
UNIVERSITY OF OSLO
Department of Informatics

FLACOS’09
Workshop
Proceedings

Research Report No.
385

Gordon J. Pace

Gerardo Schneider

ISBN 82-7368-345-1
ISSN 0806-3036

September 2009

Proceedings of

FLACOS’09

Third Workshop on Formal
Languages and Analysis

of Contract-Oriented Software

24–25 September 2009

Toledo, Spain

Gordon J. Pace and Gerardo Schneider (editors)

Foreword
The 3rd Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLA-
COS’09) is held in Toledo, Spain. The aim of the workshop is to bring together researchers and
practitioners working on language-based solutions to contract-oriented software development.
The workshop is partially funded by the Nordunet3 project “COSoDIS” (Contract-Oriented Soft-
ware Development for Internet Services).

The program consists of 3 regular papers, 6 invited participant presentations, and presentation
from the COSOoDIS team. The regular papers were selected by the following programme com-
mittee:

Björn Bjurling SICS, Sweden
Olaf Owe University of Oslo, Norway
Gordon J. Pace University of Malta, Malta (co-chair)
Anders P. Ravn Aalborg University, Denmark
Gerardo Schneider Chalmers|Göteborg University, Sweden

University of Oslo, Norway (co-chair)
Valentin Valero Ruiz University of Castilla-La Mancha, Spain

The local organization was chaired by M. Emilia Cambronero Piqueras from the University of
Castilla-La Mancha, together with the following team:

Enrique Arias Antúnez University of Castilla-La Mancha, Spain
Antonio Bueno Aroca University of Castilla-La Mancha, Spain
Diego Cazorla López University of Castilla-La Mancha, Spain
Fernando Cuartero Gómez University of Castilla-La Mancha, Spain
Gregorio Díaz Descalzo University of Castilla-La Mancha, Spain
Fernando López Pelayo University of Castilla-La Mancha, Spain
Hermenegilda Macià Soler University of Castilla-La Mancha, Spain
Enrique Martínez López University of Castilla-La Mancha, Spain
M. Carmen Ruiz Delgado University of Castilla-La Mancha, Spain
Valentín Valero Ruiz University of Castilla-La Mancha, Spain

Further information can be found at the workshop homepage: http://www.ifi.uio.no/flacos09.
This website was developed and maintained by Enrique Martínez López.

Acknowledgments
Besides the Nordunet3 committee, we thank the Ministerio de Educación with the project TIN2006-
15578-C02-02, the JCCM with the regional project PEII09-0232-7745, the Albacete Science &
Technology Park, the I3A (Computer Science Research Institute of Albacete), the ESII (School
of Computer Science of Albacete) and the Computer System Department of the University of
Castilla-La Mancha for their support.
We also thank the President of the Regional Courts of Castilla-La Mancha for welcoming us and
contributing with an official reception.

Welcome to Toledo!
Gordon J. Pace and Gerardo Schneider

Table of Contents

Evolution of Contracts . 1
Gilles Barthe

On Behavioural Interfaces and Contracts for Software Adaptation 3
Javier Cámara, José A. Mart́ın, Gwen Salaun, Carlos Canal and
Ernesto Pimentel

Runtime Monitoring of Contract Regulated Web Services 9
Alessio Lomuscio, Wojciech Pencaek, Monika Solanki and Maciej
Szreter

Towards a Rigorous IT Security Engineering Discipline 17
Antonio Maña

Models for Open Transactions . 25
Ugo Montanari (joint work with Roberto Bruni)

From Orchestration to Choreography: Memoryless and Distributed
Orchestrators . 35

Sophie Quinton, Imene Ben-Hafaiedh and Susanne Graf

Inter-Service Dependency in the Action System Formalism 45
Kaisa Sere (joint work with Mats Neovius and Friedrik Degerlund)

A Contract-Based Approach to Adaptability in User-Centric Pervasive
Applications . 53

Martin Wirsing (joint work with Moritz Hammer, Andreas
Schroeder and Sebastian Bauer)

Passage Retrieval and Intellectual Property in Legal Texts 61
Paolo Rosso (joint work with Santiago Correa, Davide Buscaldi and
Alfonso Rios)

Evolution of Contracts?

Gilles Barthe

IMDEA Software
Madrid, Spain

gilles.barthe@imdea.org

Abstract. Any formalism to describe contracts must be able to capture
evolvability over time, and also to correlate such evolutions to changes in
the environment or in the behavior of the parties involved in contracts.
Yet, few works have focused on the general problem of verifying evolvable
contracts.
The talk will show that verification techniques for static contracts natu-
rally extend to evolvable contracts. Starting from a very general view
of contracts as syntactic entities that characterize sets of traces, we
show how to accomodate two essential ingredients of dynamic contracts:
spillover, which characterizes the remains of a clause when it is with-
drawn from a contract, and power, which characterizes when a princi-
pal is entitled to perform a change in a contract. Then, we show that
standard definitions of offline and online monitoring extend to dynamic
contracts, and we prove that the standard criteria of soundness and com-
pleteness of online monitoring wrt offline monitoring remain applicable
for dynamic contracts. One useful consequence of our results is the possi-
bility of relying on online methods to ensure that power is used correctly.
Although the technical development is carried in an abstract setting, we
illustrate our definitions and results using contract languages for rights
and obligations; these languages, despite their simplicity, share many es-
sential features with other formalisms for digital right management and
access control, and are therefore representative of the potential interest
of our approach.

? Joint work with Gordon Pace and Gerardo Schneider

1

2

On Behavioural Interfaces and Contracts for Software Adaptation

Javier Cámara, José Antonio Martı́n, Gwen Salaün, Carlos Canal, Ernesto Pimentel

Department of Computer Science, University of Málaga, Spain

Abstract

Software Adaptation aims at composing in a non-intrusive way black-box components or services, even if they present some
mismatches in their interfaces. Adaptation is a complex issue especially when behavioural descriptions of services are taken
into account in their interfaces. In this paper, we first present our abstract notations used to specify behavioural interfaces
and adaptation contracts, and propose some solutions to support the specification of these contracts. Then, we overview our
techniques for the generation of centralized or distributed adaptor protocols and code based on the aforementioned contracts.

1. Introduction

Service-based systems are built by reusing existing components and services. These services can be used to fulfill basic
requirements, or be composed with other services to build bigger systems which aim at working out complex tasks. Services
must be equipped with rich interfaces enabling external access to their functionality which can be described at different in-
teroperability levels (i.e.,signature, protocol, quality of service, and semantics). Composition of services is seldom achieved
seamlessly because mismatch may occur at the different interoperability levels and must be solved.Software adaptationis
the only way to compose non-intrusively black-box components or services with mismatching interfaces by automatically
generating mediatingadaptorservices. Adaptation goes beyond classic composition of components or services since in
these approaches, see for instance [1, 2, 3], no solution is proposed to compensate possible differences existing between
incompatible interfaces.

So far, most adaptation approaches have assumed interfaces described by signatures (operation names and types) and
behaviours (interaction protocols). Describing protocol in service interfaces is essential because erroneous executions or
deadlock situations may occur if the designer does not consider them while building composite services. Deriving adaptors
is a complicated task since, in order to avoid undesirable behaviours, the different behavioural constraints of the composition
must be respected, and the correct execution order of the messages exchanged must be preserved.

Most existing works on model-based behavioural adaptation (see for instance [4, 5, 6]) favour the full automation of
the process. They are referred to asrestrictive approachesbecause they try to solve interoperability issues by pruning the
behaviours that may lead to mismatch, thus restricting the functionality of the services involved. These techniques are limited
since they are not able to fix subtle incompatibilities between service protocols by remembering and reordering events and
data when necessary. A second class of solution is referred to asgenerative approaches(see for instance [7, 8, 9]). These
avoid restricting service behaviour, and support the specification of advanced adaptation scenarios. Generative approaches
build adaptors automatically from an abstract specification, namely anadaptation contract, of how mismatch cases can be
solved.

Manual writing of an adaptation contract is a difficult and error-prone task. In particular, incorrect correspondences
between operations in service interfaces, or syntactic mistakes are common, especially when the contract has to be specified
using cumbersome textual notations. Moreover, a contract is just an abstract specification of how the different services should
interact and does not explicitly describe all the different execution scenarios of a system, which may not be easily envisioned
by the designer. Finally, writing a contract requires a good comprehension of the services involved, and understanding all the
details of service protocols is quite complicated for non-experts.

Email addresses:jcamara@lcc.uma.es (Javier Cámara),jamartin@lcc.uma.es (José Antonio Martı́n),salaun@lcc.uma.es (Gwen
Salaün),canal@lcc.uma.es (Carlos Canal),ernesto@lcc.uma.es (Ernesto Pimentel)

Preprint submitted to Elsevier June 16, 2009

3

In this paper, we present an approach that fully supports generative adaptation, which starts with the automatic extraction
of behavioural models from existing interface descriptions either in Abstract BPEL or Windows Workflows (WF), and ends
with the generation of a monolithic adaptor or a set of distributed adaptation wrappers that are automatically generated and
deployed. We will present the different parts of our solution with a particular focus on the notations used here to specify
behavioural interfaces and adaptation contracts. More precisely, we will present two alternatives to manual contract speci-
fication. A first one, namelyautomatic contract specification, aims at constructing adaptation contracts without any human
intervention. A second one, namelyinteractive contract specification, supports the user through the adaptation contract
design process using a graphical notation and interactively pointing out suggestions and inconsistencies in the design by
using protocol similarity, simulation and verification techniques. We also propose a combined use of both approaches. Our
approach is fully supported by a toolbox called ITACA.

The rest of this paper is structured as follows: Section 2 presents our service model and some techniques supporting the
contract specification. In Section 3, we overview our solutions to generate the adaptor protocol and code from the behavioural
interfaces and adaptation contract. Section 4 presents our tool support and Section 5 some concluding remarks.

2. Behavioural Interfaces and Adaptation Contracts

2.1. Behavioural Interfaces

We assume that service interfaces are specified using both a signature and a protocol. Signatures correspond to operation
names associated with arguments and return types relative to the messages and data being exchanged when the operation is
called. Protocols are represented by means ofSymbolic Transition Systems(STSs), which are Labelled Transition Systems
(LTSs) extended with value passing [10]. Communication between services is represented using events relative to the emis-
sion and reception of messages corresponding to operation calls. Events may come with a set of data terms whose types
respect the operation signatures.

This formal model has been chosen because it is simple, graphical, and provides a good level of abstraction to tackle
verification, composition, or adaptation issues [11, 12, 13]. At the user level, one can specify service interfaces (signatures and
protocols) using respectively WSDL, and Abstract BPEL (ABPEL) or WF workflows (AWF) [14]. These, are automatically
parsed and translated into our internal STS model.

2.2. Adaptation Contract Specification

An adaptation contract [8] contains an interface mapping matching operations (including their arguments) required by
service interfaces with those offered by others in order to reconcile interface mismatch at the signature and behavioural
levels. Furthermore, a contract may also contain additional properties to be imposed on the composition of the different
services, such as specific orderings on operation invocations. Therefore, understanding how two protocols differ helps to
build adaptation contracts, for instance by suggesting the best possible operation matches to the user. To do so, our approach
is able to compute protocol similarities [15], which aim at pointing out differences between protocols, but also at detecting
parts of them which turn out to be similar. Our similarity computation relies on adivide-and-conquerapproach to compute
the similarity of service protocols (described as STSs) from a set of detailed similarity comparisons (states, labels, depths
and graphs). This information can be used to guide the contract specification process, regardless of the specific technique
employed. In particular, we introduce in this section our contract notation and two different specification techniques for
adaptation contracts:

Notation. Our adaptation language makes communication among services explicit, and specifies how to work out mismatch
situations. To make communication explicit, we rely onvectors(inspired from synchronization vectors [16]), which denote
communication between several services, where each event appearing in one vector is executed by one service and the
overall result corresponds to an interaction between all the involved services. A vector may involve any number of services
and does not require interactions to occur on the same names of events. Vectors express correspondences between messages,
like bindings between ports, or connectors in architectural descriptions. Furthermore, variables are used as placeholders in
message parameters. The same variable name appearing in different labels (possibly in different vectors) enables the relation
of sent and received arguments of messages.

In addition, the contract notation includes an LTS with vectors on transitions (vector LTS or VLTS). This is used as a
guide in the application order of the interactions denoted by vectors. VLTSs go beyond port and parameter bindings, and

4

express more advanced adaptation properties (such as imposing asequence of vectors or a choice between some of them). If
the application order of vectors does not matter, the vector LTS contains a single state with all transitions looping on it.

Automatic Contract Specification. In order to alleviate the cumbersome task of designing adaptation contracts and to avoid
mistakes in the specification (which may lead to undesirable behaviours of the system), we can use the above mentioned
similarity measures for the automatic generation of contracts [17]. This automatic contract generation is achieved traversing
the behaviour of the services and matching the different operations found based on similarity measures. In such a way, we are
able to match compatible operations and to adapt the minimum set of operations required for the deadlock-free composition
of services. The generated contracts successfully specify how to overcome signature mismatch (i.e., different operation
names and arguments) and behavioural incompatibilities (i.e., message splitting/merging, missing messages and message
reordering) in such a way that all services are able to interact with each other and reach a correct termination state of their
execution.

Interactive Contract Specification. Automatic contract generation may produce solutions leading to deadlock-free compo-
sitions unable to fulfill their intended goals, since the automatic approach is not currently aware of the underlying semantics
of the services. Therefore, our approach incorporates an Adaptation Contract Interactive Design Environment [18], which
aims at helping the designer in specifying a contract, reducing the risk of errors introduced by manual specification. In con-
trast with using textual notations where the designer can write any (correct or incorrect) statement, our environment makes
use of a graphical notation which enables interactive and incremental construction and checks on the contract. Thus, any
contract produced with our proposal is syntactically correct and consistent. In addition, the interactive environment is able
to:

• Assist the designer by pointing out the best matches between ports graphically using protocol similarity information.

• Simulate the execution of the system step-by-step and determine how the different behavioural interfaces evolve as the
different parts of the contract are executed, highlighting active states and fired transitions on the graphical representa-
tion of interfaces.

• Automatically identify execution traces leading to deadlock or livelock. These can be replayed step-by-step using
simulation to understand the cause of the incorrect behaviour. This helps the designer to detect the behavioural issues
that might be raised during execution and to understand if the behaviour of the system complies with his/her design
intentions.

It is worth observing that the automatic and interactive approaches mutually improve their results when they are combined.
On one hand, when the automatic contract specification process receives adaptation constraints from the interactive design
environment, it is able to discard solutions leading to deadlock-free compositions that may not fulfill their intended goals
(e.g., a client-supplier system which always aborts requests). On the other hand, the designer can use the automatic approach
to complete parts of a contract through the interactive environment.

