
A Specification Language for Static and Runtime
Verification of Data and Control Properties

Wolfgang Ahrendt1, Jesús Mauricio Chimento1, Gordon J. Pace2, and Gerardo
Schneider3

1 Chalmers University of Technology, Sweden.
ahrendt@chalmers.se, chimento@chalmers.se

2 University of Malta, Malta.
gordon.pace@um.edu.mt

3 University of Gothenburg, Sweden.
gerardo@cse.gu.se

Abstract. Static verification techniques can verify properties across all
executions of a program, but powerful judgements are hard to achieve
automatically. In contrast, runtime verification enjoys full automation,
but cannot judge future and alternative runs. In this paper we present a
novel approach in which data-centric and control-oriented properties may
be stated in a single formalism, amenable to both static and dynamic
verification techniques. We develop and formalise a specification nota-
tion, ppDATE, extending the control-flow property language used in the
runtime verification tool Larva with pre/post-conditions and show how
specifications written in this notation can be analysed both using the
deductive theorem prover KeY and the runtime verification tool Larva.
Verification is performed in two steps: KeY first partially proves the
data-oriented part of the specification, simplifying the specification which
is then passed on to Larva to check at runtime for the remaining parts
of the specification including the control-centric aspects. We apply the
approach to Mondex, an electronic purse application.

1 Introduction

Runtime verification and static verification are widely used verification techniques.
Runtime verification is concerned with the monitoring of software, providing
guarantees that observed executions of a program comply with specified properties.
This approach can be used on systems of a complexity that is difficult to address
by static verification such as systems with numerous interacting sub-units, heavy
usage of mainstream libraries, and real world deployments. On the other hand,
with runtime verification it is not possible to extrapolate about all possible
execution paths. Furthermore, monitoring incurs runtime overheads which may
be prohibitive in certain systems.

In this paper we present a way of addressing these issues by combining runtime
verification with static verification. We start by statically verifying the system
against a specification, identifying parts which can either be verified automatically

or partially resolved, thus leaving a simpler specification to check at runtime, in
turn reducing the overheads induced by monitoring.

As observed, static and dynamic verification have largely disjoint strengths
— whereas the former excels in data-oriented properties and struggles to handle
complex control-flow logic, the latter handles control-flow properties with substan-
tially lower overheads than data-oriented ones. Combining the two approaches
can thus allow the verification process to deal with richer properties with greater
ease. However, one of the challenges is to identify a specification notation in
which properties which refer to both the data- and control-flow of a system
can not only be expressed, but also decomposed to ensure applicability of the
different verification techniques. In order to address this issue we have, in a
previous paper [3], proposed the StaRVOOrS framework. One key part of that
framework was the proposal of a specification notation, called ppDATE, and a
verification methodology, to specify and verify both control-oriented properties
and data-oriented properties.

Our contributions are: i) A formal definition of ppDATE (Sec. 3.3); ii) An
algorithm to translate ppDATE into DATE [10], the formalism used in the
runtime verification tool Larva [11] (Sec. 3.4); iii) Application of our approach
to Mondex [21], an electronic purse application (Sec 4); iv) A description of the
results of the case study including an analysis of the verification process providing
evidence that our approach substantially reduces the overhead of the runtime
monitoring (Sec. 5).

2 The StaRVOOrS Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software), which we originally suggested in [3], combines the use
of the deductive source code verifier KeY [7] with that of the runtime monitoring
tool Larva [11]. KeY is a deductive verification system for data-centric func-
tional correctness properties of Java source code, which generates, from JML
and Java, proof obligations in dynamic logic (a modal logic for reasoning about
programs) and attempts to prove them. Larva (Logical Automata for Runtime
Verification and Analysis) [11] is an automata-based Runtime Verification tool for
Java programs which automatically generates a runtime monitor from a property
using an automaton-based specification notation DATE. Larva transforms the
specification into monitoring code together with AspectJ code to link the system
with the monitors.

Fig. 1 gives an abstract view of the framework workflow. Given a Java program
P and a specification S of the properties to be verified (given in the language
ppDATE, see Sec. 3), these are transformed into suitable input for the Deductive
Verifier module which, in principle, might statically fully verify the properties
related to pre/post-conditions. What is not proved statically will then be left to
be checked at runtime. Here, not only the completed but also the partial proofs
are used to generate path conditions for not statically verified executions. The
Partial Specification Evaluator module then rewrites the original specification

ppDATE

Prog. P
Deduc&ve	
Verifier	

ppDATE
Specifica&on	
Transla&on	

Monitor

Monitor	
Generator	

Static
Par&al	 	

Specifica&on	
Evalua&on	

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code	
Instrumenta&on	

Weaving	
Code	

S

S’

Prog. P’

D

Fig. 1. High-level description of the StaRVOOrS framework workflow

S into S’, refining the original pre-conditions with the aforementioned path
conditions. Note that S’ is no longer a full specification of the desired behaviour.
Instead, it only specifies executions that are not covered by the static verification.

