasingly becoming a common trend, which mean that hardware verification
has to be done more frequently, sometimes by the same hardware designer. Pace
and Claessen showed how certain hardware compiler invariants can be model
checked automatically through the use of the compiler description and struc-
tural induction over the program type [PC05]. However, using a functional
language such as Haskell, with no meta-programming capabilities, transforming
the compiler description into the verification framework had to be performed
by hand, even if it follows a uniform pattern. Thus, the major disadvantage
with this approach is that the transformation function might not match exactly
the structure of the hardware compiler, due to user induced errors since the de-
scriptions are defined separately by the hardware designer. Despite the relation
between the two circuit generators, when using a language like Lava, there is
no possible way to maintain a programmable connection between the two. In
Shade, we can allow the designer to write a domain specific hardware compiler,
and verify properties without the need to rewrite a transformation function. We
achieve this by using the meta-programming features of reFLect, to automati-
cally transform the compiler into an appropriate generator capable to construct
observer models that can be interpreted by a finite state model checker.

6

P

cond

shout

finish

start

Q

P

start

shout

finish

cond

Synchroniser

Q

P shout

finish

startlow shout

start

finish

start

finish

shout

Q

P

finish

start

shoutlow

finish

start

shout

IfThenElse Parallel

Sequential

Delay

Shout

Skip

While

Figure 1: Hardware designs of Flash

3.1 Compiling Flash

We illustrate the process by looking at the embedding of a hardware compiler in
Shade — using the Flash language from [CP02], which is a basic language with
imperative programming constructs. Programs in Flash are simply instances of
a datatype in reFLect:

lettype Flash

= Skip

| Shout

| Delay

| Sequential Flash Flash

| IfThenElse (bool sig) Flash Flash

| Parallel Flash Flash

| While (bool sig) Flash;

Note that Flash has the standard imperative language features, such as sequen-
tial composition and conditional, but also supports a fork-join construct. For
simplicity, programs in Flash have a single output wire low by default, but which
can be pushed up to high (for one clock cycle using the Shout instruction. The
basic instructions Shout and Skip terminate immediately (in the same clock
cycle), whereas Delay takes one clock cycle to terminate. Flash programs will
be compiled into circuits with one input wire start (which will be high for one
clock cycle to start the program), and two output wires shout and finish (the
first is the output of the program, while the latter will be high for one clock
cycle when the program has terminated). For more details about Flash and its
compilation refer to [CP02]. The hardware compilation schemes for Flash are
given in figure 1. In Shade, the constructs designs can be implemented directly
using pattern matching over the datatype, and calling the compile function
recursively over the subprograms. Consider two of the syntactic cases:

7

letrec compile Shout start =

let shout = start in

let finish = start in

(shout, finish)

/\ compile (Sequential p q) start =

val (pShout, pFinish) = compile p start in

val (qShout, qFinish) = compile q pFinish in

let shout = or2 (pShout, qShout) in

(shout, qFinish);

3.2 Compiler Invariants

The development process of a hardware compiler, just like any other hardware
or software system, would typically begin from a set of specifications or require-
ments. Hence, once the design is completed and the compiler is implemented,
one would want to conduct a series of tests to ensure that the system is per-
forming the correct functionalities as defined in the specifications. For example,
a possible requirement for the Flash compiler would be that a program should
never terminate unless this has been started some time before. Another could
state that if a program is started once, then this should only terminate once.
Consequently, we can specify that a program generates a termination signal for
each time it is started.

One way to verify whether such properties, or invariants, are satisfied by the
hardware compiler is to use formal model checking [PC05]. To prove the correct-
ness of an invariant, structural induction is applied over the language constructs,
where each construct is proved to satisfy the given property by assuming that
this is also satisfied by the subprograms, thus proving that any compiled pro-
gram satisfies the property. For instance, for Flash one can prove an invariant
π over a program using structural induction as shown below:

` π(Skip)
` π(Shout)
` π(Delay)
∀c, P, Q · π(P) ∧ π(Q) ` π(IfThenElse c P Q)
∀P, Q · π(P) ∧ π(Q) ` π(Sequential P Q)
∀P, Q · π(P) ∧ π(Q) ` π(Parallel P Q)
∀c, P · π(P) ` π(While c P)

∀P · π(P)