3. Adaptor Generation and Implementation

From a set of service protocols and a contract specification, we can generate either anadaptorprotocol (centralized view),
or a set ofadaptation wrapperprotocols (distributed view). In the first case, the adaptor can be deployed on a single machine.
In the case of wrappers, they can be distributed and deployed using middleware technologies, preserving a full parallelism of
the system’s execution. Adaptor and wrapper protocols are automatically generated in two steps: (i) system’s constraints are
encoded into the LOTOS [19] process algebra, and (ii) adaptor and wrapper protocols are computed from this encoding using
on-the-fly exploration and reduction techniques. Beyond simulation and verification techniques integrated in the interactive
environment, the LOTOS encoding allows to check temporal logic properties on the adaptor under construction using the
CADP model-checker [20]. The reader interested in more details may refer to [10, 21].

Our internal model (STS) can take into account some additional behaviours (interleavings) that cannot be implemented
into executable languages. To make platform-independent adaptor protocols (obtained in the former step) implementable
wrt. a specific platform (e.g.,BPEL), we proceed in two steps: (i) filtering the interleaving cases that cannot be implemented
(e.g.,several emissions and receptions outgoing from a same state), and (ii) encoding the filtered model into the corresponding
implementation language. Following the guidelines presented in [10], the adaptor protocol is implemented as a BPEL process
using a state machine pattern. The main body of the BPEL process corresponds to a globalwhile activity with if statements

5

used inside it to encode adaptor states. Eachif body encodes transitions outgoing from the corresponding state. Variables are
used to store data passing through the adaptor and the current state of the protocol.

4. Tool Support

Our solution for model-based software adaptation overviewed in this paper is fully supported byITACA [22], an integrated
toolbox we implemented (see Fig. 1).ITACA has been implemented in Python and Java, and consists of about 51,000 lines
of code. We have intensively applied and validated our toolbox on many case studies such as a travel agency, rate finder
services, on-line computer material store, library management systems, SQL servers, and many other systems.

Although our toolbox automates all the steps of the adaptation process, contract specification requires human intervention
to ensure that the goal of the composition is fulfilled. However, experiments we have carried out show that the techniques
proposed inITACA to support the adaptation contract construction drastically reduce the time spent to build the contract and
the number of errors made during this process.

Designer

Adaptor
Protocol

<vector id="vector_0">
<componentVector eventName="user"

eventType="OUT" index="client">
<dataItem

name="clientuserOUTusr"/>
</componentVector>

</vector>
<vector id="vector_1">

...

Adaptation Contract

Interactive Contract Specification +
Simulation and Verification (ACIDE)

Automatic Contract Specification
(DINAPTER)

���������	
��
����� �������	
��
���������������
����	�����������������
	��
���������������������

������	������
�������
��
�� �������	������
����������������
���������	
��
����������
��
�� ���������	������
����������
��
�� ��������������������
������������ ��� �! �" �#�$
�
� ���� ��� �! �"

Service Interface Models
(Signature + Protocol STS)

Adaptor Protocol / Service
Wrapper Protocols Generation

((D)COMPOSITOR)

Adaptor Protocol Filtering
+ Service Deployment

(STS2BPEL)

Service Protocol+Signature
Extraction

(WSDL2SIG+ABPEL2STS/
AWF2STS)

Service Interfaces (Abstract BPEL+WSDL)

Deployed System
(BPEL Adaptor + Original Service

Implementations)

Service Interfaces (Abstract WF+WSDL)

Similarity
Computation

(SIM)

Figure 1. Adaptation process overview in ITACA

5. Concluding Remarks

Software adaptation is a satisfactory solution to build new systems involving reusable software services that present some
mismatch cases in their interfaces. However, this is an error-prone task and therefore must be automated as much as possible.
In this work, we have presented our approach to software adaptation and we focused on the adaptation contract specification,
the only step of our proposal which requires human intervention. To help the designer in this task, we have proposed
two alternative solutions to the manual design of contracts, which rely on graphical notation, interactive environment, and
automatic generation techniques. In this work, we have also introduced what is, to the best of our knowledge, the first toolbox
(ITACA) that fully supports a generative adaptation approach from beginning to end.ITACA supports the specification and
verification of adaptation contracts, automates the generation of adaptor protocols, and relates our abstract models with
implementation languages.

Acknowledgements.This work has been partially supported by the project TIN2008-05932 funded by the Spanish Ministry
of Innovation and Science (MICINN), and project P06-TIC-02250 funded by theJunta de Andalućıa.

References

[1] L. de Alfaro, T. Henzinger, Interface Automata, in: Proc. of ESEC/FSE’01, ACM Press, 2001, pp. 109–120.

6

[2] S. Uchitel, M. Chechik, Mergin Partial Behavioural Models, in: Proc. of FSE’04, ACM Press, 2004, pp. 43–52.

[3] A. Basu, M. Bozga, J. Sifakis, Modeling Heterogeneous Real-time Components in BIP, in: Proc. of SEFM’06, IEEE
Computer Society, 2006, pp. 3–12.

[4] M. Autili, P. Inverardi, A. Navarra, M. Tivoli, SYNTHESIS: A Tool for Automatically Assembling Correct and Dis-
tributed Component-based Systems, in: Proc. of ICSE’07, IEEE Computer Society, 2007, pp. 784–787.

[5] A. Brogi, R. Popescu, Automated Generation of BPEL Adapters, in: Proc. of ICSOC’06, Vol. 4294 of LNCS, Springer,
2006, pp. 27–39.

[6] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, F. Casati, Semi-Automated Adaptation of Service
Interactions, in: Proc. of WWW’07, ACM Press, 2007, pp. 993–1002.

[7] A. Bracciali, A. Brogi, C. Canal, A Formal Approach to Component Adaptation, Journal of Systems and Software
74 (1) (2005) 45–54.

[8] C. Canal, P. Poizat, G. Salaün, Model-Based Adaptation of Behavioural Mismatching Components, IEEE Transactions
on Software Engineering 34 (4) (2008) 546–563.

[9] M. Dumas, M. Spork, K. Wang, Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation, in: In
Proc. of BPM’06, Vol. 4102 of LNCS, Springer, 2006, pp. 65–80.

[10] R. Mateescu, P. Poizat, G. Salaün, Adaptation of Service Protocols using Process Algebra and On-the-Fly Reduction
Techniques, in: Proc. of ICSOC’08, LNCS, Springer, 2008, pp. 84–99.

[11] H. Foster, S. Uchitel, J. Kramer, LTSA-WS: A Tool for Model-based Verification of Web Service Compositions and
Choreography, in: Proc. of ICSE’06, ACM Press, 2006, pp. 771–774.

[12] X. Fu, T. Bultan, J. Su, Analysis of Interacting BPEL Web Services, in: Proc. of WWW’04, ACM Press, 2004, pp.
621–630.

[13] G. Salaün, L. Bordeaux, M. Schaerf, Describing and Reasoning on Web Services using Process Algebra, IJBPIM 1 (2)
(2006) 116–128.

[14] J. Cubo, G. Salaün, C. Canal, E. Pimentel, P. Poizat, A Model-Based Approach to the Verification and Adaptation of
WF/.NET Components, in: Proc. of FACS’07, Vol. 215 of ENTCS, Elsevier, 2007, pp. 39–55.

[15] M. Ouederni, Measuring Similarity of Service Protocols, Master Thesis, University of Málaga. Available on Meriem
Ouederni’s Webpage (Sep. 2008).

[16] A. Arnold, Finite Transition Systems, International Series in Computer Science, Prentice-Hall, 1994.

[17] J. A. Martı́n, E. Pimentel, Automatic Generation of Adaptation Contracts, in: Proc. of FOCLASA’08, ENTCS, 2008, to
appear.

[18] J. Cámara, G. Salaün, C. Canal, M. Ouederni, Interactive Specification and Verification of Behavioural Adaptation
Contracts, in: 9th International Conference on Quality Software (QSIC’09), IEEE, 2009, to appear.

[19] ISO/IEC, LOTOS — A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour,
International Standard 8807, ISO (1989).

[20] R. Mateescu, M. Sighireanu, Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-Calculus, Science
of Computer Programming 46 (3) (2003) 255–281.

[21] G. Salaün, Generation of Service Wrapper Protocols from Choreography Specifications, in: Proc. of SEFM’08, IEEE
Computer Society, 2008, pp. 313–322.

[22] ITACA’s Webpage, accesible from Javier Cámara’s Webpage.

7

8

Runtime monitoring of contract regulated

web services

Alessio Lomuscio1, Wojciech Penczek2,3, Monika Solanki1 and Maciej Szreter2

1 Department of Computing
Imperial College London, UK

2 Institute of Computer Science
PAS, Poland

3 University of Podlasie, Poland

Abstract. We investigate the problem of locally monitoring contract regulated
behaviours in web services. We encode contract clauses in service specifications
by using extended timed automata. We propose a non intrusive local monitoring
framework along with an API to monitor the fulfilment (or violation) of contrac-
tual obligations. We illustrate our methodology by monitoring a service compo-
sition scenario from the vehicle repair domain, and report on the experimental
results.

1 Introduction

Web services (WS) are now considered one of the key technologies for building new gen-
erations of digital business systems. Service level agreements (SLAs) provide a useful
mechanism to establish agreed levels of service provision when interactions are invoked
within certain parameters. Although SLAs are useful, they can represent only basic agree-
ments of service provision. Applications running complex, human-like activities require
more general and sophisticated declarative specifications certifying legal-like agreements
among the parties.

A useful concept from the legal domain in this sense is the one of contract as found
in human societies. Should a contract be broken by one of the parties, additional rights
and/or obligations (e.g., penalties to be paid) may be applicable to some party. In this
paper, we study the problem of monitoring runtime behaviours of contract regulated web
services. While contracts are usually negotiated offline, it is of interest to monitor at run-
time whether interactions between WS are complying to the contracts stipulated between
the parties. We put forward a “symbolic” solution to the problem above. We represent
both all possible behaviours and the contractually-correct ones as an appropriate timed
automata [1] at local web-service level. Specifically we present a local contract runtime
monitor (CRM) based on the symbolic toolkit Verics [5], a symbolic model checker for
timed-automata. CRM checks the input at runtime against the symbolic representations
provided, and reports to the service (or directly to the engineer) any mismatch, or vi-
olation, between the contract-compliant behaviours originally prescribed and the ones
actually received in the input stream.

The significant advantage of the approach is that we do not need to keep the whole
state space of the possible and the contract-compliant behaviours in memory but we can
simply call the timed-automata engine at runtime to match moves against the stream of
events coming from the input. The paper is structured as follows: In Section 2 we briefly

9

introduce the formalism of timed automata as used here. Section 3 presents our moni-
toring framework. We analyse a motivating case study in 4 and discuss the monitoring
results. Section 5 presents related work and conclusions.

2 Monitoring via Timed Automata

Let IN denote the set of naturals (including 0), ZZ - the set of integers, Q - the set of
rational numbers, IR (IR+) - the set of (non-negative) reals, and V be a finite set of
integer variables. By a variable valuation we mean any total mapping v : V −→ IN. We
extend the mapping v to expressions of Ex(V) in the usual way. The satisfaction relation
(|=) for the boolean expressions is also standard.

Given a variable valuation v and an instruction α ∈ InsL(V), we denote by v(α) the
valuation v′, obtained after executing α at v, which is formally defined as follows:

– if α = ǫ then v′ = v,
– if α = (v := ex), then v′(v) = v(ex) and v′(v ′) = v(v ′) for all v ′ ∈ V \ {v},
– if α = α1α2, then v′ = (v(α1))(α2).

Let X = {x1, . . . , xnX
} be a finite set of real-valued variables, called clocks. The set of

clock constraints over X and V , denoted C(X ,V), is defined by the grammar: cc ::=
true | xi ∼ c | xi ⊗xj ∼ c | xi ⊗xj ∼ v | xi ⊗ v ∼ c | v⊗w ∼ xi| cc∧ cc, where xi, xj ∈ X ,
v, w ∈ V , c ∈ IN, ⊗ ∈ {+,−}, and ∼ ∈ {≤, <, =, >,≥}. Let X+ denote the set X ∪{x0},
where x0 6∈ X is a fictitious clock representing the constant 0. A clock-to-clock assignment
A over X is a function A : X −→ X+. Asg(X) denotes the set of all the assignments over
X . By a clock valuation we mean a mapping c : X −→ IR+. The satisfaction relation (|=)
for a clock constraint cc ∈ C(X ,V) under a clock valuation c and a variable valuation v

is defined as:

– (c,v) |= (xi ⊗ v ∼ c) iff c(xi) ⊗ v(v) ∼ c,
– the other cases are defined similarly.

In what follows, the set of all the pairs (c,v), composed of a clock and a variable valuation,
satisfying a clock constraint cc is denoted by [[cc]]. Given a clock valuation c and δ ∈ IR+,
by c + δ we denote the clock valuation c′ such that c′(x) = c(x) + δ for all x ∈ X .
Moreover, for a clock valuation c and an assignment A ∈ Asg(X), by c(A) we denote
the clock valuation c′ such that for all x ∈ X we have c′(x) = c(A(x)) if A(x) ∈ X ,
and c′(x) = 0 if A(x) = x0. Finally, by c0 we denote the initial clock valuation, i.e., the
valuation such that c0(x) = 0 for all x ∈ X . In this paper we assume a slightly modified
definition of timed automata with discrete data [17], which extend the standard timed
automata of Alur and Dill in the following way:

Definition 1. A timed automaton with discrete data (TADD) is a tuple A = (Σ, L, l0,V ,X , E , I),
where

– Σ is a finite set of labels (actions),
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– V is the finite set of integer variables,
– X is the finite set of clocks,

10

– E ⊆ L × Σ × Bool(V) × C(X ,V) × InsL(V) × Asg(X) × L is a transition relation,
and

– I : L −→ C(X , ∅) is an invariant function.

The invariant function assigns to each location a clock constraint (without integer vari-
ables4) expressing the condition under which A can stay in this location.

The semantics of a TADD A is given below.

Definition 2. The semantics of A = (Σ, L, l0,V ,X , E , I) for an initial variable valua-
tion v0 : V −→ ZZ is a labelled transition system S(A) = (Q, q0, ΣS ,−→), where:

– Q = {(l,v, c) | l ∈ L ∧ v ∈ ZZ|V | ∧ c ∈ IR
|X |
+ ∧ c |= I(l)} is the set of states,

– q0 = (l0,v0, c0) is the initial state,
– ΣS = Σ ∪ IR+ is the set of labels,
– −→⊆Q × ΣS × Q is the smallest transition relation:

• for a ∈ Σ,
(l,v, c)

a
−→(l′,v′, c′) iff there exists a transition t = (l, a, β, cc, α, A, l′) ∈ E such

that v |= β, (c,v) |= cc, v′ = v(α), c |= I(l), and c′ = c(A) |= I(l′) (action
transition),

• for δ ∈ IR+,

(l,v, c)
δ

−→(l,v, c + δ) iff c |= I(l) and c + δ |= I(l) (time transition).