In a next step, the resulting ppDATE specification S’ is, via Specification
Translation, turned into a specification in DATE format (D), suitable for the
runtime verifier. As DATE has no native support for pre/post-conditions, these
are simulated by pure DATE concepts (see Sec. 3.4). This also requires changes to
the code base (done by the Code Instrumentation module), like adding counters
to distinguish different executions of the same code unit, or adding methods
which operationalise pre/post-condition evaluation. The instrumented program
P’ and the DATE specification D are given to the Monitor Generator, which
uses aspect-oriented programming techniques to capture relevant system events.
Later on, the generated aspects are weaved (Weaving Code) into P’. The final
step in the workflow is the actual runtime verification, which executes the weaved
program P” — running the original program in parallel with a monitor of the
simplified property. In case of a runtime error, a trace is produced to be analysed.

3 ppDATE: A Specification Language for Data- and
Control-oriented Properties

In general, formalisms for specifying software fall into two very different categories.
Data-oriented properties may be written in expressive formalisms (like first-order
logic), but they only talk about specific points in the execution, rather than
traces. One instance of this is the Java Modelling Language (JML) [16], which
mainly allows for the specification of pre/post-conditions of method calls, and
class invariants. Such formalisms are not well suited for specifying legal sequences
of events or states. The other category, which we call control-oriented, offers great
flexibility in specifying legal sequences of events or states, using automata or
temporal logics, but supports only simple constraints on data. One instance of
this is Dynamic Automata with Timers and Events (DATE) [10].

In real scenarios, there is often a need to specify both, rich data constraints
and legal execution sequences. Still, when formalising such scenarios, traditionally

a formalism from either of the two categories is chosen. This leads to coding the
aspects that are less supported in the respective formalism, like, e.g., coding legal
execution traces via model/ghost fields in JML, or coding richer data constraints
in DATE by extending the code basis with checkers for specific constraints. Even
if such codings might be necessary somewhere in the process, we claim that they
should not be the duty of the user when formulating properties. Instead, we
propose a language which natively supports both types of properties, and let the
machinery do necessary codings automatically (as is performed in the modules
Specification Translation and Code Instrumentation in Fig. 1). The language
we propose combines features from DATE and (very basic) JML, and is called
ppDATE (pre/post DATE), which allows to annotate states with Hoare triples.
This also enables us to employ two verification tools in the workflow: KeY, which
offers static verification of Java source code annotated with JML, and Larva,
which supports runtime verification of DATE properties.

3.1 Events

Both DATEs and ppDATEs use system events to trigger transitions, which
typically correspond to the entering or leaving a method or a code block.

Definition 1. Given an alphabet Σ of named code (typically the union of named
functions Φ and named code blocks Λ), we will denote the event marking the entry
into σ ∈ Σ as σ↓, and the exit as σ↑. The set of all such events over alphabet Σ
will be written as Σl.

For instance, in Java, Φ are methods, and Λ are labelled statements — a
singleton statement, whether elementary or structured, can be labelled directly,
whereas a sequence of statements, to be named, is put into a labelled block. In
addition, we will assume that the system events are indexed by an identifier unique
to each execution of a function or block, as in σ↓id and σ↑id. These identifiers can
be created automatically using techniques as those presented in [13] or through
stack frame references.

3.2 DATE

DATE [10] is an automaton-based control-flow formalism used in Larva. At their
simplest level, DATEs are finite state automata, whose transitions are triggered
by system events (primarily entry points and exit points of methods) and timers,
but augmented with a symbolic state which may be used in conditions guarding
transitions and can be modified via actions also specified as part of the transition.

As an example of a DATE, consider the automaton depicted in Fig. 2, but
ignoring the information given in the states. Transitions are tagged as e | c 7→ a,
where e is the event which triggers the transition, c is the condition which has to
hold when event e happens for the transition to be taken, and a is an action to be
executed upon taking the transition. Some states (one in the example) are marked
as bad states, which indicate that a property violation has taken place when

q : {true} fileTransfer(f) {bytes == old(bytes)}start

q′ :
{true} fileTransfer(f) {bytes == old(bytes) + size(f)}
{write ∈ rights(f)} rename(f,n) {name(f) == n}

bad

login↑ | sessionIsOpen() 7→ c = 0

transferFile↓ | c > 10 7→

transferFile↓ | c ≤ 10 7→ c++

logout↓ | 7→

Fig. 2. A ppDATE limiting file transfers

they are reached. The DATE component of the property shown (i.e. everything
in the diagram except for the information in the states of the automaton) in
the example ensures that no more than 10 file transfers take place in a single
login session. Note that the specification also uses a new variable as part of the
monitor (variable c) which keeps count of the number of files transferred in a
single session.

DATEs may refer to valuations θ of program variables. In addition, they also
feature another type of variables, called monitor variables which do not belong
to the program under scrutiny, but instead are local to an automaton, and can
be used, for instance, for counting visits to a state (among others). The values
of those variables are stored in valuations ν of monitor variables, and changed
only in actions a of transitions. Both actions and conditions in transitions can
depend on program variables as well as on monitor variables. Given a condition
c, we write (θ, ν) |= c to denote that c is satisfied by valuations θ and ν. In the
following, Θ denotes the set of all valuations of program variables for a given
program under scrutiny.

