
Runtime Monitoring Processes Across Blockchains

Shaun Azzopardi1[0000−0002−2165−3698],
Joshua Ellul2[0000−0002−4796−5665], and
Gordon J. Pace2[0000−0003−0743−6272]

1 University of Gothenburg, Sweden
shaun.azzopardi@gu.se

2 University of Malta, Malta
{joshua.ellul,gordon.pace}@um.edu.mt

Abstract. Business processes have been long researched, with many tools, lan-
guages, and diagrammatic notations having been developed for automation. Re-
cently, distributed ledger technology (of which Blockchain is one type) has been
proposed for use in the monitoring of business process compliance. Such a set-
up is attractive since it allows for immutability and thus a perfect record of the
history of the business process regulated.
As blockchain platforms mature and their applications increase, one can ob-
serve that instead of having one blockchain as a ‘one world computer’ multi-
ple blockchains will co-exist while possibly interacting. Existing work for busi-
ness processes within the blockchain domain have focused on single isolated
blockchain implementations. In this paper, we do away with this severely lim-
iting assumption and propose a method to monitor business processes spanning
different blockchains and other off-chain servers. We apply this work to business
processes expressed in BPMN along with annotations proposed for a blockchain
context. We further describe how we handle blockchain interoperability by syn-
thesizing automatically off-chain monitors, acting as notaries, that handle mes-
sage passing between blockchain systems, and how we employ hash-locking for
cryptographically secure token swapping.

Keywords: blockchain· business processes· bpmn· monitoring· runtime verifica-
tion.

1 Introduction

The challenge of documenting, managing and regulating business processes has long
been studied. Business processes, by their very nature typically involve the interaction
between different parties, for which different techniques to monitor and regulate such
business processes have been proposed and adopted — by providing a centralised ser-
vice which processes relevant events from involved parties, monitors the state of the
business processes and enforces or otherwise regulates such interaction. Formal cor-
rectness of the monitoring service is an appropriate correctness criterion when these
parties belong to a single entity, or all trust a particular service provider.

A challenge arises with decentralisation, when business processes span different
entities which may not agree on a centralised party regulating their interaction. The



2 S. Azzopardi et al.

1. This procurement process will regulate the purchasing and supplying process of items be-
tween a buyer and supplier, with some required minimum amount and of some maximum
amount of items purchased and supplied.

2. A procurement process is initiated by the buyer upon placement of a deposit in escrow,
amounting to the value of the pre-agreed minimum amount of items to be ordered.

3. The supplier similarly must then also put a performance guarantee in escrow, amounting to
the pre-agreed maximum amount of items to be ordered.

4. The buyer and supplier then engage in an order-deliver loop.
5. The buyer orders items from the supplier, which uses a courier for delivery. The courier

acquires a proof of delivery from the buyer and passes this on to the supplier for payment.
6. After at least one order-deliver iteration, the buyer can request termination of the contract.

After which the buyer and the supplier can request their respective money held in escrow.
7. If the buyer’s orders do not amount to at least the pre-agreed minimum then the difference

will be taken from their deposit and given to the supplier.
8. If the supplier is not able to satisfy the orders (up to the pre-agreed maximum) then the value

of the missed orders are transferred from the supplier’s performance guarantee to the buyer.
9. After the money in escrow has been refunded the procurement process terminates.

Fig. 1. A procurement business process

maritime logistics industry, for instance, faces this challenge due to the fact that their
business processes range across a wide range of sectors, but also an international range
of participating parties, implying different jurisdictions and legal frameworks, despite
working within international regulations [?]. The result is a fragmented system, still
dependent on physical sub-processes such as the use of bills of lading — legal doc-
uments providing evidence of contract of carriage, confirming receipt of goods, and
resolving issues related to title of goods. This challenge of decentralised processes has
been addressed in literature through the use of blockchain technology and smart con-
tracts [?,?,?,?], which enable automated enforcement or monitoring of party interaction
in a decentralised manner. In particular, work such as [?] showed how from a business
process documented using a standard notation — Business Process Model and Notation
(BPMN) [?] — smart contracts can be created to regulate the process.