Intuitively, in the initial state all the variables are set to their initial values, and all the
clocks are set to zero. Then, at a state q = (l,v, c) the system can either execute an
action or time transition.

2.1 TADD Semantics for RMCS

Inspired by related work in the formal representation of states of compliance and violation
[10], we partition the set of global states Q of S(A) for A = (Σ, L, l0,V ,X , E , I) into
two subsets G and R such that G∩R = ∅5. The set G represents green (or ideal) states,
whereas R represents the red (or non-ideal) ones. Intuitively, G contains the states of
compliance and R contains the states of violation with respect to the contract, i.e., the
whole set of clauses being included. Figure 1 illustrates the intuition behind the semantics.

Fig. 1. Partitioning of states and transitions in a TADD

Based on the above partitioning each action transition (q, a, q′) of S(A) can be one
of the following four types of transitions:

4 To ensure the monotonicity of the timed successor relation.
5 This partition is obtained “location-wise” from a partition of the set of locations L of A.

11

– Contract compliant: between green and green states, i.e., q, q′ ∈ G. These tran-
sitions occur when the observed behaviour is in compliance with the prescribed be-
haviour of the contract.

– Contract violating: between green and red states, i.e., q ∈ G and q′ ∈ R. These
transitions occur when the observed behaviour violates the prescribed behaviour of
the contract.

– Recovery: between red and green states, i.e., q ∈ R and q′ ∈ G. These transitions
occur when a recovery action is taken by the service after a violation of the prescribed
behaviour is recorded.

– Continuous contract violating: between red and red states, i.e., q, q′ ∈ R. The
transitions occur when no recovery results from a previous violation.

We say that there is a step from state q1 to q2 in A if q1

δ1−→ q′1
a

−→ q′2
δ2−→q2, for some

states q′1, q
′
2 ∈ Q, δ1, δ2 ∈ IR+, and a ∈ Σ.

3 Runtime monitoring framework

Our architecture for local monitoring, RMCS, is illustrated in Figure 2.

Fig. 2. The general architecture and methodology

Agents implementing WS are the primary entities within our framework. Service
behaviour and contracts associated with them may be specified at a high level using WS

12

standards, e.g., WSBPEL [13] and contracts, e.g., WSLA [7]. The TADD specification
for the service is engineered from these interface representations. The specification of
service behaviour used by RMCS is the TADD representation described in Section 2.
We use the XML format generated by the model checker UPPAAL for representing the
TADD. The runtime state analyser interfaces with the logger for receiving snapshots
of the latest variable valuations generated by the service. Snapshots are passed to the
RSA via the logging framework. RSA is also responsible for updating clocks by querying
the system hardware, in accordance with the granularity of a tick chosen by the service.
The monitoring engine is the core component responsible for testing the conformance of
runtime service behaviour presented as an input from the RSA, against the prescribed
TADD specification of the service.

Each execution step passed to the engine is encoded and its conformance to the TADD
specification is tested. Our SAT-based verification method does not need to construct
the complete model for A, which could be unfeasible for both the explicit-state as well
as BDD-based methods. The engine checks at runtime whether the stream of execution
steps received as inputs from the RSA, conforms with its symbolic representation of all
possible behaviours. For each execution step, the answer returned by the monitoring
engine is one of the following facts:

– GREEN - the step is conforming with the specification, i.e., there is a contract
compliant transition between the source and target states.

– RED - a red state is reached as a target of the transition given, i.e., a contract has
been violated as a result of the transition. This also signifies the fact that the inputs
do not comply with the extended format of the TADD for the service.

– NONE - the step is not conforming with the specification, i.e., there is no such
transition, neither contract compliant or otherwise.

– ERROR - the specification given does not mirror the observed transition so it
amounts to an error.

Results reported at runtime may be analysed in several ways.

4 A vehicle repair contract: case study

We consider a service composition scenario that defines a repair contract between a client
(C) and a vehicle repair company (RC). A repair contract specifies details concerning a
particular repair, i.e., the type of repair to be performed, price, dates, pickup and delivery
locations etc. For simplicity we only model the behaviour of RC. Table 1 identifies some
of the contract clauses governing the actions taken by RC, the deadlines against which
the contracts are monitored, if the clause can be violated, and, if a violation is recorded,
whether any recovery is possible. Note that in some cases RC may take an “offline”
action, in response to a violation from which no recovery may be possible. For example
consider clause 6: “For any violation take recovery action within 3 days”. If the recovery
action is not taken, C may take an offline legal action against RC.

The informal behaviour of RC is described as follows. When RC receives a request
from C to undertake a repair job, it sends a repair proposal. In response, C sends an
acceptance or rejection message. If accepted, RC sends a contract initiation message to
C. RC then waits for the vehicle to arrive, failing which it sends two reminders to C. If
the vehicle fails to arrive, it takes an offline action. As per the contract, RC is obliged to

13

clause Contract regulated actions Deadline Violation Recovery

1 Receives a repair request by C 5 days - -
2 Sends a repair proposal to C 7 days - -
3 Assess damage to the vehicle 3 days yes yes
4 Execute repair 30 days yes yes
5 Send repair report to C 5 days yes yes
6 For any violation take recov-

ery action
3 days yes no (take offline action)

Table 1. Some contract regulated actions for RC

assess the damage, repair the vehicle and send a report to C. On receiving the report, C

is obliged to send payment to RC. If the payment is not sent, RC sends two reminders
to C and then takes an offline action.

The actions taken by RC in response to messages sent by C are monitored to meet
the deadlines set for various activities as per the contract. Failure to meet deadlines is
considered a violation of the contractual obligations. In some cases a recovery from the
violation may be possible.

4.1 Monitoring the runtime behaviour of the Repair Company

The full set of behaviours of the repair company is represented by a TADD6. As described
in Section 4, deadlines for various activities are decided during contract negotiation
between the parties. Deadlines are defined in terms of number of days. For example
consider a contract clause to be monitored: If C sends a damaged vehicle to RC, RC

assesses the damage to the vehicle within 3 days -clause (3) in table 1. A snippet of the
TADD for the clause is shown in the Figure 3. Figure 3 describes the timeline in number

s8=notAssessed
x<=2

s7=Assessed
x<=30

s5=Received Vehicle

x<=3

s4=Contract Initiated
x<=7

!damageAssessed

clause=003,x=0

damageAssessed

SendAssessed? x=0

vehicleSent
SendVehicle!

x=0

Fig. 3. TA specification of clause (3)

of days for clause (3), a snapshot passed to RSA at x = 0 from the logger when a vehicle
for repair arrives, snapshots sent to the monitoring engine by the RSA and the results
from monitoring. As per the contract, once a damaged vehicle has arrived the damage
has to be assessed within 3 days. A snapshot is again sent by the logger to the RSA at
x = 5. The snapshot taken at x = 0 and at x = 5 are sent by the RSA as a pair - or as a

6 The complete TADD for the example is too large to be shown here.

14

Fig. 4. Runtime valuations for clause (2)

“step” to RMCS. The results returned by the monitoring engine are {RED, reset, 003}.
RED signifies that a violation has occurred, i.e., the damage was not assessed within
the deadline, reset indicates that the clock has been reset and 003 indicates the clause
index that has been violated.

4.2 Experimental results and Discussion

In order to validate our methodology, we implemented the above case study and mon-
itored several runtime execution steps for the service. RMCS successfully monitored 8
execution steps per second depending on the number of variables defined for the steps.
Violated contracts and clock resets were reported by RMCS. Note that this could be use-
ful in the context of monitoring SLAs, where typically large number of execution steps
need to be monitored to ensure a reliable Quality-of-Service.

5 Related work and conclusions

In this paper we presented a symbolic approach based on timed automata for the runtime
monitoring of contract regulated agent based WS. Monitoring service behaviour has
been an active area of research. Several efforts have investigated various formalisms and
frameworks for the monitoring of functional and non-functional properties of services.
The monitoring problem has been considered for several formalisms in papers [16, 2, 4,
14, 12, 11, 9, 3]. Timed automata have been used in earlier work such as [8] on monitoring
and fault diagnosis of systems, while [15] presents an approach which also uses timed
automata for monitoring SLAs. The aims of the above approaches are however quite
different from our objectives in this paper. However [8, 15] are not concerned with local
monitoring of contract-based executions.

An attractive feature of our approach over those mentioned above is that histories
and pending contracts are not stored in memory during the monitoring. This positively
impacts the scalability of the approach and is particularly useful when monitoring mul-
tiple and long running contracts between several services. As a case study we presented
the monitoring of contracts for a repair company. Although the TADD for the service

15

is not large enough to exploit the full capabilities of RMCS, we believe it is still suffi-
ciently significant to demonstrate the methodology and scope of the proposed approach.
Experiments demonstrate larger scenarios would be handled just as well by the technique.

Much work remains to be done. An important part of our future work is the translation
to TADDs from high level specification standards such as WSBPEL.

References

1. R. Alur. Timed Automata. In Proceedings of the 11th International Conference on Computer
Aided Verification (CAV’99), volume 1633 of LNCS, pages 8–22. Springer-Verlag, 1999.

2. Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time monitoring
of instances and classes of web service compositions. In ICWS ’06: Proceedings of the IEEE
International Conference on Web Services.

3. Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented Comput-
ing. ACM.

4. Domenico Bianculli and Carlo Ghezzi. Monitoring conversational web services. In IW-
SOSWE ’07: 2nd international workshop on Service oriented software engineering. ACM.

5. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna,
and A. Zbrzezny. VerICS: A tool for verifying Timed Automata and Estelle specifications.
In Proc. of the 9th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), LNCS. Springer-Verlag.

6. N. Eén and N. Sörensson. MiniSat. http://minisat.se/MiniSat.html.
7. Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. J. Netw. Syst. Manage., 2003.
8. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In 11th

International SPIN Workshop on Model Checking of Software (SPIN’04), Barcelona, Spain,
LNCS.

9. Zheng Li, Yan Jin, and Jun Han. A runtime monitoring and validation framework for web
service interactions. In ASWEC ’06: Proceedings of the Australian Software Engineering
Conference (ASWEC’06). IEEE Computer Society.

10. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.
11. G. Mahbub, K.; Spanoudakis. Run-time monitoring of requirements for systems composed

of web-services: initial implementation and evaluation experience. In ICWS’05, IEEE In-
ternational Conference on Web Services.

12. Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman, and John Warne. Contract
representation for run-time monitoring and enforcement. cec, 2003.

13. OASIS Web service Business Process Execution Language (WSBPEL) TC. Web service
Business Process Execution Language Version 2.0, 2007.

14. Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso. Planning
and monitoring web service composition. In AIMSA, pages 106–115, 2004.

15. F. Raimondi, J. Skene, L. Chen, and W. Emmerich. Efficient monitoring of web service slas.
Technical report, UCL, London, 2007.

16. Monika Solanki. A Compositional Framework for the Specification, Verification and Runtime
Validation of Reactive Web Service. PhD thesis, De Montfort University, Leicester, UK,
October 2005.

17. A. Zbrzezny and A. Pó lrola. SAT-based reachability checking for timed automata with
discrete data. Fundamenta Informaticae, 79(3-4):579–593, 2007.

16

Towards a Rigorous IT Security Engineering Discipline

Antonio Maña.
Computer Science Department.

University of Málaga. Spain.
amg@lcc.uma.es

Abstract. Current practices for developing secure systems are still closer to
art than to an engineering discipline. Security is still treated too frequently
as an add-on and is therefore not integrated into IT systems development
practices and tools. Experienced security artisans continue to be the key for
achieving acceptable levels of security in IT systems. In this situation we
could safely state that security engineering is a hype. In fact, the term
security engineering has been used to denote partial approaches that cover
only small parts of the processes that are required in order to create a
secure system, like modelling, verification, programming, etc. Moreover, one
finds in the literature that the main books about security engineering
describe threat-based engineering approaches. The main drawbacks of these
approaches is that they fail to provide a reasonable level of support for
systematic engineering since the identification, characterization and
specification of the requirements (frequently based on avoiding threats) as
well as the selection of appropriate mechanisms and countermeasures
depends on the experience of the engineers. Consequently, these approaches
are inherently opposed to what an engineering discipline should be and
represent only minor improvements over the security art. This paper
discusses this vision and advocates a change of paradigm based on rigour
and precision. In particular, the paper presents an approach based on the
precise and formal specification of both security requirements and security
solutions as the basis for the engineering of secure systems and discusses the
role of contracts in security engineering.

Introduction
Current practices for developing secure systems are still closer to art than to an engineering
discipline. IT Security is treated as an add-on and is therefore not integrated into software
development practices and tools. With more and more aspects of our lives being affected by
computing systems and with the inevitable trend towards IT systems in which humans are
immersed, the aspects of assurance and certification become crucial. However, we still
depend on the knowledge of experienced security artisans in order to predict the threats that
the system will have to withstand and to prevent them, achieving acceptable levels of
security, and this art-like approach does not allow us to have guarantees and proofs of the
security of those systems. Moreover, the growing complexity of these systems is becoming
larger than the capacity of humans to understand and secure an IT system.

The existence of an IT security engineering discipline could not only change that situation
of lack of guarantees but also improve the security of IT systems by allowing them to be
prepared to operate in unforeseen contexts and to be able to provide security to the
extremely complex and dynamic IT systems that are coming in the near future.

17

Traditionally, the term security engineering has been used to denote partial approaches that
cover only small parts of the processes that are required in order to create a secure system,
like modelling, verification, programming, etc. Several approaches and research strands have
tried to address this situation in order to introduce rigour and engineering approaches in the
treatment of security aspects in information systems, mainly focusing on the development
phases. Paradoxically, many of the best known initiatives for enhancing the security of
computer systems have been based on guidelines, recommendations, best practices,
certification and similar approaches lacking the necessary rigour and precision that one
would expect when dealing with “engineering” and even more with “security engineering”.
Some examples are: Common criteria [1], traditional security patterns [2], Sarbanes-Oxley [3]
and HIPA [4] Acts, etc.

Even in the cases of approaches that are closer to a methodology and have achieved a
certain level of maturity, the key concepts and workflows are highly influenced by the way
security has been treated by the security artisans. Therefore, one finds in the literature that
the main books about security engineering describe threat-based engineering approaches.
The main drawbacks of these approaches is that they fail to provide a reasonable support for
systematic engineering since the identification, characterization and specification of the
threats as well as the selection of appropriate mechanisms and countermeasures depends on
the experience of the engineers. Consequently, these approaches represent only minor
improvements over the security art. Yet, they have been used for some time with uneven
popularity and results.