Definition 2. A DATE M on a system with program variable valuations over
Θ is a tuple 〈Q,V, Σ, t, B, q0, ν0〉:

– Q is the set of automaton states.
– V is the set of valuations of monitor variables.
– Σ is the alphabet, made up of function names Φ and block names Λ.
– t is the transition relation among states in Q, where each transition is tagged

with (i) the event in Σl which will trigger it; (ii) a condition on program and
monitor variables; (iii) an action which may change the valuation of monitor
variables: t ⊆ Q×Σl × P(Θ × V)× (Θ × V −→ V)×Q.

– B ⊆ Q is the set of bad states.
– q0 ∈ Q is the initial state.
– ν0 ∈ V is the initial valuation of monitor variables.

We will write q
e|c 7→a−−−−→M q′ to mean that (q, e, c, a, q′) ∈ t. The subscript M

is omitted if it is clear from the context. We say that a DATE is deterministic

whenever the following hold: if q
e|c 7→a−−−−→ q′ and q

e|c′ 7→a′−−−−−→ q′′ and q′ 6= q′′, then c
and c′ are mutually exclusive, i.e. c ∩ c′ = ∅.

Consider once again, the DATE shown in Fig. 2. This can be formalised as fol-
lows: M = 〈Q,V, Σ, t, B, q0, ν0〉 over program variable valuations Θ, where: Q =
{q, q′, bad }, V = {(c, n) | n ∈ Z}, Σ = {fileTransfer, login, logout}, B =
{bad }, q0 = q, ν0 = (c, 0). Furthermore, the transition relation t consists of four

elements, including q′
fileTransfer↓|c≤107→c++−−−−−−−−−−−−−−−−→ q′ and q′

fileTransfer↓|c>107→skip−−−−−−−−−−−−−−−−→
bad .

We can now define the semantics of DATEs by identifying how a trace
generated by the system changes the states of the DATE.

Definition 3. We define that a trace w ∈ (Σl × Θ)∗ shifts a monitor from

configuration (q, ν) ∈ Q× V to configuration (q′, ν′) ∈ Q× V, written (q, ν)
w
=⇒

(q′, ν′), by induction over w:

(q, ν)
ε

=⇒ (q′, ν′)
df
= q = q′ ∧ ν = ν′;

(q, ν)
(e,θ):w
====⇒ (q′, ν′)

df
= ∃ q′′, ν′′ · ∃ c, a ·

q
e|c7→a−−−−→ q′′ ∧ ((θ, ν) |= c) ∧ ν′′ = a(θ, ν) ∧ (q′′, ν′′)

w
=⇒ (q′, ν′);

(q, ν)
(e,θ):w
====⇒ (q′, ν′)

df
= (q, ν)

w
=⇒ (q′, ν′)∧ 6 ∃ q′′, c, a · q e|c7→a−−−−→ q′′ ∧ ((θ, ν) |= c).

Given a DATE M , a trace w ∈ (Σl×Θ)∗ is said to be a counter example if both

(q0, ν0)
w
=⇒ (q, ν) and q ∈ B.

The set of violating traces of a DATE M , written VT (M) is defined to be
traces which have a counter example of M as a prefix.

What we have given here is a subset of the full expressive power of DATEs.
DATEs support further features, including: (i) timers which may be used in
the transition conditions or as events to trigger transitions; (ii) communication
between DATE automata using standard CCS-like channels with c! acting as a
broadcast on channel c and which can be read by another automaton matching on
event c?; and (iii) replication of automata through which every time a particular
event in some way distinct from earlier ones (e.g. using a method’s parameters or
the target object) is received a new automaton is created (e.g. used to replicate
a property for each instance of a class). We use the latter two features of DATEs
when translating ppDATEs into DATEs. Refer to [10] for the semantics of DATEs.

3.3 ppDATE

ppDATE extends DATE with elements of data-oriented specification, by assigning
(zero or more) Hoare triples to each state. Intuitively, upon entering the code
unit σ ∈ Σ while in a state which contains a Hoare triple {π}σ{π′}, and given
that pre-condition π was satisfied, one should ensure that post-condition π′ is
satisfied upon exit of σ.

Let us reconsider the property shown in Fig. 2, this time also looking at the
information given in the states. Some states are tagged with Hoare triples which
should hold when the automaton lies in that state. In addition to ensuring no
more than 10 transfers per login session, the Hoare triples also ensure that: (i)

the number of bytes transferred increases when a file transfer is done while logged
in, (ii) but not when an attempt to transfer a file is done when logged out; and
(iii) renaming a file works as expected if the user has the sufficient rights and is
logged in.

In ppDATEs pre/post-conditions are evaluated over valuations θ of program
variables (defined as for DATEs, cf. Sec. 3.2). For instance, θ |= π may or may
not hold, where θ is a mapping from program locations like object fields, array
fields, and method parameters, to values of the right type.

Definition 4. A ppDATE (pre/post-condition DATE) Mp on a system with pro-
gram variable valuations over Θ consist of (i) a DATE M = 〈Q,V, Σ, t, B, q0, ν0〉
and (ii) a function τ which tags each state of the automaton with Hoare triples
for particular function and block names: τ ∈ Q −→ P(P(Q)×Σ × P(Q)).

Notation for transitions, and definition of configuration changes over strings
of system behaviour are carried over unchanged from DATEs. We use the usual
Hoare triple notation {π}σ {π′} ∈ τ(q) to denote (π, σ, π′) ∈ τ(q). Although
determinism on the Hoare triples’ preconditions is not problematic in itself, we
choose to extend the determinism condition to ensure that for any two Hoare
triples in a single state over the same function have disjoint precondition so as to
have a more effective monitoring algorithm of these triples: for any {π1}σ {π′1}
and {π2}σ {π′2} in τ(q), π1 ∩ π2 = ∅.