Smart contracts address concerns of power and control of the computation in such
a multiparty system by ensuring a decentralised computation engine on which the
smart contract executes. However, over these past years multiple blockchains have been
adopted by different groups of players working in parallel with centralised systems.
Consider a procurement process described in Fig. ?? (and graphically in Fig. ??), in
which some of the parties may already be using smart contracts to decentralise their
processes. For instance, the courier process may be using a blockchain system, whilst
the buyer and supplier may be using a different blockchain to manage the escrow
agreement, possibly also performing payment using a cryptocurrency on yet a different
blockchain. The problem is that whilst adoption of decentralisation solutions between
parties with direct common interests may be logistically possible, decentralising fur-
ther may not be so. For instance, couriers with no link to the supplier’s market do not
stand to gain by integrating with the respective solution. No matter how theoretically
attractive ‘one blockchain to rule them all’ may sound, it is unlikely to be achievable in
practice.



Runtime Monitoring Processes Across Blockchains 3

Theoretically, monitoring systems distributed across different locations is not a new
idea [?], however one which still has many challenges [?]. The issues we wish to tackle
in the blockchain case is how a business process can be decomposed across different
locations, and how the decomposed sub-process monitors can communicate together
across blockchains. This interaction certainly requires blockchain-to-blockchain com-
munication techniques, which have been explored generally in [?].

The main contributions proposed herein include: (i) the proposal of macro business
process modelling annotations that allow for the specification of location of parts of
a process that spans across different systems (identifying a specific blockchain or off-
chain server); and (ii) an approach that makes use of this information to synthesize
automatically monitoring and regulatory smart contracts residing across different on-
chain and off-chain locations, along with an appropriate inter-chain communication
infrastructure. We will use the procurement use case as a motivating example.

The paper is organised as follows. In Section ?? we layout the theoretical and prac-
tical challenges to cross-chain interopability for business processes. In Section ?? we
describe our solution. In Section ?? we compare this approach to related work and in
Section ?? we describe remaining challenges, while we conclude in Section ??.

2 Challenges of Full Decentralisation for Monitoring Business
Processes

Business process diagrams have long been recognised as useful tools that enable for the
analysis and automation of business logic. Their execution has also been explored for
the purpose of monitoring and automating parts of processes (e.g. [?,?,?]).

Work in business process management has by and large relied on central authorities
that manage, monitor, and enforce business processes. Centralisation however can be
problematic — parties would not want the data to reside (centralised) under the control
of another party, and may even find it difficult to agree on a third party, a central author-
ity, to take this role. To address this issue of centralised trust, blockchains have been
proposed to act as immutable, tamperproof and transparent records of both the business
process (through appropriate smart contracts) and its history [?,?,?,?,?,?,?].

Blockchains provide an append-only transaction database along with computational
logic which is stored and executed across all the different nodes whilst at the same
time provides tamperproof guarantees. This is in contrast to the traditional centralised
databases and programs, where there is only one trusted central copy of the database and
software (which may be distributed across a single entity’s infrastructure). Blockchains
instead use consensus algorithms to ensure that any proposed transaction is agreed upon
between the nodes before it is accepted. An attractive feature of blockchains is the
immutability of its transaction history ensured through cryptography. Some blockchains
also allow for the deployment of programs, commonly referred to as smart contracts,
which provide guarantees with respect to the logic executed.

Blockchains typically also use a native cryptocurrency or token.3 For example,
Ethereum natively supports the Ether cryptocurrency, which functions similar to tradi-

3 The terms are used in different ways in literature. We will use the two terms loosely here.



4 S. Azzopardi et al.

tional real-world monetary value through exchanges. Such cryptocurrencies are essen-
tial to the sustainable operation of many types of blockchain systems, e.g., Ethereum
version 1.0 depends on miners who do computationally heavy work to secure and oper-
ate the blockchain who get rewarded with Ether, while transactions cost some amount
of Ether (referred to as gas). Ether can be transferred to different account holders (or
rather accounts) on the same blockchain, e.g. for payments, which may not only belong
to a human owner but could be directly owned by a smart contract. Given the flexibil-
ity of the programming infrastructure which Ethereum provides, other specific-purpose
tokens can be created by coding their logic using smart contracts.