In this paper we discuss this aspect and advocate a change of paradigm based on the
precise and formal specification of security solutions and security properties and the use of
these formally verified properties as the basis for the expression of requirements and the
engineering of secure systems. The paper shows that threat-based security engineering (i) is
the origin of penetrate-and-patch situation; (ii) does not result in specifications that can
survive evolution of systems and context; and (iii) does not capture the requirements, but
the mechanisms selected to achieve them, which results in poor maintainability of the
systems produced. The paper also introduces two pillars to solve the situation. On the one
hand, we present the SERENITY model of secure and dependable systems and show how it
supports the creation of secure and dependable systems for these new computing paradigms.
On the other hand we discuss the concept of contract and the role it plays in ensuring a
rigorous treatment of security. Finally some conclusions will be drawn and a proposal for
establishing a renewed security engineering discipline will be advocated.

Threat-based security engineering considered harmful
Today, the current trend towards distributed and open systems, has revealed the important
limitations of threat-based security engineering. The main problems that the new computing
paradigms introduce are the high levels of heterogeneity, dynamism and autonomy, as well as
the large scale and high complexity. The result is that engineers have to deal with runtime
situations that are unpredictable at design time, which are very difficult if not impossible to
secure using threat-based or attack-based approaches. In particular, threat-based security
engineering creates systems that are very context-dependent, and therefore, fail to address
the needs of the future open and distributed systems paradigms. This approach was
acceptable and even successful in the times of closed and static systems, running on
homogeneous and well-known platforms, because the runtime context was more or less
predictable and therefore a security expert could possibly identify the threats that the IT
system under development had to withstand and could find appropriate solutions to avoid
them. However, once we face the challenges introduced by open systems, which will be built

18

from components at runtime; dynamic evolution, which increases unpredictability and
introduces the need for security solutions to adapt to the system evolution; and extremely
heterogeneous platforms, which essentially makes impossible to rely on infrastructure
security, we are obliged to admit that we have reached the end of the threat-based
approaches and we need to use a new approach that can deal with the aforementioned
challenges.

Some of the main reasons why we consider that threat-based security engineering is not a
valid approach to provide acceptable levels of security for the future IT systems are:

- Lack of dynamism and support for evolution. Threats change when systems
change even if the protection goals remain the same. Therefore, threat-based systems
require full reengineering to cope with any context change. Moreover, it becomes very
difficult to identify the changes required in the system, as a result of a change in the
context.

- Poor traceability. Threats are difficult to trace to protection goals or security
requirements. This is precisely the reason why systems engineered following a threat-
based approach tend to be extremely difficult to maintain and to adapt to new
context conditions.

- Expression of user requirements is lacking, not precise or context-
dependent. This is the one of the main weakness and is related to some of the
others, and in particular to the previous two. When the input to design process is
expressed in terms of threats and attacks, the user requirements become lost (or at
least hidden) and consequently the system under development becomes weaker in
terms of maintainability, traceability and resilience to evolution. Moreover, the
longevity and stability of the specification of the system are reduced.

- The complete set of threats is impossible to identify. The impossibility to
guarantee the completeness of the set of identified threats, has been traditionally a
major weakness of the threat-based engineering approaches. Given the
unpredictability that characterizes the future computing paradigms, it will become
impossible to identify not even a small fraction of the potential threats, even for the
most experienced and visionary security experts.

- The threat-based approach is closely related to the penetrate-and-patch
vicious cycle. As it is impossible to predict at development time all attacks and
threats that the system will face while in operation, the new threats and
vulnerabilities that are discovered during the system operation require the system to
be patched, which inevitably leads to a degradation of the quality and the
introduction of new vulnerabilities.

- Assurance and certification can not be based on threats. This aspect is
specially important in security critical systems, but also in all socio-technical systems.
Stating (or even proving) that a system can withstand a threat does not say much
about what can be guaranteed about the system.

- Poor user communication. Tell your customers that their system will be secure
because you will implement state-of-the-art protection against cross-site scripting and
avoid eavesdropping by using authenticated TLS connections. They may be happy to
hear some fashionable buzzwords, but it is most likely that they do not understand if
what you are providing solves their problem. Some advances based on the
specification of abuse and misuse cases can help, but still they lack precision and do
not provide the guarantees that your customer would need.

In consequence, we believe that the threat-based security engineering era has come to an
end and it is time to find an appropriate replacement. The next two sections will present two

19

pillars of this replacement.

The SERENITY model for IT security engineering
The goal of this section is to facilitate the understanding of the SERENITY approach to
secure IT systems engineering. However, due to its size and complexity, it is out of the scope
of this paper to provide a complete view of SERENITY. The interested reader is referred to
reference [5] for a comprehensive description of the whole system. The SERENITY project
has produced two main results related to our discussion:

A model of secure system engineering that has two main features:
- Separation between security solution development and application development. In this

way security experts develop, analyse and characterize security solutions and
components while application developers and programmers concentrate on developing
applications without the need to implement security solutions (which is normally a
recipe for disaster given the lack of security expertise of average application
developers). All application developers have to know about security is to express their
security requirements and to include references to the security solutions (which are
precisely and semantically described using a series of modelling artefacts called S&D
Artefacts, as we will show below) that they need, in their application code. The more
abstract the level of the artefact selected at development-time is, the more the
flexibility for the selection of the specific implementation of the solution to use at
runtime.

- Run-time support enabling the dynamic selection, adaptation and substitution of
security solutions at run-time. Additionally, at run-time the selected solutions are
monitored to ensure their correct operation. To achieve this, it is necessary to have a
framework supporting the management of a library of available security solutions and
the constant evolution of applications based on such solutions, taking into account the
context in which they are applied. The SERENITY Runtime Framework (SRF) is the
tool that provides this support. It is able to select the most appropriate S&D solution
among the ones available, based on the end-user requirements and the actual runtime
context.

A series of modelling artefacts used to capture knowledge about different security
aspects, such as properties, services, and solutions.
In SERENITY, the main pillar of building secure and dependable solutions are the enhanced
concept of S&D Properties and S&D Pattern. An S&D Property is a precise specification
of one or more security goals that can be applied to any computational object. It is
important to highlight that, opposed to the common belief, the number of security properties
(i.e. confidentiality, integrity, authenticity, non-repudiation...) is not limited. We could
express this more precisely saying that, even if we accept that the number of “abstract
properties” could be considered limited, the number of interpretations (semantics) of these
abstract properties is unbounded. The SERENITY model is based on the assumption that
there will be different definitions (corresponding to interpretations) for the security
properties. There are many reasons supporting this assumption: for instance, legislation,
cultural etc. Under this assumption, and in order to guarantee the interoperability of systems
based on those properties and of solutions fulfilling the properties, we need to be able to
precisely express the interpretation (semantics) of each property and to exploit the relations
between different properties. For a more complete description of the concept of S&D
Property, the reader is referred to references [5] and [6].

20

An S&D Pattern captures security expertise in a way that, in our view, is more
appropriate than other related concepts because it focuses on precision and well-defined
semantics. Furthermore, because secure interoperability is an essential requisite for the
widespread adoption of the SERENITY model, trust mechanisms are a central aspect of
S&D Patterns. SERENITY S&D Patterns include a precise functional description of the
mechanisms they represent, references to the S&D properties provided, constraints about the
context that is required for deployment, and specifications of how to adapt and monitor the
mechanisms, as well as trust mechanisms designed to (i) guarantee the origin and integrity of
the descriptions contained in the different SERENITY artefacts; and (ii) support the
evolution of artefacts and mechanisms and the maintenance of SERENITY systems.

The concept of S&D Pattern has been materialized in a series of modelling elements that
we call S&D Artefacts. Abstract S&D solutions are represented by three main artefacts: S&D
Classes, S&D Patterns and S&D Implementations. A fourth element, called Executable
Component is part of the SERENITY artefacts, but in this case it is not a modelling artefact
but an operational one. The above artefacts are briefly described as follows:

- S&D Patterns represent abstract S&D solutions. These solutions are well-defined
mechanisms that provide one or more S&D Properties. The popular SSL protocol is
an example of an S&D solution that can be represented as an S&D Pattern. One
important aspect of the solutions represented as S&D Patterns is that they can be
statically analysed (e.g. using verification tools based on formal methods). However,
the limitations of the static analysis and the assumption that perfect security is not
achievable, introduce the need to support the dynamic validation of the described
solutions by means of monitoring mechanisms.

- S&D Classes represent S&D services (abstractions of a set of S&D Patterns
characterized for providing the same S&D Properties and being compatible with a
common interface). An example of an S&D Pattern Class could be a Confidential
Communication Class, which could define an interface including for instance, an
abstract method SendConfidential(Data, Recipient). The purpose of introducing this
artefact is to facilitate the dynamic substitution of the S&D solutions at runtime.
This approach allows us to create an application bound to an S&D Class. Then, all
S&D Patterns (and their respective S&D Implementations) belonging to an S&D
Class will be selectable by the framework at runtime to serve that application.

- S&D Implementations represent operational S&D solutions, which are in turn
called Executable Components. It is important to note that the expression
“operational solutions” refers here to any final solution (e.g. component, web service,
library, etc.) that has been implemented and tested. These solutions are made
accessible to applications thanks to the SERENITY Runtime Framework (SRF). The
description of either a specific dynamic library providing encryption services or a web
service providing time-stamping services, are examples of S&D Implementations. S&D
Implementations capture implementation-specific features, such as performance,
platform, programming language or any other feature not fixed at pattern’s level. The
OpenSSL implementation of the SSL protocol ca be described using an S&D
Implementation.

These new concepts can be useful in two different ways: at design/deployment time and at
run time. In the first case, we must consider that today’s large applications are built by
integrating solutions from different sources and at different levels of abstraction. These
applications face the existence of threats and errors that may require us to perform
maintenance on them. Readers can find details on the implementation of SERENITY
applications and S&D solutions in references [7] and [8]. By using the SERENITY approach

21

we allow that this maintenance is performed with a minimum effort, even automatically and
seamlessly in some cases. In the second case (i.e., during runtime) S&D Patterns are used in
order to support automated adaptation of the S&D solutions to the changing context
conditions.

The role of contracts in a rigorous security engineering
Informally speaking we could define a contract as an agreement between two or more parties
that establishes obligations for these parties and guarantees about those obligations. More
precisely, the BusinessDictionary.com definition is a “Voluntary, deliberate, and legally
enforceable (binding) agreement between two or more competent parties.” The main
difference between the two is that we do not necessarily assume that a contract has to have
any legal meaning (although we do not exclude that possibility). Contracts can be used in IT
security for different purposes. Among these, we highlight the following:

- Contracts as means for agreeing on security aspects. In this case the contract
establishes the terms (e.g. mechanisms, guarantees, referees and trusted third parties,
etc.) that will be used in an interaction between two or more parties. A well-known
example of this is constituted by SLAs (service-level agreements) that establish
aspects related to the QoS (Quality of Service) like bandwidth, uptime, throughput,
etc. Also in this category we find expression of the “terms of use”.

- Contracts as specifications. A contract can be used to specify aspects of the
operation of an entity. For instance, it can be used to specify the means by which the
entity ensures the confidentiality of the data processed in an application in cloud
computing or service-oriented computing. Another interesting case in this category is
that of software contracts, which have been used in component-based development
and especially for COTS (components-off-the-shelf). The same concept has recently
been applied to the field of secure coding. In fact, some mature development
strategies like PCC (proof carrying code) are closely related to this. In PCC,
executable code comes with proofs that demonstrate adherence to a contract. These
proofs can be verified by the runtime environment prior to code execution.

- Contracts as guarantees. A contract can be used to state guarantees about the
operation of an entity. For instance, it can be used to guarantee that an economic
compensation will be available to the user should the confidentiality of the data
processed in an application in cloud computing or service-oriented computing be
broken.

- Contracts as disclaimers. The idea in this case is to make the user aware of the
risks that the software introduce and to declare the limitations of the guarantees of a
provider.

From the previous descriptions one can easily understand that the concept of contract
constitutes a key element in providing precision, control, limitations and rigour into the
security engineering discipline. Contracts reduce uncertainty and provide support for sound
reasoning about dynamic, distributed and composed systems.

In the SERENITY model, contracts are mainly used to establish agreements between
different SRFs, but the contents of the descriptions made using the S&D Artefacts can also
be considered as contracts. In the first case, the SRF exposes a negotiation interface for
external systems. The negotiation interface is used in order to establish the configuration of
the interacting SRFs when two applications supported by different SRFs need to
communicate using the same S&D Solution. In the second case, S&D Artefacts include
means for expressing contractual facts (such as guarantees, SLAs, terms of use and
disclaimers) as well as trust mechanisms designed to guarantee their origin and integrity by

22

means of digital signatures. These trust mechanisms can also be used to give validity to the
contractual facts included in the artefact description.

Conclusions
In this paper we have discussed the drawbacks of threat-based security engineering and have
advocated a change of paradigm based on the precise and formal specification of security
solutions and security properties and the use of these formally verified properties as the basis
for the expression of requirements and the engineering of secure systems. We have shown
that threat-based security engineering (i) is the origin of penetrate-and-patch situation; (ii)
does not result in specifications that can survive evolution of systems and context; and (iii)
does not capture the requirements. We have introduced two pillars to solve the situation: the
SERENITY model of secure and dependable systems and the concept of contract and the
role it plays in ensuring a rigorous treatment of security.

We firmly believe that the trends that are driving the future computing scenarios are
incompatible with threat-based security engineering, and therefore we propose to establish
new models and principles that can result in a change of paradigm. The ultimate goal is to
establish IT security as a fully fledged engineering discipline, based on the definition of
integrated processes with well-defined goals and interfaces that combine the different
techniques, methodologies and tools to support the engineering of future secure IT systems.

References
[1] Common Criteria Editorial Board. Common Criteria for Information Technology

Security Evaluation. Version 3.1 Revision 1. September 2006. Available from
http://www.commoncriteriaportal.org

[2] M. Schumacher, E. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad.
Security Patterns - Integrating Security and Systems Engineering. John Wiley &
Sons, 2005.

[3] Congress of the United states of America. Sarbanes-Oxley Act of 2002. Available from
http://www.access.gpo.gov

[4] Congress of the United states of America. Health Insurance Portability and
Accountability Act of 1996. Available from http://www.hhs.gov/ocr/hipaa

[5] G. Spanoudakis, A. Maña and S. Kokolakis (2009). “Security and Dependability for
Ambient Intelligence”. Advances in Information Security, ISBN 978-0-387-88775-3.
Springer.

[6] A. Maña, G. Pujol (2008). Towards formal specication of abstract security properties.
Third International Conference on Availability, Reliability and Security (ARES2008),
Barcelona, March 2008. IEEE Computer Society Press.