To perform the above formal reasoning on circuits, the properties need to be
encoded as observer circuits and appropriately attached to the compiler circuit.
Therefore, one has to (i) compile the construct with empty subprograms; (ii)
connect the input and output wires of each empty subcomponent to an observer
circuit; (iii) connect the input and output wires of the outer block to an observer;
(iv) universally quantifying over the outer circuit inputs, and the inner block

8

outputs; and (v) prove that the conjunction of the inner observers implies the
outer observer. Consider the case of sequential composition hand coded below:

let seq obs (s, (pSh, pF), (qSh, qF)) =

let qS = pF in

let f = qF in

let sh = or2(pSh, qSh) in

let pOk = obs(pS, (pSh, pF)) in

let qOk = obs(qS, (qSh, qF)) in

let ok = obs(s, (sh, f)) in

and2(pOk, qOk) ==> ok;

Similar cases would be written for each syntactic case, and verifying a compiler
invariant then corresponds to model checking each of the cases.

3.3 Temporal Induction

In practice, for most properties, the approach does not work. The structural
induction cases we are attempting to prove state that if the inner compiled
blocks are working well now, then so is the outer block. If the inner blocks
break the invariant for a period of time, but then satisfy it again later on, in this
approach we expect that the outer block starts satisfying the invariant again. In
practice we need a weaker notion — once the inner blocks have stopped working
sometime in the past, the outer block is relieved of its obligation to satisfy the
invariant.

For instance, consider the following invariant which states that if a Flash pro-
gram terminates (it produces a high signal over the finish wire), then the
program must have been started at some point in time:

let flashInv02 (start, (shout, finish)) = finish ==> sometimes start;

Using the naive version of structural induction shown above, the model checker
identifies a counter example for the sequential case, as shown in the table below,
in which we show the values of the start, finish wires and the output of the
invariant observer for the outer block and the two inner blocks of the sequential
composition of two programs. Note that the first block finished without starting
in the first time unit, but then proceeded to work correctly in the second time
unit. This induced the second block to produce a finish signal in the second
time unit, thus finishing the outer block in the second time unit (when both
inner blocks satisfy the invariant) without ever having received a start signal:

9

start 0 0
finish 0 1
inv 1 0

start1 0 0
finish1 1 0
inv1 0 0

start2 1 0
finish2 0 1
inv2 1 1

The solution to such a problem is either to strengthen the invariant to ensure
that once broken, it remains broken forever, or by adding a form of temporal
induction in the verification methodology by assuming that the subcircuits have
always satisfied the given property up to the current time. We prefer to go for
the latter solution to get the verification rule given below:

` π(Skip)
` π(Shout)
` π(Delay)
∀c, P, Q · always(π(P) ∧ π(Q)) ` π(IfThenElse c P Q)
∀P, Q · always(π(P) ∧ π(Q)) ` π(Sequential P Q)
∀P, Q · always(π(P) ∧ π(Q)) ` π(Parallel P Q)
∀c, P · always(π(P)) ` π(While c P)

∀P · π(P)

3.4 Automating Hardware Verification

Note that the design of these cases can become quite complex and error prone.
Furthermore, when developing a hardware compiler, changes to the compiler
code will have to be reflected faithfully in the syntactic cases. It is thus very
desirable to be able to extract this information automatically from the hard-
ware compiler code. Through the use of the host meta-language, it is actually
possible to extract it, reducing user intervention, thus ensuring that the struc-
tural induction cases are automatically and accurately generated. By quoting
the hardware compiler one can access the structure of the actual compiler code
to identify the different cases:

let flashCompiler =

let metaFlash = {|

letrec compile_flash (Skip, start) =

let shout = low in

let finish = start in

(shout, finish)

/\ compile_flash (Sequential f1 f2, start) =

val (f1Shout, f1Finish) = compile_flash (f1, start) in

val (f2Shout, f2Finish) = compile_flash (f2, f1Finish) in

10

let shout = or2 (f1Shout, f2Shout) in

(shout, f2Finish)

/\ ...

in compile_flash |}

in metaFlash;

Using the quoted compiler, we are able to access the structure of the actual
generator — by performing structural induction, the compiler description is de-
structed into the individual compiler alternative cases. For each of the cases the
respective circuit is transformed using the type as the observer — by applying
pattern matching over the circuit structure whilst modifying the circuit such
that the inputs to a recursive call are quantified, and these together with the re-
spective outputs are transformed and redirected, such that the observer circuit
is applied. Finally, the list of terms are composed together as alternate cases,
and the quoted resulting function is typecasted (using phantom types which
are omitted in the example), and an appropriate function is composed as the
result. Meta-programming is essential in order to automate the necessary trans-
formations, since this enables pattern matching over the function describing the
hardware compilers.