In the verification of business processes through blockchain, one typically imple-
ments and encodes processes as one or more monitoring smart contracts, allowing the
progress of participants to be recorded on-chain [?]. Such a decentralised model works
well for many use cases, and is of high utility when the parties are mutually untrusting.

One often overlooked issue is that a business process may be fragmented over dif-
ferent organisations, each of which may have adopted different blockchain standards
and platforms and may be unwilling to undertake modifications to support integration
with other parties. A group of organisations may agree to regulate their processes on
one blockchain system. However there may still be pre-existing services on which the
processes depend which may not be on that blockchain. The result is that of business
process islands with no direct communication channel between them, since existing
blockchain systems do not allow for external communication calls to be initiated.

Another significant issue is that (Ethereum) transactions can be expensive, and
their mining can be untimely (which can adversely affect process execution). To rem-
edy this parties may agree to only model sensitive parts of the business process on
a public blockchain (e.g. payments and exchange of proofs), potentially leaving other
parts for cheaper (and faster) private blockchains. Some questions that then arise are: (i)
how do we model that different participants to a process are on different blockchains;
and (ii) how to handle interaction between participants on different blockchains?

Consider the use case presented in Fig. ??, the business process may require the
parties to put some money in escrow (Clause 2). This would ideally be done publicly
where the escrow manager’s logic is known, such that the parties do not need to trust yet
another party to hold their escrowed amounts. Ethereum provides a perfect solution to
this. However, doing other parts of a business process publicly does not add any value,
e.g. how the buyer decides if to order or terminate the contract is irrelevant to the collab-
orative context. More so, there likely are aspects of the processes that are confidential
which the parties would not want to reveal to prying eyes. Therefore different parties
may be then agree to only execute the escrow logic publicly, while recording their own
sub-processes internally in a private blockchain.

It is important to highlight that the escrow manager cannot act independently of the
other parties, but instead reacts to the events they trigger (e.g. upon the buyer triggering
termination, Clause 6, the logic in Clauses 6–9 must be enacted). Since the parties’
processes may not be on the same blockchain as the escrow manager (or as each other),
to fully automate the process there is a need to bridge the gap between blockchains.

Cross-chain messaging can be challenging. Sending a message directly from one
blockchain to another is not generally possible, since blockchains act as closed systems.



Runtime Monitoring Processes Across Blockchains 5

Instead cross-chain messages need to be delivered by a messenger, usually called a
notary [?]. This, however, adds a layer of centralisation, requiring trust by both parties
that the notary is acting as expected. Finding ways to mitigate the required trust in this
notary is essential to prevent conflict in cross-chain collaborative process execution.

Interaction between blockchains can be more complex than simple message send-
ing. In the context of blockchains, two parties may want to transfer or swap tokens, e.g.
the ownership of a token corresponding to the delivered good may be swapped by the
supplier to the buyer in exchange for a token proving delivery. The use of a notary for
this kind of logic may not be suitable for this sensitive behaviour (tokens can have mon-
etary value). Instead a provably secure method would be ideal, for example employing
notions from cryptography to identify uniquely the send and intended recipient.

3 Monitoring Business Processes across Blockchains

Our proposed approach allows the description of a decentralised business process, that
may be scattered across different blockchains or servers. From this, we can automati-
cally generate monitors as smart contracts corresponding to different participants and
their subprocesses, and appropriate off-chain monitors (notaries) that handle cross-
chain interaction between monitors on different blockchains.

In particular, we will focus on business processes specified in BPMN [?], aug-
mented with location annotations. We shall then generate smart contracts for each on-
chain sub-process, and assumed to be based on Ethereum instances, written in the So-
lidity smart contract language. A system overview is presented in Fig. ??4.

Cross-Blockchain Business Process

Blockchain 1                          

Smart Contract 1.1

Smart Contract 1.n1

...

Blockchain 2                          

Smart Contract 2.1

Smart Contract 2.n2

...