[7] F. Sanchez-Cid, A. Maña (2008). SERENITY Pattern-based Software Development
Life-Cycle. 2nd International Workshop on Secure systems methodologies using
patterns (SPATTERN’08). IEEE Computer Society.

[8] D. Serrano, A. Maña, and A. D. Sotirious (2008). Towards precise and certified
security patterns. 2nd International Workshop on Secure systems methodologies using
patterns (SPATTERN’08). IEEE Computer Society.

23

24

Models for Open Transactions⋆

Roberto Bruni and Ugo Montanari

Computer Science Department, University of Pisa, Italy

Abstract. Loosely coupled interactions permeate modern distributed
systems, where autonomous applications need to collaborate by dynami-
cal assembly. We can single out three different phases occurring in every
collaboration: 1) negotiation of some sort of contracts, mediating the
needs of prospective participants; 2) acceptance or rejection of the con-
tract; 3) contract-guarantee execution. The above scheme, called NCE
for short (Negotiation, Commit, Execution), covers a wide range of situ-
ations, ranging from sessions and transactions to proof-carrying code. In
the paper we concentrate on the notion of open transaction and on Zero-
Safe Nets, a model developed by the authors for modelling long transac-
tions. We extend the latter to cover the three-phase process above.

1 Introduction

Recent years have witnessed a progressive shifting of importance from the tra-
ditional concept of safe, overly controlled computation to open-ended, loosely
coupled interactions, which permeate modern distributed systems. In particu-
lar, features such as concurrency, dynamicity, and adaptability inevitably arise
in global computing frameworks based on wide-area networks, where separately
developed, autonomous applications need to collaborate by dynamical assembly.

An emblematic example is the service-oriented computing (SOC) paradigm,
where service abstractions are published in public repositories, which can be
queried by other services for discovering convenient partners to interact with.
Since it is desirable that interactions are carried out in a safe way for all par-
ticipants, different notions of contracts have emerged to assign responsibilities
to each participant in a non-ambiguous way and to give suitable run-time guar-
antees whenever all participants respect the contract. Formally, this involves
answers to two main question: 1) Are the service abstractions compatible with
the contract? 2) Is each participant consistent with its abstract description? Note
that here we are often concerned with the operational behaviour of services, not
just with functional aspects. Moreover, the notions of compatibility and consis-
tency should be such that whenever 1) and 2) are answered in the affirmative,
then the overall interaction is guaranteed to be sound (e.g. absence of dead-
locks, or type-safe communications, or absence of livelock under fair scheduling
assumptions). While traditionally all checks are performed statically, the chal-
lenge posed by SOC is moving them to run-time with dynamic assembly.

⋆ Research supported by the EU within the FET-GC II Integrated Project IST-2005-
016004 Sensoria and by the Italian FIRB Project Tocai.it.

25

We can single out three different phases occurring in every collaboration: 1)
negotiation; 2) commit; 3) execution. In (1) the prospective participants negoti-
ate some guarantees in order to define a sort of contract. In (2) each participant
can either accept or reject the contract. If they accept, the contract will bind
their behaviours in (3) to guarantee a globally correct execution. The scheme
given by the phases (1-3) is called NCE and it covers a wide range of situations
like transaction processing (phases 1-2), session-based interactions (phases 2-3),
and applications of proof-carrying code (phases 1 and 3). Necessarily we need to
allow part of the verification to be done also at run-time, on the basis of both
statically and dynamically negotiable information.

In this paper we deal with multi-party interactions, where the participants
can negotiate the interaction protocol to follow according to their abstract be-
haviour. The outcome of the negotiation is a (possibly non-deterministic and
concurrent) well-behaving, global contract that binds the admissible interactions,
thus fixing exact responsibilities in case of faulted or misbehaving execution.

Our formalisation relies on Petri nets and it builds on classical results from
concurrency theory and workflow management. In particular, it takes inspira-
tion from Zero-Safe nets [1], unfolding construction [2, 3], and workflow nets [4].
Roughly, the procedure can be outlined as follows: each participant describes its
admissible behaviour as a Zero-Safe net; the composition of all Zero-Safe nets is
unfolded as a non-deterministic process; the unfolding is suitably pruned (e.g.,
by removing faulted situations) and presented as a contract K; if accepted by all
participants, then their stable tokens are tagged according to K and the firing
of their transitions apply local consistency checks on such tags. The main result
establishes that any such execution cannot deadlock.

Synopsis. In § 2 we fix the notation and the key concepts needed in the rest of
the paper. In § 3 we outline the various formal steps of our approach, grouping
them according to the three-phases NCE classification. We deal with multi-party
interactions, but due to space limitation, only two-parties (buyer and seller) are
considered in our running example. Some concluding remarks are in § 4.

2 Preliminaries

Petri nets. Place/Transition Petri nets (pt nets) are bipartite graphs that
represent some kind of concurrent automata. Formally, a pt net is a triple
N = (S, T, F) where S is the set of places, T is the set of transitions and
F : (S × T) ∪ (T × S) → N is the flow relation. The states of a pt net, called
markings, are multisets u : S → N of places, representing the number of tokens

in each place. We write a marking as the formal sum u =
⊕

i niai, i.e. as an
element of the free commutative monoid S⊕ (monoidal composition is defined by
(
⊕

i niai)⊕ (
⊕

i miai) =
⊕

i(ni + mi)ai, with 0 as the unit). Multiset inclusion
is written u ⊆ v (if u(a) ≤ v(a) for all places a), and multiset difference v ⊖ u

(it is defined only when u ⊆ v, with (v ⊖ u)(a) = v(a) − u(a) for all places a).
For any transition t, its pre- and post-set, written pre(t) and post(t) respec-

tively, are the multisets over S such that pre(t)(a) = F (a, t) and post(t)(a) =

26

F (t, a), for all a ∈ S. We write t : u → v for a transition t with pre(t) = u and
post(t) = v and say that t is enabled in the marking w if pre(t) ⊆ w. If t : u → v

is enabled in w, then t can be fired in w leading to w′ = w⊖u⊕v and its firing is
written w[t〉w′. A firing sequence from w to w′ is a sequence of firings w1[t1〉w′

1,
..., wn[tn〉w′

n such that w = w1, w′ = w′
n and wi+1 = w′

i for all i ∈ [1, n − 1]. A
marking v is reachable from u if there is a firing sequence from u to v.

Unfolding. Starting from a net N and a marking u, the reachability graph

R(N, u) is a graph whose nodes are all markings reachable from u in N and
whose arcs are all triples (u, t, u ⊖ pre(t) ⊕ post(t)) such that pre(t) ⊆ u. While
the reachability graphs account for the interleaving description of the compu-
tational space of N , the interplay between non-determinism, causality and con-
currency available in N is accounted for by the so-called unfolding construction

U(N, u). Formally, U(N, u) is a non-deterministic occurrence net (i.e., an acyclic
net, where transition pre- and post-markings are sets instead of multisets and
where each place has at most one entering arc, i.e., backward conflicts are not
allowed), together with a net homomorphism from U(N, u) to N that tells which
places and transitions of the unfolding are instances of the same element of N .
Roughly, the transitions of U(N, u), called events, represent all the possible fir-
ings of transitions in N in all possible runs of the net, and the places of U(N, u)
are all the possible tokens that can be generated.

For occurrence nets, the notion of causally dependent, of conflicting and of
concurrent elements can be represented by the binary relations �, # and co(,),
respectively. Formally, � is the transitive and reflexive closure of the immediate

precedence relation ≺0
def
= {(a, t) | a ∈ pre(t)} ∪ {(t, a) | a ∈ post(t)}. Letting

t1#0t2
def
⇔ t1 6= t2 ∧ pre(t1) ∩ pre(t2) 6= ∅, binary conflict # is defined as the

minimal symmetric relation that contains #0 and that is hereditary with respect
to � (i.e., such that if x1, x2, y ∈ S ∪ T and x1#x2 and x1 � y then y#x2). The

concurrency relation is defined by co(x1, x2)
def
⇔ ¬(x1 ≺ x2 ∨ x2 ≺ x1 ∨ x1#x2)

and it is extended to sets of elements by letting co(X)
def
⇔ ∀x1, x2 ∈ X co(x1, x2).

The net U(N, u) is defined (up to iso) as the net generated by the rules in
Table 1, whose places have the form 〈a, H, k〉 and whose transitions have the form
〈t, H〉, where a ∈ S, t ∈ T , H is a set of causes that encodes the history of the
element, and k is a positive natural number used to distinguish different tokens
with the same history. The top rule introduces a distinguished place (with empty
history) for each of the tokens in the initial marking u. The bottom rule adds
an event e that represents the firing of a transition that consumes the tokens in
Θ. The condition co(Θ) rules out all inapplicable firings. The event e introduces
the elements in Υ , representing the tokens produced by the corresponding firing.

The elements in U(N, u) can be stratified according to the depth function
δ : SU(N,u) ∪ TU(N,u) → N defined as follows: for places we let δ(〈a, ∅, k〉) = 0
and δ(〈a, {e}, k〉) = δ(e), while for transitions we let δ(〈t, H〉) = 1+ δ(H), where
δ(H) = max{δ(x) | x ∈ H}. A set of elements Θ is a cut if co(Θ) and there is
no element x such that co(Θ ∪ {x}); it is maximal if there is no x ∈ Θ and y

not conflicting with elements in Θ such that x � y.

27

u(a) = n, 1 ≤ k ≤ n

〈a, ∅, k〉 ∈ SU(N,u)

t :
L

i∈I ai →
L

j njbj ∈ TN , Θ = {〈ai, Hi, ki〉 | i ∈ I} ⊆ SU(N,u), co(Θ)

e = 〈t, Θ〉 ∈ TU(N,u), Υ = {〈bj , {e}, k〉 | j ∈ J, 1 ≤ k ≤ nj} ⊆ SU(N,u), pre(e) = Θ, post(e) = Υ

Table 1. The unfolding U(N, u).

We shall use the unfolding to distill a global contract binding the interaction
of participants at run-time.

Zero-safe nets. Zero-Safe nets (zs nets) [1] are a transactional variation of pt

nets, where the set of places is partitioned in two sets, of Zero-Safe places Z and
stable places L, respectively. Stable markings (i.e., multisets of stable places),
describe the observable states of the system, whereas the presence of tokens in
Zero-Safe places denotes a marking as transient, i.e., internal to a transaction
segment. The firing rule is the usual ones, except for the fact that all stable
tokens produced during the transactions are made available only at the end of
the transaction, when all zero-safe tokens have been consumed.

The corresponding firing rules can be explained as follow. Given a zs net
B, take the pt net B̂ obtained from B by introducing primed version a′ of all
stable places a and by renaming the flow relation so to produce tokens in primed
places instead of in the corresponding original stable places. More precisely, let
B̂ such that S

B̂
= SB ∪ {a′ | a ∈ LB}, T

B̂
= TB and F

B̂
(x, y) = 0 and

F
B̂

(x, y′) = FB(x, y) if y ∈ LB, while F
B̂

(x, y) = FB(x, y) otherwise. Then a

firing sequence of B̂ is called a transaction fragment, a transaction is any firing
sequence from a marking u ∈ L⊕

B to v ∈ (S
B̂
\ZB)⊕, and its commit transforms

all the primed tokens in v to ordinary tokens, i.e., leads from v to v̂ such that
v̂(x) = v(x) + v(x′) for all x ∈ LB and v̂(z) = v(z)(= 0) otherwise.

We shall exploit zs nets to model the interaction protocols of participants,
where zero-safe places correspond to intermediate states and the protocol is
implicitly concluded when only stable tokens are around.

Workflow nets. Similar ideas appear in workflow nets [4], that have a distin-
guished start place astart with no incoming arc and a distinguished end place
aend with no exiting arc, playing the role of stable places in zs nets. In fact,
a workflow net is weakly sound if any computation that starts with a token in
the start place can always terminate reaching the marking with a unique token
in aend. Again, all the places different from astart and aend are considered as
modelling internal, intermediate states. We shall generalise the notion of sound
workflow nets to the case where many start and end places are present and where
the soundness if relative to a suitable notion of execution contract.

3 Open transactions

In this section we illustrate our approach according to the NCE scheme.

28

•07162534 //S offer1 //

��

◦
so

offer2 //

88

◦ //

��

��

s1
sell1

��

◦

zz

bo

eval

��

07162534Sok

fail1

��

◦ //

��

PP

s2
sell2

OO

// ◦

jj

ok

07162534Sno fail2oo // ◦

gg

no
(a) Seller protocol

◦ //

��

so
get1

��

•07162534oo B

◦
bo

buy1

��

��

◦oo

��

��

b1
get2oo

07162534 Bok rebate

cc

��
◦ //
ok

buy2

OO

◦oo

��

NN

b2
abort1

��yy
◦ //
no

abort2 //07162534 Bno

(b) Buyer protocol

Fig. 1. Two local nets

3.1 NCE1: negotiation

The negotiation phase takes into account the available options of each participant
to distill a global interaction protocol with behavioural guarantees for all.

Local and global Zero-Safe nets. The basic idea is to model interaction protocols
as zs nets: each participant describes its possible behaviour as a Zero-Safe net
Bi, together with a stable marking ui. We call these nets local. Each local net
asserts that starting from the stable marking ui a correct interaction should be
guaranteed to lead to some other stable marking. Each local transaction is open

in the sense that it may require some exchange of tokens with other local nets
(typically, via zero-safe places only).

Given n local zs nets such that their set of transitions are pairwise disjoint,
a global zs net B =

⋃n

i=1 Bi is then obtained as the union of all Bi’s, with initial
stable marking u =

⊕n

i=1 ui. Typically, the local nets will share just certain
zero-safe places, that are used to coordinate the local choices of participants.

Alike sound workflow nets, the ideal situation would be that starting from u

any computation in B̂ would eventually lead to a stable marking: this way we
would be guaranteed that no matter which local choice is performed, no faulted
situation can arise that leaves pending tokens in zero-safe places. Unfortunately,
this is a too strong requirement, unrealistic in most situations, because local nets
are developed according to different needs and separately from the others.

For example, consider a simple two-party situation, with a seller and a buyer
whose local nets are in Fig. 1 (circles are places, smaller if zero-safe; boxes are
transitions; arcs model the flow; bullets are tokens). Their interaction begins
with an offer from the seller. Both the buyer and the seller may accept the last
offer proposed by the other, or make a different offer, or abort the negotiation.
The global net S ∪B is well-behaving, according to the criteria explained above,

29

because each transaction can eventually lead either to the marking Sok ′ ⊕Bok ′

or to the marking Sno′ ⊕ Bno′. On the other hand, the transaction might not
terminate if the strategy of both parties is to make offers repeatedly.