To formalise the ppDATE shown in Fig. 2 we use the DATE defined earlier,
and add a function τ mapping states to sets of Hoare triples, such as:

τ(q′) = { {true} fileTransfer(f) {bytes == old(bytes) + size(f)},
{write ∈ rights(f)} rename(f,n) {name(f) == n} }

We can now define the semantics of ppDATEs by extending the notion of
counter-examples to include violations of postconditions.

Definition 5. Given a ppDATE Mp = 〈M, τ〉, a trace w ∈ (Σl × Θ)∗ is said
to be a counter example if either (i) w is a counter example of M ; or (ii) w can

be decomposed into four parts w = w1 ++ 〈(σ↓id, θ1)〉++ w2 ++ 〈(σ↑id, θ2)〉 such that
the following conditions hold:

(a) Trace w1 takes M from the initial configuration to some configuration (q, ν):

(q0, ν0)
w1=⇒ (q, ν);

(b) There is a Hoare triple of σ enforced in state q: {π}σ {π′} ∈ τ(q);
(c) Valuation θ1 satisfies the precondition: θ1 |= π;
(d) Valuation θ2 does not satisfy the postcondition: θ2 6|= π′.

Recall that each event in a trace is annotated with an identifier, unique per
entry-exit pair — therefore, the σ↓id and σ↑id appearing in the trace (i) match the
method named σ in the Hoare triples; and (ii) ensures (by construction of the
identifiers) that σid does not appear in w2.

As before, the set of violating traces of a ppDATE Mp, written VT (MP) is
defined to be traces which have a counter example of MP as a prefix.

Note that Definition 5 allows for the inclusion of events corresponding to calls
to the methods specified in the states (part of the Hoare triples). This is natural
as concrete traces in ppDATEs do not necessarily coincide with “paths” of the
DATE component of the ppDATE. For instance, in Fig. 2 a call to rename(·)
when in state q′ is a valid one and a corresponding event rename↓ will be present
in the trace of the ppDATE.

3.4 Translation from ppDATE to DATE

In our architecture, KeY first tries to prove all data-oriented parts of a ppDATE
S, and the partial proofs are used to get an optimised ppDATE S’. To make
the property S’ runtime-checkable, we further translate away the (remaining/op-
timised) Hoare triples, to arrive at a set of parallel4, pure DATEs D that can
be processed by Larva. One complication in the translation is the possibility
that a Hoare triple in a state may ‘clash’ with an outgoing event. This would
for instance be the case if we added to Fig. 2 a transition from q to q′ with
fileTransfer↓ as a triggering event. For clarity of presentation we give two
algorithms, one for the case when no such clashes arise, and then for the full case.
Formally, we define a clashing Hoare triple as follows.

Definition 6. Given a ppDATE Mp = 〈M, τ〉 with M = 〈Q,V, Σ, t, q0, ν0〉, a
Hoare triple {π}σ {π′} ∈ τ(q), for some q ∈ Q, is called clashing if an outgoing

transition from q is guarded by event σ↓ (i.e., ∃ c, a, q′ · q
σ↓|c7→a−−−−−→ q′). A

clash-free ppDATE is a ppDATE with no clashing Hoare triple.

We now present the algorithm to translate a clash-free ppDATE into DATEs.
The translation works by replacing each Hoare triple {π}σ {π′} in a state q by a
new reflexive transition (from q to q) triggered by an entry into function σ such
that the precondition π holds, and sending a message which is used to replicate
a parallel post-condition checking DATE automaton.

Algorithm 1 Given a clash-free ppDATE Mp = 〈M, τ〉, we can construct a set
of parallel DATEs equivalent to Mp in the following manner:

1. Give each Hoare triple in Mp a unique name h, to be interpreted as a channel
name in the DATEs to be constructed.

2. For each Hoare triple h, construct a replicated DATE automaton Mh (called
the post-condition checker), parameterised over identifier id, as shown below5:

4 Multiple, parallel DATEs define behaviour of a sequential application in the sense
that each event in the application may trigger transitions in a number of DATEs. In
addition, the DATEs can synchronise with each other by means of channels.

5 Following the semantics of DATEs, whenever a message is received on channel h
with a new identifier, this automaton is replicated and the first transition is taken.

start ok

bad

hid? |7→ σid
↑ | π′ 7→

σid
↑ | ¬π′ 7→

3. Turn M , the DATE component of Mp, into the DATE M ′ such that, for
each Hoare triple {π}σ {π′} named h in τ(q) is replaced by a transition

q
σid

↓|π 7→hid!−−−−−−−−→M ′ q.
4. The resulting set of parallel DATEs is defined to be:
{M ′} ∪ {Mh|h is a Hoare triple identifier from M}.

This translation works well except that it would introduce non-determinism
when the ppDATE includes clashes. To extend the translation to work in the
presence of clashes, we transform Hoare triples clashing with a transition into
a family of disjoint transitions each of which performs the transition but also
checks whether the post-condition checker should be triggered.