Trusted Notaries

Smart Contract
Generator

Blockchain m                         

Smart Contract m.1

Smart Contract m.nm
...

Fig. 2. System overview.



6 S. Azzopardi et al.

Table 1. Informal description of correspondence between BPMN symbols and their translation
to Solidity code.

BPMN Symbols As Solidity Code
Start events A function callable by the process owner.
Throwing message events Emits a message in the form of a Solidity event, and/or calls any cor-

responding catching events functions.
Catching message events A function only callable by the message owner.
End events Finalises the monitoring, with no function being callable after.
Pools Correspond to one whole smart contract.
Activities Functions that owners use to signal the activity has succeeded, or that

may include some Solidity logic according to its annotations in the
diagram.

Sequence flow Handled implicitly by the smart contract. The smart contract can be
queried for the next possible elements.

Message flow Implemented through function calls when target and source of flow
are on same blockchain, or through emitting events and notary listen-
ing otherwise.

Exclusive Gateway Conditions on outgoing flows are parameters to corresponding func-
tion, with if-then-else logic used to continue the flow.

Event-based Gateway Activated automatically depending on the received events.
Parallel Gateway Execution forks in parallel directions, through keeping an array of the

next elements in sequence.

3.1 Business Process Monitoring through Smart Contracts

Modelling and execution of business processes on blockchains is not new, with multi-
ple approaches and tools being developed for this purpose [?,?,?,?]. Such approaches
focused on processes that are bound to execute within a single blockchain. We build on
such previous work and extend the state-of-the-art by proposing cross-blockchain and
system BPMN. We assume basic knowledge of BPMN (see Fig. ?? as an example),
for the standard specification see [?], and of Solidity, for its documentation see [?]. We
discuss how salient BPMN aspects are facilitated through Solidity smart contracts.

In our context a BPMN diagram will be a set of pools with message flows between
them, with each pool belonging to a different party to the process. We distinguish two
aspects of a BPMN diagram: (i) the behaviour within the pool; and (ii) the collaborative
behaviour between pools. For each pool, we generate smart contracts that monitor for
the flow of the enclosed process. This is done by keeping track of the business flow
through the process’ elements, from a start element to an end one. Since there may
be parallel flows we allow for multiple possible ‘next’ elements. This could be prob-
lematic with conditional gateways, but we provide for their immediate triggering. This
is reflected in the below code snippet, where Elements is the type of elements in the
process, and next at each point in time marks set of next elements:

1 enum Elements {Start , SendDeposit , Order , ..., End}
2

4 Find a prototype here: https://github.com/shaunazzopardi/bpmn-to-solidity.



Runtime Monitoring Processes Across Blockchains 7

3 mapping(Elements => bool) next;

Appropriate activation functions for each element are synthesized, which can only
be called successfully when the corresponding element is next in the flow. These func-
tions have appropriate access control that allows them to only be triggered by the re-
spective participant. The following code snippet illustrates a function that is called by
the buyer party to activate the start event (with the only flow being to SendDeposit):

1 function trigger_Start () {
2 require(msg.sender == buyer );
3
4 if (nextBusinessFlowPoint[Elements.Start]) {
5 nextBusinessFlowPoint[Elements.Start] = false;
6 nextBusinessFlowPoint[Elements.SendDeposit] = true;
7 }
8 }

This access control also takes care of points in the process that depend on triggering
by another participant (either from a different smart contract or a different blockchain).
Table. ?? summarises the translation for a select number of BPMN symbols. We discuss
in some detail how cross-chain communication works next.

3.2 Communication across Blockchains

Different participant pools can communicate with each other in the context of a larger
business process. Existing solutions assume that this communication happens on the
same blockchain, but we do not make that assumption here. For example, a group of
participants may not be interested in every detail of each other’s business process, but
only that the synchronising behaviour between them is correct. Another motivation is
that public blockchains can be expensive, thus it is more efficient to carry out only the
critical part of the business process on a public blockchain while leaving the rest for
each party’s private blockchains. To show which blockchain a pool is targeted for we
use a text annotation that includes an identifier for a blockchain. For example, a pool
annotated with Ethereum is aimed for the Ethereum blockchain.