Now suppose a different seller protocol is taken, where the local decision
of abandoning the negotiation is not communicated to the buyer (i.e., the arc
(fail2 ,no) is removed, whence the use of a dotted line in Fig. 1). Then the global
net might present erroneous transaction segments, that cannot be completed,
like the firing sequence offer1 , get1 , rebate, eval , fail2 that leads to the marking
Sno′ ⊕ b2 , which is deadlock and not stable.

Contract unfolding. The unfolding of the global net B̂ gives a complete view of
the possible interactions that can take place. In particular, the above example
illustrates two typical symptoms of problematic execution, easily generalised to:
1) unfolding is not finite, 2) the unfolding exposes non stable deadlocks. The
solution we propose is to model contracts as partial unfoldings, i.e. finite non-
deterministic processes that satisfy some additional constraints.

The first issue can be dealt with just by assuming some bound d on the
depth of elements considered in the unfolding. The bound can be enforced by
adding the condition δ(Θ) ≤ d to the second rule in Table 1. Another possibility
is to specify a different depth bound dt for each transition t, in which case the
condition to be added in Table 1 is δ(Θ) ≤ dt. The bound d itself can emerge,
e.g., as the conjunction of the bound required by each participant when declaring
their interest in the negotiation, which amounts to some sort of time-out for
carrying out the whole execution. We name this property depth boundedness.

The second issue can be dealt with by pruning those events that may stall
the execution. Formally, this can be characterised by requiring that any maximal
cut contains no zero-safe place. We name this property stability.

A global contract net K is a non-empty, depth-bound and stable subnet of
U(B̂, u), i.e. a particular non-deterministic process of (B̂, u).

Contract pruning. When stability is violated, we can of course apply some prun-
ing to remove those elements that cause troubles. Let Θ be a maximal cut such
that x = 〈z, {e}, k〉 ∈ Θ for some zero-safe place z, then we remove e and all y

such that e � y (thus also x is removed) from the already partial unfolding and
then iterate the pruning on the result. Clearly, as the initially considered partial
unfolding is finite and at least two elements are removed at each step of the
pruning algorithm, then the pruning algorithm terminates. Moreover, its result
enjoys stability by definition. However, the algorithm is not always confluent.
Consider the net in Fig. 2. The only problematic cut is {z1, z3}: if we decide
to remove z1 and therefore e1, then we get a global contract net and we are
done; viceversa if we decide to remove z3, then also e3, e4 and c are removed
and the resulting net has two maximal cuts {z1} and {z2} that in turn require
the removal of e1 and e2 and we are left with the idle contract.

The algorithm can be made confluent by removing at each single step all
available candidates. We call this strategy drastic pruning. In the example above,

30

07162534

##GG
GG

GG

{{www
ww

w
a 07162534

��

b

◦
z1

e1oo e2 // ◦ //z2
e4

��

◦oo z3
e3oo

07162534c

Fig. 2. A non-stable partial unfolding

e1 and e3 would have been removed at the first step (together with all their
descendants), and e2 at the second step, leaving again the empty contract.

Figure 3(a) shows the depth-bound unfolding of our running example (in the
absence of arc (fail2 ,no)), up to depth 7. It is not a global contract net, because
it is not stable. In fact it has seven maximal cuts, but only three of them are
stable: 1) {Sok1 ,Bok1 }, 2) {Sno1 ,Bno1}, 3) {Sok2 ,Bok2 }, 4) {Sno2 , b21},
5) {s12 , ok3 ,Bok3 }, 6) {s12 ,no2 ,Bno2} and 7) {s12 , bo2 , b22}. The global
contract net produced by drastic pruning algorithm is in Fig. 3(b).

3.2 NCE2: Commit

The global contract net K can then be used as some sort of typing information
that can be attached as a tag to the tokens and used in a prescriptive way during
the execution phase. Hence, if the global contract net is considered viable from
all participants, then it is attached as a decoration to each of the tokens in u,
together with a fresh session identifier σ (the same for all tokens in u) and with
the name of the token as given in K. In our running example, the two tokens
in places S and B will thus be typed as 〈σ, K, 〈S, ∅, 1〉〉 and 〈σ, K, 〈B, ∅, 1〉〉,
respectively. The typing information will be needed during the execution to
guarantee that the contract will not be violated. We remark that in general it is
not necessary to record the whole K in all tokens, but for each token x it would
suffice to store the subnet of K consisting of all elements y such that x � y.

Of course, if the global contract K is not acceptable for some participants, or
if there are not enough stable tokens available, then the negotiation is considered
aborted, and a new attempt has to be made. For example, the global contract
net in Fig. 3(b) would constrain the seller to accept the possible rebate of the
buyer, if any, which is disputable. Instead a global contract net that exclude the
rebate would likely be a more convenient option.

3.3 NCE3: Execution

The final step of our approach consists in constraining the firing rules of the
executable nets of all participants in order to inspect and respect the type in-
formation. Note that the executable net Ei of the ith participant can be larger
than the local nets Bi exposed in the negotiation, i.e. it may contain other
places and transitions and exhibit a higher degree of non-determinism without
compromising the correct execution of the contract.

31

(a) Depth-bound (b) Global contract

Fig. 3. Building a global contract net

Tagged firing. Let E be the executable zs net of a participant and suppose that
a transition t :

⊕n

i=1 ai →
⊕

j∈J njbj ∈ E (possibly involving zero-safe places)
is currently enabled and ready to consume the tagged tokens a1 : τ1, ..., an : τn,
where τi = 〈σi, Ki, xi〉 is the type information attached to the ith token. Then
t can fire if: 1) for any pair of indexes i, i′ ∈ [1, n] we have that σi = σi′ ; 2)
each Ki contains an event e = 〈t, Θ〉, where Θ = {xi | i ∈ [1, n]}. Without loss
of generality, we denote by σ and K the common session identifier and global
contract net of the above tokens. The firing of t will then produce the multiset
of stable, non-decorated tokens Υ ′ = {njbj | j ∈ J, bj is stable} and the set
of tagged tokens Υ = {bj : 〈σ, K, 〈bj , {e}, k〉〉 | j ∈ J, bj is zero-safe, 1 ≤ k ≤
nj}. Note that stable tokens are released non atomically by E, but this is not
important, because we are guaranteed that the transaction will end in a finite
amount of time and with no zero-safe token left. In fact, conly the choices that
have been accounted for in K can be realised, and the properties of K guarantee
that the overall execution is sound, no matter which local choices are taken by
each participant. Finally, we remark that not all events in K must take place,
because in general K can be a non-deterministic net.

32

4 Concluding remarks

We have proposed a net-based model for multi-party open transactions devel-
oped according to the NCE scheme. Its main features are the dynamic stipu-
lation of contracts, the guaranteed execution and the original mix of session-
based interactions and transactional distributed activities. The model is based
entirely on Zero-Safe nets and the negotiated global contract is a particular non-
deterministic process that can be automatically distilled from the local protocol
specifications of participants. This is better suited than, say, a deterministic
process, because run-time choices are unavoidable in open transactions. It is
also preferable to a soundness check over the conjunction of protocols, because
the check would impose too strong compatibility requirements (deemed to fail
in most cases) and would not guarantee termination (and consequently would
require a distributed commit phase after the execution of the transaction).

A problem that remains open is to find suitable metrics for evaluating and
comparing pruning strategies different from the (confluent) drastic algorithm as-
sumed here, which can be unnecessarily restrictive in many cases. It also remains
to be investigated how our approach can be amalgamated with the recent strand
of proposals that exploit workflow nets or process calculi to model various kind
of compatibility notions and global / local contracts: due to space limitation we
give here just a few pointers to related work for the interested reader [4–11].

References

1. Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual
token approaches. Inf. Comput. 156(1-2) (2000) 46–89

2. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part i. Theor. Comput. Sci. 13 (1981) 85–108

3. Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for
place/transition petri nets. Theor. Comput. Sci. 153(1&2) (1996) 171–210

4. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. BPM’00. Vol. 1806 of LNCS, Springer (2000) 161–183

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred pro-
gramming for web services. ESOP’07. Vol. 4421 of LNCS, Springer (2007) 2–17

6. Laneve, C., Padovani, L.: The pairing of contracts and session types. Concurrency,
Graphs and Models. Vol. 5065 of LNCS, Springer (2008) 681–700

7. Bruni, R., Mezzina, L.G.: Types and deadlock freedom in a calculus of services,
sessions and pipelines. AMAST’08. Vol. 5140 of LNCS, Springer (2008) 100–115

8. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. CONCUR’08.
Vol. 5201 of LNCS, Springer (2008) 418–433

9. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web
services. SFM’09. Vol. 5569 of LNCS, Springer (2009) 261–295

10. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5) (2009)

11. Vasconcelos, V.T.: Fundamentals of session types. SFM’09. Vol. 5569 of LNCS,
Springer (2009) 158–186

33

34

From Orchestration to Choreography:
Memoryless and Distributed Orchestrators

Sophie Quinton, Imene Ben-Hafaiedh and Susanne Graf

Université Joseph Fourier / VERIMAG,
Grenoble, France

{quinton, benhfaie, graf}@imag.fr

Abstract. In the context of Web services, making client and service interact so as to satisfy the
client, that is, making the service compliant with the client, can be done using either orchestration or
choreography. In this paper we propose to build, whenever possible, memoryless orchestrators, and then
distribute them using protocols so as to obtain choreographies.
When necessary for guaranteeing compliance, we infer from the initial (sequential) transition system
possible concurrency between certain interactions, whose validity must be checked by the designer.
Our approach allows for a clear distinction between the design phase and the implementation phase
while being, in the general case, more efficient than orchestration. An example dealing with resource
management illustrates the usefulness of memoryless orchestrators. We also discuss a methodology
allowing contract-based design and verification of Web services at a higher level of abstraction.

1 Introduction

When designing Web services, important issues are those of compliance with a set of potential clients, and
preservation of compliance by refinement (see [1], [2]). Indeed, in order to prove compliance for a large class
of clients and services based on the use of abstractions of real clients and services, it is crucial to determine
a notion of refinement for clients and for services (potentially different).

Here we focus on another issue specific to Web services, namely, deciding whether the service adaptation
for a given class of clients and services should be realized by an orchestration or a choreography.

An orchestrator is a global mediator between the service and client components. Orchestrators can be
automatically synthesized for given abstract definitions of client and service, see e.g. [2]. Their main drawback
is that they are centralized, that is, all interactions between service and client components are controlled by
the orchestrator. Very often, this is not needed. Let us consider, e.g., n clients sharing k resources. It is possible
to predefine for each client a preferred “local” resource which can be obtained through local negotiation. Thus
only in the rare cases where the preferred resource is not available would a more global communication be
needed.

Choreographies are distributed controllers and avoid that problem. The problem there lies in their imple-
mentation. In [3], e.g., realizability of choreographies is studied and can be enforced by extra communications.
However, the expressivity of the given specifications is limited.

Note that in general, distribution of an orchestrator leads to a very inefficient choreography. The reason is
that orchestrators tend to be over-constrained with respect to message orderings. As a result, large numbers
of messages are needed to provide every component with the required knowledge about the global state to
decide about the next global interaction to be taken.

More simply, we restrict the class of orchestrators which we try to distribute to those definable by a mem-
oryless orchestrator represented by a priority order and a set of local bounded buffers. The BIP framework
[4,5] is a natural candidate for this purpose as it allows naturally representing clients and services as compo-
nent behaviours, their interactions as the interaction layer and memoryless orchestrators as the priority layer
(see section 2).

The priority rules representing orchestrators can be computed in two phases: the first one focuses on
violations of compliance that can be resolved by adding finite (reordering) buffers. The second phase infers,
if possible, a set of static priorities between interactions making the remaining deadlock states unreachable.

Properties expected from Web services are analyzed on this generated BIP model, which is still not
too abstract and for which efficient verification methods exist (e.g. structural ones [6], [7]1). The synthesized

1 Those approaches do not require the computation of the global state space, although we construct it anyway so far
to generate the memoryless orchestration.

35

memoryless orchestrators can then be implemented by means of protocols communicating amongst each other
as locally as possible, as determined by static analysis. When there are no (or few) interactions dominated by a
priority, that is, if the given client and service were initially (almost) compliant — up to some reordering being
achieved by local buffers, the implemented system will be as efficient as a rendez-vous based choreography
(e.g. [3]). When components have in many states a deterministic interaction set, as little as a two-way message
exchange between the two peers may then suffice to realize an interaction (see Section 4).

On the other hand, there are cases in which the implemented system will be less efficient than a mem-
oryful orchestrator. This may typically happen if the depth of the priority order is large, leading to global
interactions. The other key issue with choreographies is the existence of global choices. In this respect, our
algorithm is rather efficient, at least with respect to the criterion we have chosen here: make progress as
quickly and as locally as possible, also at the cost of additional, potentially useless, message exchanges. Addi-
tional (static) analysis of specifications may allow decreasing the message overhead. For example, knowledge
about persistency of readiness or enabledness of certain interactions avoids multiple requests for the same
information, or allows choosing a preferred initiator for an interaction.

We believe that an interesting contribution of our work is the clear separation between the design phase of
Web services, in which all the important properties are guaranteed by using our proposed synthesis algorithm
and additional verification of any required safety or progress property, and the implementation phase which is
expected to be fully automated. This distinction hopefully allows obtaining more abstract specifications and
thus more efficient verification. We propose to go a step further by designing Web services using structured
interactions as in BIP.

The paper is organized as follows: Section 2 shortly presents the BIP framework on which our interme-
diate representation of memoryless orchestrators relies. Section 3 explains how memoryless orchestrators are
synthesized while Section 4 sketches how they are implemented by protocols. Finally, Section 5 discusses
a possible design methodology integrating verification and implementation of Web services and discusses
refinement issues.

2 The BIP framework
In [4,5,8], the framework BIP for component-based design and verification has been proposed. In BIP, systems
are built by superposing three layers of modeling: Behavior, Interaction, and Priority. The classic notion of
input/output of synchronous frameworks is replaced by the more expressive notion of multi-party interaction
which allows each of the involved interaction partners to impose constraints on when the interaction may
take place and imposes no notion of input completeness.

BIP is related to process algebras such as CCS [9] or CSP [10] by its rendez-vous-like interaction mechanism
(on a set of ports) and the restriction to a strictly local notion of state. It has been shown however in [11] that
the set of composition operators that can be defined within the BIP framework is, according to a definition
taking into account the ability to coordinate components, more expressive than composition operators of CCS,
CSP and SCCS [12]. BIP also addresses the problem of composition of operators and of their properties, which
can be exploited for structural verification [8].

For the sake of clarity, we present here a simplified version of the BIP framework, without variables,
guards or data transfer.