Algorithm 2 Given a general ppDATE Mp, we can construct a set of parallel
DATEs equivalent to Mp by following Algorithm 1 except that we replace Step 3.,
by the following rule:
3a. Each non-clashing Hoare triple h: {π}σ {π′} in τ(q) is turned into a transi-

tion q
σid

↓|π 7→hid!−−−−−−−−→M ′ q.
3b. For each clashing Hoare triple h: {π}σ {π′} ∈ τ(q), clashing with n outgoing

transitions, q
σ↓|ci 7→ai−−−−−−→ qi (0 ≤ i < n):

– Replace q
σ↓|ci 7→ai−−−−−−→M qi with q

σid
↓|ci 7→{ai; ifπ thenhid!}−−−−−−−−−−−−−−−−−→M ′ qi;

– Add the following transition q
σid

↓|(¬c0∧...∧¬cn∧π)7→hid!−−−−−−−−−−−−−−−−−−→M ′ q.

4 Case study: Mondex

Mondex is an electronic purse application used by smart cards products [1], and
it has been used as a benchmark problem within the Verified Software Grand
Challenge context [21]. Mondex’s original sanitised specification written in Z,
together with hand-written proofs of different properties, can be found in [17].
Our variant is strongly inspired by a JML formalisation given in [19]. However,
ppDATE has native (automata) states, unlike Z or JML. This allowed us to
naturally represent the overall status of the observed system by states (see the
nodes of the graph in Fig. 3), instead of representing the status by additional
data like in Z or JML.

Mondex essentially provides a financial transaction system supporting transfer-
ring of funds between accounts, or ‘purses’. We focus on analysing the transactions
taking place between these purses, which follow a multi-step message exchange

protocol: whenever a transaction between two purses is to take place, (i) the
source and destination purses should (independently) register with the central
fund transferring manager; (ii) then a request to deduct funds from the source
purse may arrive, followed by (iii) a request to add the funds to the destination
purse; and (iv) finally, there should be an acknowledgement that the transfer
took place, before the transaction ends.

The original version of Mondex works on Java Card, and all controls in
relation to security properties have to be handled on the card, rather than
being monitored on an external source. In our case study, we have verified a
version of the protocol which works using a server, rather than a smart card.
The only principal difference in the protocol implementation is that the server
version uses return values to control the protocol rather than raising Java Card
exceptions. The full specification and code of the case study can be found in [2].
The specification consists on a ppDATE automaton with 10 states, 25 transitions
and a total of 26 different Hoare triples. The implementation consists on 514
lines of code (without comments) which are distributed over 8 files.

4.1 ppDATE Property

As typical in transaction-based systems, the Mondex case study illustrates how
complexity can arise from accessing different purses concurrently and in a manner
not predicted by the system developer. Specifications of such systems have to
reflect this emerging complexity and include (i) constraints as to the control flow
of the system — the order in which different components are accessed; and (ii)
constraints on how these components behave when accessed both when access
is expected and when it is not. Our formalism, ppDATE, addresses both these
orthogonal issues in a structured manner.

The top-level specification of the Mondex purse-management systems can be
found in Fig. 3. For space reasons, the Hoare triples populating the states are not
depicted in this figure, but instead, we will show them for specific states further
on. At the automaton level, the ppDATE (which we will call S) expresses the
protocol governing how the purses are to be accessed, by specifying the order
in which the components (in this case methods used to access the purses) can
be called. For instance, after the parties are initialised (encoded in S ’s state
named Parties Initialised), a request to deduct more money than what is found
in the source purse should fail, while a request to deduct an amount of money
which is available should take us to a state (named Money deducted) in which the
protocol now allows for the money to be transferred to the destination purse. The
ordering is crucial and appears in practically all financial transaction systems
so as to ensure that no money will be created at any point in the transaction.
Similarly, access to any unregistered purse takes us to a bad state6 since the
system should never allow these methods to be accessed. Notice that comparing

6 These transitions are not drawn in the diagram (but are mentioned in the note
underneath) so as to avoid confusion. Note that Larva will not take any explicit
action when reaching a bad state: the corresponding automaton will stay in that state

Awaiting both

Money deducted

Money deposited

val / pto.equals(t) && ret == SUCCESS &&

req / pfrom.equals(f) && ret == SUCCESS &&

start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&
start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&

req / pfrom.equals(f) &&

BAD STATE

Parties initialised

ack / pfrom.equals(f) && ret == SUCCESS &&

* All states have outgoing transitions for ret == SUCCESS && SENDER!=party (where party is the
In addition:

GOOD STATE

Awaiting end

end_transfer

* All states but 'Awaiting end' have outgoing transitions for end_transfer, going to a bad state.

transfer_initialise (f,t,v,mbox) / f.name != t.name &&

Awaiting from Awaiting to

Initial

/ pfrom = f; pto = t; pvalue = v;

ret == SUCCESS &&
ret == SUCCESS &&

ret == SUCCESS &&

m.id == pto.name

m.id == pfrom.name && m.id == pfrom.name && m.paydetails.value == pvalue &&

m.id == pto.name && m.paydetails.value == pvalue

m.id == pfrom.name

m.id == pto.name

m.id == pfrom.name

pvalue > pfrom.balance

ret == SUCCESS &&

ret == SUCCESS

m.id == pfrom.name

ret == SUCCESS &&

party from whom a message is not expected) going to a bad state.

pvalue <= pfrom.balancem.paydetails.value == pvalue &&

Fig. 3. ppDATE to monitor the behaviour of the transaction protocol.

m.paydetails.value and pvalue is needed in order to check that the message
received is part of the ongoing transaction.