We allow for different types of interaction: (i) message flows; and (ii) token transfers
and swaps. Flows between participants are appropriately tagged when they are of the
latter type. When the participants use one blockchain this interaction is not problematic.
Participants being on different blockchains requires specialised approaches trusted by
each participant. Here we present our proposal for this interoperability.

Message Passing In our approach cross-chain message flows are facilitated through a
trusted notary. A notary in this context is an off-chain monitor that acts as an interme-
diary between on-chain monitors. We implement a notary as a Python service.

Essentially the notary establishes a connection to each smart contract on the respec-
tive blockchains. Through this connection it subscribes for events intended for cross-
chain communication. Upon event triggering it calls the appropriate function in the
intended recipient’s smart contract passing the message payload.

The involved parties can inspect this code to ensure it will behave as expected.
However, once deployed to a traditional server the trustless environment is lost and each



8 S. Azzopardi et al.

party must inherently trust that the web service corresponds to the code they agreed
to. To tackle this issue of trust the parties may agree to place the notary code on a
trusted server owned and operated by both of them. However, ideally the processes are
designed in such a way that off-chain logic need not be trusted. Another approach is for
each party to monitor separately each other’s smart contract to ensure each message is
received unmodified (when using a blockchain visible to both parties).

Token Transfers and Atomic Swapping One may want to encode some blockchain-
specific logic such as token transfers for payments, allowing them to be directly syn-
thesized from a BPMN diagram. We allow this by tagging inter-pool message flows not
just by a message name but also by annotations describing token transfers or swaps.

For transfers we simply specify the type of the token to be sent, e.g. when sending
ether we simply insert: [Send: ETH], in a message flow label. When instead we wish
to swap tokens we also specify the type of token to be received, e.g. if we want to swap
some ether with some bitcoin we would write: [Send: ETH, Receive: BTC]. Here we use
the annotations solely to be able to create the necessary monitoring infrastructure for the
swapping and transfer, leaving the parties to agree on amounts and other case-specific
validation code. In the future we envision these to also be encoded in the diagram.

For message passing our solution was simply to use a trusted notary that passes
messages from one blockchain to another. Logic surrounding token transfers and swaps
can however be more critical, since these may have real-world value.

Implementation-wise we simply assume that the source party will transfer the to-
kens to an address belonging to the target party, and that the target party will perform
appropriate validation. The alternative here is simply to have a notary act as a middle-
man, but this does not add any utility but only creates a possible point of failure. The
following code snippet illustrates the function in the target escrow smart contract that a
buyer calls to deposit ether. The code is only slightly different for custom tokens.

1 uint depositAmount;
2 function receive_deposit () public{
3 require(msg.sender == buyer );
4 require(msg.value == depositAmount );
5
6 if(next[Elements.SendDeposit ]){
7 next[Elements.SendDeposit] = false;
8 next[Elements.Order] = true;
9 }

10 }

To handle cross-chain swaps instead we use a cryptographically secure trustless
protocol — hash-locking [?]. Consider two parties, each owning tokens on different
blockchains, and that wish to swap them. Party A initiates the atomic swap by locking
their tokens in a smart contract with a certain hash, corresponding to a secret only
they know. The tokens can be withdrawn only upon presenting the secret. Party B then
ensures the tokens have been locked, and then lock their counterpart tokens on their
blockchain with the same hash. Party A then uses their exclusive knowledge of the
secret to unlock Party B’s token, upon which Party B is informed of the secret and
unlocks the tokens Party A locked initially. To ensure Party A cannot just withdraw
both tokens a time lock is enforced, see [?] for more detail. The smart contracts we



Runtime Monitoring Processes Across Blockchains 9

produce have this ability to hash lock tokens, while a notary is used to monitor at which
stage the swap is at, and to notify parties about locks and unlocks.

The code snippet below illustrates functions related to swapping, for example the
event swap initiated Pay is used by the buyer to initiate a swap where they lock an
amount of ether with a certain hash. Appropriate events are emitted both for the notary
to pass on the message to the other party (line 6) and by the notary to notify the buyer
that the swap has been reciprocated (lines 10–13).