Definition 1 (Labeled Transition System). A Labeled Transition System (LTS) is a tuple (Q, q0,P, δ)
where Q is a set of states, q0 ∈ Q is an initial state, P is a set of labels and δ ⊆ Q× 2P ×Q is a transition
relation.

LTS are used to represent behaviors of components. In this context, labels refer to the ports with which
transitions are associated. Let us emphasize that transitions are labeled by sets of ports because a component
or subsystem may be able (or even required) to interact through several ports simultaneously.

Components K interact via their ports. An interaction is characterized by the set of ports which syn-
chronize, generally involving more than one component. A connector c is characterized by a set of ports and
a set of interactions, describing all possible synchronizations involving the port set of c. Typical connectors
represent rendez-vous or broadcast but also mutual exclusion, when only interactions involving a port p of a
resource and the corresponding p̄ of a single component are part of c.

Definition 2 (Interaction model). A connector c is a set of interactions; we denote ports(c) the set of
ports that are involved in at least one of the interactions in c. An interaction model on a set of ports P is a
set of connectors C.

36

Definition 3 (Legal interactions). The set of legal interactions of an interaction model C, denoted L(C),
is {

⋃k
l=1 il | k > 0 ∧ ∀l = 1..k,∃cl ∈ C, il ∈ cl, cl pairwise distinct connectors }.

According to this definition, any combination of interactions of different connectors is a legal interaction.
This notion encompasses concurrency, as interactions from different connectors may be fired simultaneously
as well as not, unless stated otherwise by the component’s LTS.

Definition 4 (Priority order). A priority order on an interaction model C is a strict partial order such
that:

– ∀c ∈ C,∀i, j ∈ c, i ⊆ j =⇒ i < j
– ∀i, j, α ∈ L(C), i < j ∧ c(α) ∩ (c(i) ∪ c(j)) = ∅ =⇒ i ∪ α < j ∪ α

where for any interaction i1, c(i1) is the set of connectors that contain an interaction i2 such that i2 ⊆ i1.

Priorities are used to arbitrate between simultaneously enabled interactions, for example to enforce scheduling
policies. The first condition above ensures maximal progress between interactions of a single connector. The
second condition ensures monotonicity, that is priorities are preserved from smaller to larger interactions.

Definition 5 (BIP system). A system represented in BIP consists of a set of components Ki whose behav-
iors are given by LTS on disjoint port sets Pi, an interaction model C on P =

⊔n
i=1 Pi and a priority order

< on C.

We refer to the three items thus defined as layers which are called respectively behavior, interaction and
priority. We refer to (C, <) as a composition operator on P, because interaction and priority express how to
compose a set of LTS so as to make them interact. As usual, q1

α−→ q2 denotes (q1, α, q2) ∈ δ and q1
α−→

denotes ∃q′ ∈ Q, q
α−→ q′.

Definition 6 (Operational semantics). Let {Ki}n
i=1 be a set of LTS, where Ki = (Qi, q

0
i ,Pi, δi). Let

P =
⊔n

i=1 Pi and {C, <} a composition operator on P. The composition of {Ki}n
i=1 with {C, π} is an LTS

(Q, q0,P, δ) such that Q =
∏n

i=1 Qi, q0 = (q0
1 , ... , q0

n) and δ is defined as follows.
∀α ∈ L(C),∀q1 = (q1

1 , ... , q1
n), q2 = (q2

1 , ... , q2
n) ∈ Q, q1 α−→ q2 iff:

– ∀i, q1
i

αi−→ q2
i where αi = α ∩ Pi and with the convention that ∀q, q ∅−→ q

– @α′ ∈ L(C), α < α′ ∧ q1 α′

−→

Thus, only interactions that are locally enabled in all concerned components, and furthermore not inhibited
by an interaction with higher priority, may be fired. Independent interactions may be fired jointly .

3 Synthesis of memoryless orchestrators
3.1 Contracts for Web services

Web services communicate via peer-to-peer exchange of messages. We assume that no message can be lost
or reordered when sent through the same channel. An elegant way to represent message loss or absence of
interaction peers in BIP is discussed in section 5. In this paper, we propose only time independent algorithms.
In particular, we do not use on timeouts to guarantee progress. The framework could be extended to systems
satisfying real-time requirements by also adding constraints on execution times and transmission delays.

In the context of Web services, contracts are used to describe how a client or a service is expected to
behave. As in [2], we use a fragment of CCS to define such contracts. . We use as the input for our methods
the LTS defined by a CCS term. In the following, x is a process variable, α denotes an action, and σ, ρ are
process terms.

σ ::= 0 | α. σ | σ + σ | σ ⊕ σ | recx. σ | x

The terminated process is represented by 0, and α. σ represents sequence. As usual, + denotes the external
choice (whether the process σ + ρ will behave as σ or ρ depends on the environment), ⊕ the internal (non-
deterministic) choice. Variables are assumed to be guarded, that is, every free occurrence of x in a term
recx. σ appears in a subterm of the form α.ρ. This ensures that no sequence of internal transitions is infinite.
The process recx. σ behaves like σ{rec x. σ/x}, which is σ with every free occurrence of x replaced by recx. σ.

The set of actions appearing in σ is denoted act(σ). The semantics of σ can be defined by an LTS
(Q, q0,P,−→), where states are terms of σ: Q is the set of derivations of σ, q0 = σ, P = act(σ) ∪ {τ} and
−→ is the transition relation given by the following SOS rules (symmetric rules for + and ⊕ are omitted).

37

α. σ
α−→ σ σ ⊕ ρ

τ−→ σ recx. σ
τ−→ σ{rec x. σ/x}

σ
τ−→ σ′

σ + ρ
τ−→ σ′ + ρ

σ
α−→ σ′

σ + ρ
α−→ σ′

Actions can be either outputs (denoted ā) or inputs (denoted simply a). By σ ‖ ρ we denote the composi-
tion of σ and ρ where inputs and corresponding outputs must synchronize, which in BIP can be represented
by a set of connectors of the form {{ā, a}}. In the sequel, when no ambiguity is possible, we refer to the
connector {{ā, a}} or to the interaction {ā, a} as a.

Satisfaction of a client is represented by a special action e. A client is satisfied if it offers e. To check
whether a given client and a given service can interact so as to satisfy the client, we need to define compliance.

Definition 7 (Compliance). A service ρ is compliant with a client σ, denoted ρ ` σ, iff σ ‖ ρ has no
deadlock.

By deadlock, we mean a state in which the client is not satisfied and no transition can be fired. A service τ
refines a service ρ iff every client satisfied by ρ is also satisfied by τ . Based on these definitions, a service a+b
does not refine a, because the client ā. e + b̄. c̄. e would be satisfied by the latter but not by the former. To
avoid this, a looser notion of compliance, called weak compliance, can be used (see [2]). A service ρ is weakly
compliant with a client σ if there exists an orchestrator which may interfere with the execution of ρ and σ as
to satisfy the client, by storing outputs until a corresponding input is enabled, and, in the situation where
both client and service offer an external choice, not choosing any interaction that may lead to deadlock.

We are interested in building light-weight memoryless orchestrators which can be expressed by a priority
preorder over the set of interactions.

More precisely, given a service σ and a client ρ, we proceed in two steps.
Step 1: We infer concurrency. While building the synchronized product σ ‖ ρ, violations of the compliance
relation are detected. If they can be avoided by reordering of messages that can be implemented using bounded
buffers, then they are collapsed in the specification. Otherwise the transitions leading to deadlock are marked
as error. Transitions that have been (in the view of the designer) erroneously collapsed can be marked as
error as well.
Step 2: We infer priorities. If possible, a set of priorities is computed so as to make the erroneous states
unreachable according to the operational semantics given in Section 2, by inhibiting some transitions. Static
priorities are a nice trade-off between the need for some non-local dependencies and the risk to build a
specification that would require a global state.

3.2 Inferring concurrency

Checking compliance between a client σ and a server ρ means checking of deadlock freedom of σ ‖ ρ. Let us
consider the following client σ and service ρ.

Client : ā. b. c. e Service : a. c̄. b̄

Clearly, σ and ρ are not compliant, which is a bit of a pity because, a priori, the service does not need
to interact with the environment between the outputs c̄ and b̄, and the order in which these outputs are
presented to the client has no influence on the service2. In order to make the service and client compatible,
we cannot modify the service itself. In [2] it is proposed to systematically add buffers between the component
and the environment to allow the environment to pick interactions which can be made available in the desired
order. In presence of choices, however, adding possible behaviors may also add new deadlocks occurring a
few steps later. These deadlocks must then be eliminated by adding priorities. Therefore, we only add order
inverting buffers when this allows eliminating a deadlock.

Definition 8 (Reordering of concurrent transitions). Two transitions t1 = (q1, a, q′1) and t2 = (q2, b, q
′
2)

of an LTS K are concurrent if q′1 = q2 and a is an output, and furthermore there exists no external choice
in conflict with a.

2 At least this is the case if the abstraction is precise enough to explicit all communications including an input.
38

When a is an output, it is possible to withhold the actual interaction a until after the execution of the
interaction b because the behavior of K does not depend on the effect of K. If the interaction a is accepted
by the environment after the interaction b but not before b, this allows avoiding a deadlock. If there exists an
alternative to the interaction a, the future of K in q1 does depend on the effect of a: speculating on b before
a is indeed accepted by the environment may lead to a state outside the specification if an alternative for a
ends up to be chosen. This is the reason why we propose such reorderings only if q1 is a deadlock state, and
no alternative is available.

Definition 9 (Trace sets, matching pairs). As usually, we define the set of traces as the set obtained by
reordering of concurrent interactions, but only from the left to the right. When s1.t1.t2.s2 ∈ traces(s) and
t1.t2 is concurrent, then s1.t2.t1.s2 ∈ traces(s)

Two sequences s1 and s2 can be matched if there exists s′i ∈ traces(si) such that s′2 is obtained from s′1
by inverting inputs and outputs.

Instead of presenting the full algorithm, we illustrate it on the main situations to be handled. Let us first
consider the simple Service above: while building the synchronized product of Client and Service, deadlocks
are detected, here b. c. e ‖ c̄. b̄.

In this state, the Client can only interact on b, whereas the Service only on c̄; the Service is deterministic
and the smallest sequence of deterministic interactions containing both c and b — the only offer of the Client
— is s1 = c̄. b̄. Symmetrically on the Client side, we find s2 = b. c. We find traces(s1) = {c̄. b̄, b̄. c̄} and
traces(s2) = {b. c} and a matching pair (b̄. c̄, b. c) . A buffer realizing the required reordering in the Client,
eliminates the deadlock.

In the case where s1 and s2 do not contain the same set of interactions, then if they can still be made
matching by adding continuation, we can redo the same step until we know that the sequences can never
match or we find a matching pair. In practice, it is not very reasonable to consider long sequences which in
fact have to be remembered as such and are more a “patch” than a general solution. Also, if either the client
or the server is distributed, they ressemble very much a memoryful orchestration, which we wanted to avoid.
This is also the reason why we do not handle loops here, even if in principle this is doable.

If in the deadlock state several interactions are offered by the client or the service, any pair of interactions
may be checked for a possible matching sequence pair, and we will retain only one of them.

If no multiset as described exists, or if the designer thinks that the concurrency inferred is erroneous, the
corresponding states are marked as deadlocks. Otherwise, the size of buffer required for reordering is bounded
by the largest number of actions collapsed on a single transition in the product.

3.3 Finding a sufficient priority order

Besides reordering, the orchestrator can also restrict external choice so as to avoid deadlocks. Indeed, if both
client and service offer two actions as an external choice, then the orchestrator may choose which one is
taken. Instead of presenting the full algorithm, we show how it works in several cases.
A simple example that works with priorities. An orchestrator can be represented with static priorities
in the following example:

Client : ā. c. e + b̄. d. e Service : a. d̄ + b. d̄

The priority a < b is sufficient to make the deadlock unreachable.
A simple example that does not work with priorities. Here is an example where an orchestrator
cannot be represented with static priorities.

Client : ā. c. e + b̄. b̄. c. e + b̄. ā. d. e Service : a. d̄ + b. b. d̄ + b. a. d̄

Priorities cannot account for that, because avoiding deadlock both after a and after b. b would require at the
same time a < b and b < a, which is impossible.

A short look at these examples makes it clear that weak compliance enforced via static priorities will not
be preserved by refinement unless the priorities have a semantic meaning – which is not the case in our first
trivial examples. Here is a detailed illustration of how the algorithm proceeds on the second example.

1. The product of client and service is computed. Deadlocks are detected and transitions leading to them
are marked as error, as shown in figure 1.

39

2. State 1 of σ ‖ ρ is the initial state and in this state b must be preferred to a in order to prevent a deadlock,
so we conclude that any possible set of priorities making σ and ρ compliant includes a < b.

3. Besides, there are two possibilities to avoid the deadlock occurring if b is fired in state 2: either b has
lower priority than a or state 2 is not reachable. The first option would lead to a contradiction, namely,
a < b and b < a at the same time. The second option would imply that the transition from 1 to 2 labeled
by b should be inhibited by a transition with higher priority enabled in 1. Such a transition can only be
1 a−→ 2, which is also impossible. Thus we conclude that no memoryless orchestrator can make the given
client and service compliant.

σ = ρ =

d̄

b̄

b̄āc

ā a b

ad̄ b

d̄cd

e e

e d

ba

a
b2

3

1

σ ‖ ρ =

Fig. 1. A client σ, a service ρ and their product σ ‖ ρ.

The general algorithm is slightly more complicated because for each transition error one has to consider
either adding a priority or removing a state.

If the algorithm fails to produce a priority order making the deadlocks unreachable, other approaches
are possible. One is to infer more concurrency. We have inferred concurrency only in deadlock states. Some
sequences of interactions that have been rejected might be made possible by adding priorities and thus satisfy
the client.

It is important to underline the fact that the product of the client and the service is expected to be of
a size comparable with both. As a matter of fact, it is even expected to be smaller because composition is
likely to add constraints to both client and service. If there are several clients or services to be considered,
then compositional approaches are possible. This will be discussed in section 5.
The dining philosophers example. Let us consider the dining philosophers example. The variant presented
here is inspired from [2]. Philosophers are services who provide thought if they are given two forks by the
resource. We consider here two philosophers and a resource with two forks. As usual, the deadlock arises if
both philosophers are allowed to get one fork and never return them.

To handle this problem, always giving the highest priority to the request that is the closest to completion
is a classic method for managing resources. Memoryless orchestrators are powerful enough to enforce such
a policy. In the context of the dining philosophers, we thus give a different label for the action of getting
the first or the second fork. The priority order then inferred {forkα

1 < forkβ
2 , forkβ

1 < forkα
2 } is sufficient to

prevent the deadlocks. For readability reasons, in figure 2, instead of interactions, we use the names of the
ports that distinguish them and we give the same name fork to 4 different ports of Forks as they cannot
be enabled at the same time.