Over and above the specification of the protocol, one has to specify the
behaviour of the involved methods, which obviously changes together with the
status of the protocol. For instance, transfer of funds from a purse to another
should succeed once both purses have been registered, but should fail if attempted
before registration or if an attempt is made to perform the transfer multiple
times. This behaviour is encoded by different Hoare triples assigned to different S
states. For instance, just after the registration of two purses (in S ’s state Parties
initialised), the method val_operation which requests money from the source
purse should succeed and deduct the money from the purse (provided enough
money is available) as shown in the Hoare triple7 below:

until the whole monitor is restarted (unless it is explicitly specified on the monitor
what action to take when reaching a bad state). A log is kept indicating this.

7 In the pre- and post-conditions, we use basic JML expression syntax [16].

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

On the other hand, if the same method is accessed after the funds have already
been deducted (S ’s state Money deducted) then the purse content should remain
unchanged, and the request should be ignored:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \result == IGNORED; }

Note that both Hoare triples above have the same pre-condition, but the
different ppDATE states they belong to demand different behaviour (i.e., post-
conditions) of val_operation.

The control-oriented properties basically ensure that the message exchange
goes as expected. In contrast, the pre/post-conditions (in total, there are 26
Hoare triples in the states of the ppDATE) ensure the well-behaviour of the
individual steps.

4.2 Combined Static and Runtime Verification

Following the verification approach from Fig. 1, we start by extracting the
Hoare triples from the ppDATE which are translated to JML annotations in
the source code. KeY then generates corresponding proof obligations in dynamic
logic and starts a proof attempt. Note that, in this work, we use KeY only fully
automatically, not using its rich support for interactive theorem proving, neither
assuming user provided proof-hinting annotations (like loop invariants).

When trying to prove these formulae, KeY creates proof branches correspond-
ing to case distinctions in the code. Usually, KeY manages to automatically
close the proofs of the simpler branches, but may not (automatically) close more
difficult branches. Still, the open goals contain path conditions, i.e., conditions
on the valuation of program variables before the method was entered. We use
this information to refine the pre-condition to the cases where KeY cannot close
the proof.

For instance, consider the part of the specification already discussed in
the previous section — the JML pre/post-condition from the the state Parties
initialised, when a request for a money transfer is received:

requires checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance);

ensures \result == SUCCESS

&& (balance == \old(balance) + transaction.value);

The code (and consequently KeY) branches on the status of the transaction,
and one of the branches, when the transaction is not awaiting a money deduction
request, is closed successfully. The other branch is left open. From the open
goal, we can read off the path condition status == ProtocolStatus.Epv (i.e.

the receiver purse is expecting to receive the requested value). Only if this
condition holds upon entry of val_operation, the post-condition will need to be
checked at runtime. All other cases are proved correct statically, by KeY. Before
generating the runtime monitor, we therefore refine the corresponding Hoare
triple in ppDATE to include this path condition:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance)

&& status == ProtocolStatus.Epv; }

val_operation

{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

In our case study, except for two Hoare triples related to the initialisation
and termination of a transaction which were fully proven by KeY, all the other
24 triples were refined in this manner.

The resulting ppDATE specification can now be transformed into an equivalent
DATE, and the runtime verification tool Larva is used to monitor the system
for possible violations.

The implementation of Mondex we describe in this section has been fully
verified with our technique, albeit in an iterative manner since verification revealed
some errors we made in our original implementation of Mondex (see next section).

5 Experimentation

Here, we summarise the experimental results of applying our approach to the
Mondex case study. In particular, we compare execution times of (a) the un-
monitored implementation, (b) the monitored implementation using the original
specification S, and (c) the monitored implementation using specification S′,
obtained from S via static (partial) proof analysis. The table below shows the
average execution time, on a PC Intel Core i7 using a single core, for these three
scenarios when the system is ran performing different numbers of transactions.
Statically analysing all the Hoare triples took KeY around 2.15 minutes. However,
the real gain is that this analysis is done once and for all prior to deployment,
and the gains reported in the table below improves performance for all executions
once the system is deployed.

Transactions (a) no monitoring (b) monitoring S (c) monitoring S′

10 8 ms 120 ms 15 ms
100 50 ms 3500 ms 90 ms
1000 250 ms 330000 ms 375 ms

As expected, adding a monitor caused overhead on the execution time (b).
However, this overhead is substantially reduced by using our approach (c). The
relative difference is quite remarkable: at least 10 times faster for low number of
transactions, and increasing up to 900 times faster as the number of transactions
increases. This large reduction in execution time overheads when optimising
the monitor is primarily due to the fact that data-oriented monitoring can be

prohibitively expensive in the first place. In fact, using our approach, each function
with a satisfied precondition fires an additional automaton being traversed in
parallel. This results in the large overheads in the case study. However, by pruning
away many of these checks through the typical case of a strengthening of the
precondition results in the gains we obtain. This indicates that using static
analysis to pare down the data-oriented aspect of the properties is ideal in this
situation, in that we are attacking directly the overlap between a strength of
static analysis and a weakness of dynamic analysis.