This approach has been used to prove several compiler invariants. For instance,
consider a property for Flash which states that if a program has terminated,
then this implies that the program must have been started some time before.
Below is the observer circuit for this invariant:

let flashInv01 (start, (shout, finish)) = finish ==> sometimeInThePast start;

The strength of this approach is that when changing the compiler code, the
inductive cases need not be recoded to match the new compiler code, ensuring
that the inductive cases and the compiler code match and thus that we are
really verifying properties of the actual compiler we have written.

4 Correct Compilation of Esterel Into Hardware

Esterel [Ber99] is a synchronous programming language, with characteristics
that enables the programming of concurrent systems. Concurrent constructs
enable different sections of the same program to function in parallel, yet in
synchrony with each other. This is achieved by enabling communication through
the broadcasting of signals. Esterel is used to program reactive systems, such
as real-time controllers, communication protocols and system drivers. Apart
from simulation tools, Esterel compilers can translate programs into C code
and hardware description languages, such as VHDL or Verilog.

The Esterel language is similar to the Flash language we presented earlier, but
with a more intricate semantics to handle so called schizophrenia [Ber99], which

11

arises when a restarted loop terminates immediately. The compilation process
is similar to that of Flash, but adds an additional finish wire.

compile :: Esterel -> bool sig -> (bool sig, (bool sig, bool sig))

compile program start =

let ...

in (emit, (finish1, finish2))

To appreciate the intricacies of the language, consider the following Esterel
program:

let prog w =

While high (Parallel (IfThenElse w Delay Skip, Delay));

Consider the situation when the program is started when w is high. The loop
starts, trigerring the fork-join construct, terminating one clock cycle later. In
particular consider the finish wire on the output of the conditional case, which
is high in the second cycle. Upon termination of the fork-join block, the loop
is started again. Note that now, if w is low, the conditional now terminates
immediately, overlapping the finish signal at the same time unit as the previously
produced one. Since outputting high on the same wire over the same clock cycle
has no noticeable effect, the second finish signal is lost to the synchroniser of
the fork-join construct, which proceeds to wait indefinitely till the first branch
produces another high signal. To avoid the overflow on the finish wire, the
second finish appears on the second finish wire.

The constructive semantics for Esterel solve this problem by duplicating the
logic related to such termination wires, thus each circuit would contain multiple
termination wires depending on the number of possible occurrences. An in-
depth study of the schizophrenia problem is given in the circuit translations
of the constructive semantics of Esterel [Ber99]. Although the solution is well
known, ensuring correctness of the compilation is not straightforward due to
the intricate compilation. For instance, unless one works out the details, it is
not all that clear that two finish wires suffice.

Using structural induction with automatically induced cases, we have proved
various invariants of the compilation of Esterel.

The finish wires work correctly: This property ensures that the finish wire
encoding works correctly. Note that the use of the finish wires is assumed
to produce (low, low) (in the case of no finishes), (high, low) (in the
case of one finish) or (high, high) (in the case of two finishes). We
ensure that the combination (low, high) can never occur:

let esterelInvariant1 (go, (e, (f1, f2))) = f2 ==> f1;

12

No start, no finish: Another sanity check for the compiler, is that an Esterel
program may never terminate unless explicitly started:

let esterelInvariant2 (go, (e, fs)) = never go ==> inv (or2 fs)

Single start, single finish: If only a single start is ever given, the circuit may
not output on the second finish wire, and may, at most, output only once
on the first finish wire. The following observer uses the once circuit which
outputs high as long as the input has been high at most once in the past:

let esterelInvariant3 (go, (e, (f1, f2))) =

once go ==> and2 (never f2, or2 (never f1, once f1))

One finish for each start: Each finish must have a corresponding start, as
long as the environment disallows a program to be started unless it has
previously finished (encoded in the observer usedWell). The observer uses
some code to calculate (on the basis of the circuit interface) whether it is
was running one clock cycle ago.

let esterelInvariant4 (go, (e, (f1, f2))) =

let wasRunning = ... in

always (usedWell (go, (e, (f1, f2)))) ==>

and2(f1 ==> or2 (go, wasRunning)

,f2 ==> and2 (go, wasRunning)

)

The second finish wire is never high twice in succession: As long as the
environment disallows a program to be started unless it has previously fin-
ished, there will never appear two successive high signals on the second
finish wire.