1 event SwapInitiatedPay(bytes32 indexed contractId , bytes32 indexed hash);
2 function swap_initiated_Pay(bytes32 _hash , uint _amount) payable public{
3 require(msg.sender == buyer );
4 require(msg.value >= _amount );
5 bytes32 contractId = hashlock(_amount , _hash);
6 emit SwapInitiatedPay(contractId , _hash );
7 }
8
9 event SwapReciprocatedPay(bytes32 indexed _contractId );

10 function swap_reciprocated_Pay(bytes32 _contractId) public{
11 require(msg.sender == notary );
12 emit SwapReciprocatedPay(_contractId );
13 }

Off-Chain Processes We also allow for processes to be deployed off-chain (as NodeJS
servers). This may be beneficial when the required logic is too expensive to be per-
formed on a public blockchain. The code of these servers follows closely that of the
smart contracts, with the only exception being that these servers can communicate with
and listen to the blockchain without the need of the notary.

4 Case Study

Table 2. Total gas costs of running the business process when all sub-processes are: (i) on the
same blockchain; and (ii) different blockchains.

Configuration Process Transaction Costs Execution Costs Total(in gas) (in gas)

Same blockchain

Buyer 1244352 3316585 4560937
Escrow 959764 2778631 3738395
Supplier 1192312 3448979 4641291
Courier 923832 2606714 3530546
Total #1 4427980 12311111 16739091

All different blockchains

Buyer 1415148 3674380 5089528
Escrow 964568 2794075 3758643
Supplier 1476248 3878837 5355085
Courier 1009084 3015735 4024819
Total #2 4865048 13363027 18228075

Cost of Distribution
437068 1051916 1488984(Total #2 - Total #1)

To illustrate our approach, Fig. ?? shows a BPMN business process designed for
the procurement contract illustrated in Fig. ??. For brevity we only model a process



10 S. Azzopardi et al.

B
uy
er

Send
Deposit Order

more to order

finished Request 
Deposit

Deposit
Refunded

Pay

Finished

Delivered
Es

cr
ow RefundDeposit

Request

Guarantee
Request

Deposit 
[Send: ETH]

Su
pp

lie
r

Send
Performance 

Guarantee Guarantee
Refunded

Deliver

Order
Received Request 

Guarantee
Finished

Deposit
Refund

Guarantee
Refund

B
uy
er

Send
Deposit Order

more to order

finished Request 
Deposit

Deposit
Refunded

Pay Request 
Deposit

C
ou

rie
r

Deliver
Send 

Proof of
Delivery

Deliver
[Send: ITEMTKN] Proof of Delivery

[Send: IOU,
Receive: ETH]

Delivery
[Send: ITEMTKN,

Receive: IOU]

B
uy
er

more to order

finished

Deposit
Refunded

Pay

Finished

Delivered

Deposit 
Request

Es
cr
ow RefundDeposit

Request

Su
pp

lie
r

Send
Performance 

Guarantee Guarantee
Refunded

Deliver

Order
Received

C
ou

rie
r

Deliver
Send 

Proof of
Delivery

Private1

Ethereum

Private2

Ethereum

Pay
[Send: ETH,

Receive: IOU]

Fig. 3. Business process diagram for procurement contract (Fig. ??).

that is compliant with the contract, and ignore possible misbehaviour. The parties to the
process are: (i) a buyer; (ii) an escrow handler; (iii) a supplier; and (iv) a courier.

The escrow handler receives a deposit from the buyer and supplier, and refunds
them when both parties have requested their respective deposit. This participant is an-
notated by the Ethereum tag, signalling that it is to be deployed on the Ethereum public
blockchain. Since this will handle tokens of both parties they are both interested in it
being carried out in a fully public and transparent manner, to ensure auditability.

The buyer repeatedly orders items from the supplier, and waiting for their delivery.
The supplier, in turn, reacts to the buyer’s orders by engaging the courier to deliver
the ordered items and waiting to receive proof-of-delivery. When the buyer no longer
wishes to order any further items they effect payment and request their deposit.