Note that it is usually impossible to get a full proof when using a static verifier
like KeY in the simple way we do, i.e., without user interaction, and without
poof supporting annotations (like loop invariants). But the missing proving
power is only one aspect. The other is that branches may be open because the
corresponding execution path is actually erroneous. KeY cannot per se distinguish
these two cases, but Larva can detect the erroneous case when it appears at
runtime. Note that the above table does not say anything about errors revealed
by applying our approach to the case study. It only shows execution times of the
various scenarios after errors were revealed and removed. However, finding errors
is the one of the most important purposes of verification, so we briefly discuss
some errors in the following.

In our variant of Mondex, in order to scale the transaction count, several
purses are iteratively generated, using the index for the name of the purse created
in each iteration. Executing the application with the monitor generated by
StaRVOOrS led to a runtime failure. Inspecting the monitor-generated (failing)
execution trace allowed us to spot the problem. Originally, the index of the loop
was initialised with 0, but the names of the purses were assumed to be greater
than 0. This lead to a purse with an invalid name, causing a failure which was
detected by StaRVOOrS.

We have also intentionally injected errors into the Mondex case study, to test
whether the approach would detect them. All of them were successfully detected
with StaRVOOrS. We have also considered incomplete or wrong specifications.
This can mean very different things. In a case where the specification is too
weak, such that the implementation fulfils it for wrong reasons, we may not
catch that. This is a common issue for practically all verification approaches. At
least, in our approach of combined data- and control-oriented verification, we
have some chance that a problem propagates to a state where the specification
is strong enough to catch it. If on the other hand a Hoare triple accidentally
puts wrong demands on the implementation, KeY will naturally not be able to
prove it. Thereby, the StaRVOOrS methodology ensures that the property is
checked at runtime. Even there, verification will fail (if only that part is executed),
but this time, we get a failing trace. Analysing it will show that, actually, the
computation was fine, suggesting that the specification was wrong in the first
place. For example, the post-condition used for static analysis (see Sec. 4.2) of the
method initialising the sender purse during a transaction used a wrong variable,
and KeY was not able to prove it. At runtime, the replicated automaton checking

the post-condition shifted to a bad state, even if the computation lead to the
expected results, allowing us to spot, and correct, the failing post-condition.

6 Related Work

The combination of different verification techniques is gaining more and more
popularity. One active area of research is the combination of static analysis and
testing, e.g. [4, 9, 12, 14, 15, 18]. A direct comparison of our work with those would
not be fully fair as we have different objectives. We are not aiming at generating
test cases, but at monitoring the actual post-deployment runs of the system.
What we have in common is that static analysis/verification is used to limit the
dynamic efforts, there by filtering test cases, here by filtering checks at runtime.

A different line of research is the combination of testing and runtime verifi-
cation, as done by Falzon and Pace in [13] where QuickCheck and Larva are
combined. Similar to ppDATEs, QuickCheck automata employ pre-postconditions
but as part of the transitions as opposed to the states as used in ppDATEs.

The work by Wonisch et al. in [20] is concerned with the use of program
transformation to avoid unsafe program executions. Their main objective is
the optimisation of runtime monitoring by using static analysis (rather than
full-blown static verification) techniques.

In [8] static analysis is used to improve the performance of runtime monitoring
based on tracematches. The paper presents a static analysis technique to speed
up trace matching by reducing the runtime instrumentation needed. The static
analysis part is based on three stages: ruling out some tracematches, eliminating
inconsistent instrumentation points, and finally further refinement of the analysis
taking into account execution order.

In [22], Zee et al. explore the combination of static and runtime verification,
aiming at a specification language whose specifications can be both statically
analysed and runtime checked. They extend the static verifier Jahob with tech-
niques to verify specifications at runtime, and can execute specifications using
quantifiers, set comprehensions, integer and object expressions amongst other
constructs. Most of the properties they can verify are data-centric, whereas we
also cover control-centric properties. We could benefit from incorporating some
of their solutions for complex data structures in our approach.

Several specification approaches, like SPARK [5], JML and SPEC# [6] are
supported by both static and runtime verification tools. However, to the best of
our knowledge, static verification is not used for optimising runtime verification.

7 Conclusions

In this paper we have presented the StaRVOOrS framework combining (partial)
static and (optimised) runtime verification. As a first step, we have instantiated
our approach with the tools KeY and Larva. We have presented and formalised
a notation, ppDATE, which allows us to arbitrarily combine control-oriented

(based on automata with event-triggered transitions) and data-oriented (relating
final and initial data values) properties in a single formalism, and thereby to
describe a larger variety of applications. An additional interesting aspect of this
combination is that data-oriented properties formulated in a pre/post style can
be made dependent on the history of previous events.

To illustrate how this framework works, we have applied it to a variant of
the Mondex case study [19, 21]. In this case study, we analyse the behaviour of
the transaction protocol for transferring money between electronic purses, and
we demonstrate how this protocol can be partly statically, partly dynamically
verified using our framework. Apart from this case study, we have also applied
our framework on a different case study — a simple system, in which users may
login and perform different operations (see [2] for the sources of this case study).