let esterelInvariant5 (go, (e, (f1, f2))) =

always (usedWell (go, (e, (f1, f2)))) ==>

(f2 ==> delay T (inv f2))

A third finish wire is redundant: Although adding a second wire seems a
reasonable solution to the problem, it is unclear why a third (and a fourth,
fifth, . . .) wire is not necessary. One way of showing that such a wire would
be redundant is by extending the Esterel hardware compiler to have three
finish wires, and proving that the third finish wire is constantly low:

let esterelInvariant6 (go, (e, (f1, f2, f3))) =

always (usedWell (go, (e, (f1, f2, f3)))) ==> inv f3

In this manner, using model-checking techniques, we have proved that the con-
trol path of compiled Esterel programs maintains certain compiler invariants,
hence increasing our confidence in the compilation process.

13

5 Conclusions

In this paper we have shown how the use of a meta-language as a host lan-
guage for an embedded hardware description language can aid manipulation
and analysis of embedded programs. Clearly, one has to ensure that the in-
creased complexity of using a meta-language is counter-balanced by the gain in
expressivity. In our approach, the hardware designer using Shade need not be
aware of, or use the meta-programming features of reFLect, which are hidden
inside Shade. The only exception to this design principle is the need to quote a
hardware compiler before analysis.

The primary gains in the use of meta-programming within Shade are marking
and manipulation of circuit blocks, and the analysis of circuit generators. In
this paper we have explored the use of Shade to automatically extract struc-
tural induction cases for a hardware compiler, to enable the model checking of
invariants. The approach has been applied to a subset of the Esterel language,
for which we have shown that the control path satisfies a number of expected
invariants. We are currently working on extending these results for the analysis
of the data path in such languages, which poses new challenges, since the size
of the output may grow as the output wires increase.

References

[ACS05] Emil Axelsson, Koen Linström Claessen, and Mary Sheeran. Wired:
Wire-aware circuit design. In Proc. of Conference on Correct Hard-
ware Design and Verification Methods (CHARME), volume 3725 of
Lecture Notes in Computer Science. Springer Verlag, October 2005.

[BCSS98] Per Bjesse, Koen Linström Claessen, Mary Sheeran, and Satnam
Singh. Lava: Hardware design in Haskell. In Proc. of International
Conference on Functional Programming (ICFP). ACM SIGPLAN,
1998.

[Ber99] Gérard Berry. The constructive semantics of Pure Esterel. Unfinised
draft, 1999.

[BW97] Bishop C. Brock and Jr. Warren A. Hunt. The dual-eval hardware
description language and its use in the formal specification and ver-
ification of the fm9001 microprocessor. Form. Methods Syst. Des.,
11(1):71–104, 1997.

[CP02] Koen Claessen and Gordon J. Pace. An embedded language frame-
work for hardware compilation. In Designing Correct Circuits ’02,
Grenoble, France, April 2002.

14

[GMO06] Jim Grundy, Tom Melham, and John O’Leary. A reflective func-
tional language for hardware design and theorem proving. Journal of
Functional Programming, 16(2):157–196, 2006.

[LLC99] John Launchbury, Jeffrey R. Lewis, and Byron Cook. On embedding
a microarchitectural design language within haskell. SIGPLAN Not.,
34(9):60–69, 1999.

[McM92] Kenneth L. McMillan. Symbolic Model Checking: An approach to
the state explosion problem. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1992.

[O’D06] John O’Donnell. Overview of hydra: a concurrent language for syn-
chronous digital circuit design. International Journal of Information,
pages 249–264, 2006.

[PC05] Gordon J. Pace and Koen Linström Claessen. Verifying hardware
compilers. In Computer Science Annual Workshop 2005 (CSAW’05).
University of Malta, September 2005.

[PT08] Gordon J. Pace and Christian Tabone. Accessing circuit generators
in embedded hdls. In Designing Correct Circuits ’08, Budapest, Hun-
gary, March 2008.

[She05] Mary Sheeran. Hardware design and functional programming: a per-
fect match. Journal of Universal Computer Science, 11(7):1135–1158,
2005.

[SJO+05] Carl-Johan H. Seger, Robert B. Jones, John O’Leary, Tom Melham,
Mark D. Aagaard, Clark Barrett, and Don Syme. An industrially ef-
fective environment for formal hardware verification. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
24(9):1381–1405, September 2005.

15