The courier process is started upon receiving from the supplier an amount of tokens
representing the number items to be delivered. Upon delivery these are swapped with
IOU tokens backed by the buyer, which they guarantee they can be swapped with ether.
The courier swaps these IOUs as proof of delivery and for delivery payment with the
supplier. In turn the supplier can swap these IOUs with the buyer for payment of the
items. In the maritime context the proof of delivery required by the supplier corresponds
to bills of lading (a delivered items receipt). In this context the supplier would be able
to present all the collected bills of lading and demand payment from the buyer. Note
how both the buyer and supplier are on different private blockchains, and thus the mes-
sage flow from the buyer’s Order activity must flow between these blockchains. Here,
implicitly a notary is passing on this message between the blockchains.



Runtime Monitoring Processes Across Blockchains 11

The ease with which we can reconfigure the placement of different parts of the
business process model indicates that our framework is also useful at the design and
configuration level, whenever the location where the monitoring is to be deployed can
be determined by the parties setting it up.

To determine the viability of our approach in this case we measured the gas costs
associated with executing the process on Ethereum. In Table ?? we present the results
in terms of the costs associated with the full execution of each sub-process, in terms
of execution and transaction costs, for different chain placements of the sub-processes.
Transaction costs relate to the cost of initiating a transaction, while execution costs are
directly correlated with the computational intensity of the logic executed. We consider
that all the sub-processes are deployed on the same blockchain (the theoretically lowest
cost option), and that each is on a different blockchain (the theoretically highest cost
option). Here we are assuming every smart contract is deployed to a public blockchain,
however a party may use a private permissioned blockchain or simply an off-chain
server, resulting in no need for gas payments (except for party communication).

From our experiments, the costs associated with our approach for a full business
process is substantial. Consider that if we take the USD value of the total gas costs of
the theoretically lowest cost (that all the processes are on the same blockchain) is around
120 USD5. Implementing the process across different blockchains increases this value
by around 10 USD, we term this the cost of distribution.

From this we can conclude that performing the monitoring of a whole business pro-
cess on a blockchain is not insignificant, and its attractiveness depends on the profit
margin of the industry. However, our tests show that moving parts of the business
process across blockchains does not cause inordinate substantial increases in costs.
This can justify moving non-sensitive parts of the business process onto costless pri-
vate blockchains, thus off-setting any monetary costs due to the distribution. This sup-
ports the utility of our approach to allow a BPMN model to be spread across different
blockchains and/or off-chain servers. For example, if the supplier process is not on a
public blockchain, then more than 30 USD can be shaved off the total cost. The deci-
sion of how to distribute a business process depends on many variables, including the
level of trust between parties, the availability of private blockchains.

5 Related Work

This work is not the first to propose a blockchain-based solution to business process
management. [?] proposes the use of a shared distributed ledger to log the delivery of
sensor-equipped parcels, enabling service agreements to be monitored for and evaluated
in a trustless manner. [?] proposes the use of a private permissioned blockchain between
different parties using Hyperledger Fabric.

There are also a number of tools that facilitate the use of blockchain for similar
purposes as our work. Weber et al. [?] employ the blockchain in two ways to support
business process management: (i) to monitor message exchanges between processes

5 When taking a conservative (at the time of writing) average, as of November 2020, gas cost of
16 Gwei per gas unit.



12 S. Azzopardi et al.

and ensure conformance while also facilitating payments and escrow; and (ii) to coor-
dinate the whole collaborative process execution. There are other tools available that
perform similar functions, e.g. Caterpillar [?], ChorChain [?], and Lorikeet [?]. [?]
extend BPMN 2.0 choreography diagrams to utilise the power of smart contracts to
enable a shared data model between processes and also the execution of some logic.
Since we use process diagrams the notion of data models is already compatible with
our approach, while we also allow the diagram to reference certain scripts. These works
are very similar to what we offer with our approach. However we take a step further
by dealing with a cross-chain distributed business processes and automatically generate
off-chain code that facilitates cross-chain communication securely.