The difference in performance between the fully monitored and the version
with simplified monitors is, in itself, motivation to look further into how we
can extend our approach. The huge gains are primarily a side-effect of the large
costs of data-oriented property monitoring, meaning that any reduction in the
magnitude of the monitored properties can lead to large reductions in overheads.
Our approach may thus be a way of dealing with this class of properties which
one typically shies away from monitoring due to the large overheads involved.

The exact gain of optimising runtime monitoring by static results will vary
depending on the application, but in our approach, it will be substantial whenever
there are enough paths through the computation which are simple enough for
automated (static) verification, and yet appear frequently during runtime, which
arguably is common in many applications. In addition, we want to highlight that
the combination of static and runtime verification does not only speed up the
execution time of a monitored system, but moreover increases confidence, as
parts of the system are proved to be correct once and for all.

Both, the efficiency gain for monitoring and the confidence gain, will only
increase along with future improvements in the used static verifier. For instance,
if ongoing work on loop invariant generation in KeY will lead to closing some
more branches in typical proofs, then this will have an immediate effect that is
proportional to the frequency of executing those loops at runtime.

We are currently proving the soundness of the transformation of ppDATEs
to DATEs, and automating the verification process to use KeY and Larva with
ppDATEs. Finally, an interesting question is whether static verification could be
used to (partially) prove the control-oriented part of ppDATEs. This is an open
question left for future work.

Acknowledgements. We would like to thank Christian Colombo and Martin
Henschel for their support concerning implementation issues about Larva and
KeY respectively. We also thank the anonymous reviewers for their valuable
comments to improve the presentation of the paper.

References

1. MasterCard International Inc. Mondex. www.mondexusa.com/.

2. StaRVOOrS. www.cse.chalmers.se/~chimento/starvoors.

3. Wolfgang Ahrendt, Gordon Pace, and Gerardo Schneider. A Unified Approach
for Static and Runtime Verification: Framework and Applications. In ISOLA’12,
LNCS 7609. Springer, 2012.

4. Cyrille Artho and Armin Biere. Combined static and dynamic analysis. In
AIOOL’05, volume 131 of ENTCS, pages 3–14, 2005.

5. John Barnes. SPARK: The Proven Approach to High Integrity Software. Altran
Praxis, http://www.altran.co.uk, UK, 2012.

6. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS’05, volume 3362 of LNCS, pages 49–69. Springer,
2005.

7. Bernhard Beckert, Reiner Hähnle, and Peter Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer,
2007.

8. Eric Bodden, Laurie J. Hendren, and Ondrej Lhoták. A staged static program
analysis to improve the performance of runtime monitoring. In ECOOP’07, LNCS
4609, 2007.

9. Maria Christakis, Peter Müller, and Valentin Wüstholz. Collaborative verification
and testing with explicit assumptions. In FM’12: Formal Methods - 18th Interna-
tional Symposium, Paris, France, August 27-31, 2012. Proceedings, pages 132–146,
2012.

10. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic Event-Based
Runtime Monitoring of Real-Time and Contextual Properties. In FMICS’08, volume
5596 of LNCS, pages 135–149. Springer-Verlag, September 2009.

11. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA - A Tool for
Runtime Monitoring of Java Programs. In SEFM’09, pages 33–37. IEEE Computer
Society, 2009.

12. Christoph Csallner and Yannis Smaragdakis. Check ’n’ crash: combining static
checking and testing. In 27th International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 422–431, 2005.

13. Kevin Falzon and Gordon Pace. Combining testing and runtime verification
techniques. In Model-based Methodologies for Pervasive and Embedded Software,
volume LNCS 7706, 2012.

14. Cormac Flanagan, K. Rustan M Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended Static Checking for Java. In Jens Knoop and
Laurie J. Hendren, editors, PLDI’02, pages 234–245. ACM, 2002.

15. Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann. Dyta: dynamic symbolic
execution guided with static verification results. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011, pages 992–994, 2011.

16. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, and Patrice Chalin. JML Reference Manual.
Draft 1.200, 2007.

17. Susan Stepney, David Cooper, and Jim Woodcock. An Electronic Purse: Specifi-
cation, Refinement and Proof. Technical monograph PRG-126, Oxford University
Computing Laboratory, 2000.

18. Nikolai Tillmann and Jonathan de Halleux. Pex-White Box Test Generation for
.NET. In Bernhard Beckert and Reiner Hhnle, editors, TAP, volume 4966 of Lecture
Notes in Computer Science, pages 134–153. Springer, 2008.

19. Isabel Tonin. Verifying the Mondex case study. The KeY approach. Technical
Report 2007-4, Universität Karlsruhe, 2007.

20. Daniel Wonisch, Alexander Schremmer, and Heike Wehrheim. Zero Overhead
Runtime Monitoring. In SEFM’13, volume 8137 of LNCS, pages 244–258. Springer
Berlin Heidelberg, 2013.

21. Jim Woodcock. First Steps in the Verified Software Grand Challenge. In SEW’06,
pages 203–206. IEEE Computer Society, 2006.

22. Karen Zee, Viktor Kuncak, Michael Taylor, and Martin C. Rinard. Runtime
Checking for Program Verification. In RV’07, volume 4839 of LNCS, pages 202–213.
Springer, 2007.