Ladleif et al. [?] is the only work we found that deals with multi-chain business
processes. This work allows multi-chain choreographies, employing off-chain adapters
as channels between smart contracts in different blockchains. Our approach on the other
hand handles BPMN collaborations (as opposed to choreographies, i.e. the message
flow between different participants). As opposed to simple cross-chain message flows
our approach also adds richer interaction, including token transfers and atomic swaps.

Recent related work [?,?] considers the decomposition of global process compli-
ance rules into rules that can be securely verified in a distributed way without requiring
parties to disclose sensitive details. In our case decomposition of the business process
is done simply according to the location annotations for pools.

In other work we took more formal approaches to general monitoring and analysis
of smart contracts, using deontic logic [?] and automata-based behavioural specifica-
tions [?,?,?]. In that line of work we deal simply with the monitoring of one single
smart contract. In this paper we do not simply monitor for compliance of the business
logic, but also provide ways to carry it out across blockchains.

For a more detailed discussion and overview of general challenges for blockchain-
based business process management see [?,?].

6 Remaining Challenges

From a security and trust point of view a weak point in our approach is the use of off-
chain notaries to handle cross-chain communication. These act as oracles, i.e. trusted
off-chain services that workaround the closed-world assumption of blockchains to keep
them up to date with off-chain data sources — see [?] for a discussion and characteriza-
tion of oracle patterns and costs. Since these notaries are off-chain we lose the guaran-
tees ensured by a blockchain environment. For example, if the notary is deployed to a
traditional server then there is no assurance of immutability of the code, and the owner
of the server could potentially change the notary’s code unilaterally. A challenge here is
how to remove the need for trust, at least partially. One could explore set-ups involving
the use of a common server, or cryptographic signatures of the application binary.

Our case study in Fig. ?? models the expected behaviour in a business process.
However things can go wrong, for example one of the parties may not allow a swap
to be carried out. One would want to include ways to recover from such misbehaviour,
e.g. by allowing the swap to be re-attempted. In previous work we have explored this
kind of recovery in the form of reparations [?] or compensations [?]. We have already



Runtime Monitoring Processes Across Blockchains 13

explored this [?,?] in the context of other formal specifications for verification on the
blockchain. Applying this work in the context of our annotations however remains an
open problem.

Assessing the suitability of our tool requires appropriate testing of the produced arti-
facts. These artifacts however are not meant to be deployed in a single environment, but
across different environments, which can be on-chain or off-chain. On the blockchain
side, one can make use of testnets or private blockchains. While for off-chain artifacts
one can simply deploy them to local servers. We are currently working on an approach
to automatically generate code that performs a test runs of business processes.

We intend to apply this business process management approach in the maritime
context. For this we will need to extend our prototype for a larger fragment of BPMN,
including also allowing multiple participants of certain type. This is required for exam-
ple to allow dynamic onboarding of courier services, rather than simply assuming one
static courier service. Another possible extension is to consider that different couriers
may be used in different contexts or for different goods.

Implementation wise we are limited in that we only consider Solidity smart con-
tracts. In a future iteration it would be ideal to be able to produce code tailored for
different blockchains. Moreover, our text annotations could be enriched by identifying
when message flows are carried out by the same notary or not. Different pairs of partic-
ipants may trust to deploy notaries on different servers. We are also investigating code
optimisations, e.g., we use loops which can be costly in Ethereum.

7 Conclusions

Blockchains have been successfully proposed and used as vehicles for business process
monitoring and execution. Multiple approaches and tools already exist. In this paper
we extend this work in a novel direction, where we do not assume all participants are
located on the same blockchain. We further consider annotations to BPMN diagrams
that express blockchain related notions, e.g. transfer or swapping of tokens, and anno-
tations of participants with the blockchain they will be located on. Our approach, with
an associated prototype, generates from BPMN a set of smart contracts (currently lim-
ited Solidity). To handle cross-chain interaction we also generate notaries to securely
pass on messages between participants, while we employ the notion of hash-locking to
handle cryptographically safe cross-chain swaps of tokens.