Forks = recx.fork .fork .thought .return.return.x
Philo = recx.fork1 .fork2 .thought .return.return.x

fork1 fork fork1 fork2fork2

returnα thought returnβ

Forks PhiloβPhiloα

thoughtα return thoughtβ

forkβ
1

forkα
1

forkα
1

forkα
2

forkα
1

forkβ
2

returnβ

thoughtβ

returnα
returnβ

returnα

thoughtα

Fig. 2. A solution to the dining philosophers problem.

40

4 Implementation of memoryless orchestrators
BIP is defined by global semantics useful for ensuring progress properties with concise component specifi-
cations and proving them correct structurally [6]. Thus it is implemented by a global simulation engine [5]
interacting with components.

In the context of web-services, we need a distributed engine. A partially concurrent implementation of BIP
with message passing is given in [13], but still based on the existence of a centralized engine. Other proposals
consist in adding a component for handling individual connectors, but this is not sufficient in presence of non
prioritized choice or global priorities.

We propose a truly distributed BIP implementation by means of protocol agents associated with each
component and which negotiate the next interaction to be executed as locally as possible. We extend existing
algorithms for distributing process algebras such as [14] by handling global priorities. The protocol agents are
machines communicating by exchanging messages via non lossy channels preserving the order of messages with
the same source and destination; protocol read messages from their local message buffer by also preserving
the order for any given message source.

Another specificity is that we rely on the BIP semantics of the system to satisfy properties, including
deadlock freedom and fairness, required to guarantee client satisfaction. And we also want to consider dis-
tributed choice amongst a set of conflicting interactions without using static priorities. Besides, we assume
components’ internal activities to be terminating.

To define a correctness criterion for our algorithm, we provide two properties characterizing LTS obtained
by composition using a BIP composition operator.

Notation 1 (Ready/enabled/conflicting/independent interaction) An interaction c is ready in a
(global) state q iff each port in c is locally ready. c is enabled in q iff c is ready in q and no interaction
with higher priority is ready in q. Readiness, unlike enabledness, does not take priorities into account.

As usual, two interactions are called conflicting in state q if both are enabled but only one of them can
be chosen in q. If both can be chosen jointly (according to the BIP multi-shot semantics) they are called
independent.

Property 1. Suppose a BIP system S defined as the composition of a set of components {Ki}n
i=1 with a

composition operator (C, <).
Safety. If in a state q = (q1, ... , qn) of S two interactions without a common component are enabled, then
they must be independent. That is, all the states obtained by firing any of a, b or a|b are reachable, and
moreover, after the execution of a|b, or a and b in any order the same state is reached.
Progress. Any execution of S inevitably leaves q by executing at least one of the successors of S, if S has at
least one successor in q. Any execution of S starting in q inevitably leaves qi if there is no loop nor deadlock
state containing qi in S3.

4.1 The distributed algorithm

For the sake of readability, we present an algorithm handling only binary rendez-vous connectors . We use
c to denote this unique interaction as well as, when no mistake is possible, the corresponding local (input
and output) ports. We do not consider true multi-shot semantics where a component is allowed to require
interactions to occur jointly. See section 5 for a discussion about this issue.

Notation 2 We call readyK(qi) the set of ports enabled locally in a component K in state qi and refer to it
as the ready-set of K in state qi.
We denote by k(c) the two components involved in a connector c. Given K and one of its connectors c, we
write Kc for K’s peer for c.
We denote by dp(c) = k({b | c < b}) the set of components having an interaction with higher priority than c.

Our algorithm uses for deciding enabledness of c direct “negotiations” amongst components in k(c) – which
determine readiness – and then between one component in k(c) (a “priority negotiator” chosen statically),
and one component for each a ∈ dp(c) (also a statically chosen negotiator). The algorithm is implemented by
a protocol amongst protocol agents Pri. Each Pri is associated with a corresponding component Ki, which
itself is obtained by enriching the original component by the set of buffers computed in the algorithm of
section 3.2. The algorithm consists of the following main phases:
3 we consider finite state LTS S.

41

1. a busy phase, in which an interaction to be executed has been chosen and the communication part is
terminated. Ki is now executing the action part and the local ready-set in the successor state is not known
yet. In this phase the protocol agent is quiet and defers all enquiries of other protocol agents by letting
messages accumulate in its buffer4. Whenever the busy phase is entered or left all pending enquiries are
handled. We suppose that no agent remains indefinitely busy.

2. a ready phase, in which the current ready-set readySet has been communicated by Ki. Pri remains in
this state until an enabled interaction has been found.
To find an enabled interaction amongst readySet, the protocol checks readySet in decreasing order of
priority <. Determining if an interaction c is enabled by communication with its peer Prc and with dp(c)
is relatively straightforward (see algorithms in the annex).
As soon as a c is found enabled, or if readySet contains only one potential successor, Pri (tries to) execute
c and sends a COMMIT message to its peer5.
The interaction c is locally “done”, if a COMMIT has been sent to and received from Pri’s peer,in any
order. For simplicity, we suppose data to be piggybacked on the COMMIT message6.

3. whenever Pri is (from its own point of view) the first one to choose interaction a (and to send COMMIT),
then it enters the commit phase, in which it waits for its decision to be committed — in which case the
interaction is done and Pi provides the choice and the data to Ki and becomes busy. Or it is rejected, by
an explicit REFUSE which brings Pri back to ready. Any “counter proposal” that is received at this stage
is REFUSEd, unless static analysis has detected the existence of a potential “decision cycle” in which
case, there will be one statically determined cycle breaker who gets his choice done, and if Pri receives a
counter proposal a from the cycle breaker — which may depend on the pair a, c — it will wait its own
c to be accepted (no actual cycle exists) or refused (a cycle may exist), and only then send a response
for a. Once, c or a is commited from both sides, all interactions for which a readyness request has been
made or responded to, are explicitly REFUSEd.

Note that, when all protocols Pri are ready, the global state should be a state of S. Such a situation
may never occur globally, and this is not needed. Whenever an interaction a is chosen, it is sufficient that
all components which determine the enabledness of a in q — that is also those which may compromise a
through a priority rule — are ready and in a state q compatible with S; the state of all other components is
irrelevant.

5 Discussion
Memoryless orchestrators are not as powerful as, e.g., the simple orchestrators introduced in [2] in the sense
that there are fewer pairs client/service that they make compliant. Besides, the complexity of our algorithm
is even larger than the one for generating orchestrators. This is the price for having orchestrators from
which we can automatically derive efficient distributed algorithms. Because concerns are clearly separated,
our implementation does not have to take care of properties such as fairness. Obviously, the methodology
presented here does not preserve compliance by refinement. However, using a notion of refinement under
context as in [7] that takes into account priorities would allow reusability to some extent.

When designing Web services, it is possible and helpful to abstract away some implementation details. We
propose to go a step further in this direction by using structured interaction, as is the case in BIP. The BIP
framework described in Section 2 is much more powerful than the subset that has been used here. While using
the priority layer we have kept interactions binary. Connectors can represent not only binary rendez-vous,
but also n-ary rendez-vous or broadcast.

Instead of specifying group protocols in terms of sequences of binary interactions, we can express them
at the specification level using, possibly a single, n-ary connectors, thus increasing the level of abstraction of
the specifications. It is possible in BIP to represent loss of messages occurring when a component (process)
receives a message that it cannot handle at the time of the reception. This is done by building a connector
with two legal interactions, namely the output alone and the rendez-vous. Structural verification of BIP
systems ([6]) could handle this efficiently, as well as multiple clients and services. In particular, the question
of realizability (see [3]) can be decided very simply in BIP.

Designing Web services in a framework as expressive as BIP reinforces the distinction between design
and implementation, allowing for a more abstract (and thus easier) design phase, more efficient verification,
4 the size of the buffer can be statically bounded by the number of ports of Ki
5 we aim at maximising progress, knowing that overall progress is enforced by the safety property of S.
6 This is reasonable if the data volume is small or if conflicts are rare.

42

and automated implementation of the protocols realizing the specification. Expressing full BIP by protocols
would require methods to decide when an orchestration component will be more efficient than protocols.

References

1. Bravetti, M., Zavattaro, G.: A theory for strong service compliance. In: Proc. of COORDINATION’07. Volume
4467 of LNCS. (2007) 96–112

2. Padovani, L.: Contract-directed synthesis of simple orchestrators. In: Proc. of CONCUR’08. Volume 5201 of
LNCS. (2008) 131–146

3. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra encodings. In: Proc. of IFM’09.
Volume 5423 of LNCS. (2009) 167–182

4. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Program. 55(1-3) (2005)
161–183

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Proc. of SEFM’06,
IEEE Computer Society (2006) 3–12

6. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for component-based systems and
application. In: Proc. of ATVA’08. Volume 5311 of LNCS. (2008) 64–79

7. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of components. In: Proc. of SEFM’08,
IEEE Computer Society (2008)

8. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in BIP. In: Proc. of EMSOFT’07, ACM
Press (2007) 11–20

9. Milner, R.: A calculus of communication systems. In: LNCS 92. Springer (1980)
10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1984)
11. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: Proc. of CONCUR’08.

Volume 5201 of LNCS. (2008) 508–522
12. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25 (1983) 267–310
13. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and implementation for systems with inter-

action and priority. In: Proceedings of FORTE’08. LNCS, Springer (June 2008)
14. Bagrodia, R.: Synchronization of asynchronous processes in CSP. ACM Trans. Program. Lang. Syst. 11(4) (1989)

585–597

43

44

Inter-service Dependency in the Action System Formalism

Extended Abstract

Mats Neovius1,2, Fredrik Degerlund1,2, Kaisa Sere1

1 Åbo Akademi University, Joukahaisenkatu 3 – 5, 20520 Turku, Finland

2 Turku Center for Computer Science, Joukahaisenkatu 3 – 5, 20520 Turku, Finland
{mats.neovius, fredrik.degerlund, kaisa.sere}@abo.fi

1 Introduction

The use of formal methods is widely recognised for facilitating systematic construction
of reliable and rigorous software. Methodologies supporting formalisation of
functionality relying on distributed sources suggest to mastering inter-module
dependencies where assignment of a global variable in one system changes the global
state. The challenge comes to be identifying the properties and restrictions when
formally defining dependencies involving the modules. The gain is that hence the
systems need not to be administrated by a central entity and can be truly distributed. The
modules can be independently replaceable as long as the functionality they guarantee
remains intact given certain conditions. Consequently, the modules have well defined
interfaces and they can be called services.

The motivation of our approach lies in that information sources become increasingly
distributed; the information is provided by scattered independent entities [1, 2]. These
entities depend on service(s) provide by other entities. A service can be an elementary
source of information, some entity deducing new information depending on other (lower
level) services or a combination of these two. Whether being an intermediate service or
elementary source of information, the internal functionality of the provided service need
not to be considered by the auxiliary services, i.e. the service can be considered a black-
box.

The contribution of this extended abstract is in providing a glimpse into the research
conducted in examining the means to formally rely on remote services and semantically
reason about these. For this, we have defined an operator that masters the dependency
relation that treats the remote services as stand-alone replaceable entities. Once
mastering the formalisation of the services’ interfaces, we claim that the formalism is
ripe for specifying truly distributed inter-service dependent systems. We have chosen to
model the dependency in the action system formalism framework, and we use reactive
action systems as they provide means for reasoning about the information in a modular,
distributed, manner. This extended abstract builds on our earlier work [3, 4].

45

2 Definitions of Concepts

For the reader to thoroughly understand this paper, some concepts need to be defined.
We will consider systems that are either sources and/or utilisers of information. This
paper will use source when indicating the origin of some information, realistically this is
the input to the system or a sensor introducing some context. The utiliser constitutes the
user of any provided information. Thus, an utiliser can be a source as well whenever it
utilises other sources but changes these according to some rules such as calculating the
mean value or by source introduction of its own. Realistically, this happens when a
service depends on subservices to provide.

Because the source must not dictate its utiliser(s) but the utiliser selects the source(s),
unidirectional dependencies are evident. Bidirectional dependencies in distinct traces are
expressible, e.g. mutual agreement considering entities A and B where ↪ denotes
“depends on”; A ↪ B and B ↪ A. We will also model direct and indirect dependencies.
In direct dependencies the utiliser will halt until the source provides its service whilst in
indirect the utiliser settles for being guaranteed that the source will eventually execute
the task. In addition, we will use other concepts specific to the formalism that are
introduced gradually.

3. Characteristics of an action

One way of formally modelling software is to focus on the state space of a program.
Each state in the state space is identified by the disjoint conditions that hold in it.
Changes in these conditions are of central interest and are traced. Because the current
state is well defined as are the executable tasks, a weakest precondition predicate can be
derived for each task. Deriving one predicate from another one coins the idea of a
predicate transformer, originally introduced by Dijkstra.

3.1. Actions at a glimpse

Since providing a table listing all possible preconditions for all post-execution states of
an action is unmanageable, due to its sheer size, the approach taken is to describe this as
a function describing the weakest precondition of an action [5]. The action system
framework is a state based formalism for defining distributed systems [6, 7]. The basic
component in an action system is the action. It bases on Dijkstra’s language of guarded
commands [5, 8] and is defined with the weakest precondition predicate transformer, in
short wp. From wp(A, q) we can derive the weakest precondition, i.e. the conditions for
which executing action A the postcondition q is satisfied. These pre- and postconditions
are mere predicates over state variables. The weakest precondition is defined for various
actions as follows:

wp (magic, q) = true Miraculous action (1)

wp (abort, q) = false Aborting action (2)

wp (skip, q) = q Stuttering action (3)

wp (x ≔ E, q) = q[E/x] Multiple assignment (4)

46

wp (A; B, q) = wp (A, wp (B, q)) Sequential composition (5)

wp (A [] B, q) = wp (A, q) ∧ wp (B, q) Nondeterministic choice (6)

wp ([a], q) = a ⇒ q Assumption (7)

wp ({a}, q) = a ∧ q Assertion (8)

The action abort is used to model disallowed behaviour, thus q is never satisfied, i.e.
the outcome is false. skip is a stuttering action, not doing anything, thus, the weakest pre-
condition for establishing post-condition q is q. x ≔ E is multiple assignment where all
occurrences of x are substituted with an element in E, A; B is the sequential composition
of two actions and A [] B the (demonic) nondeterministic choice between actions A and
B. [a] is the assumption that is assumed true and {a} is called the assertion that is a
predicate needed to evaluate true in order for the execution to proceed to guarantee q.
For assumption, if ‘a’ is false, the action behaves magically whilst for assertion, if ‘a’
evaluates false, the action aborts. Hence the actions abort and magic can be seen as
special cases of assertion and assumption, respectively.

An action A is enabled (gd A) whenever executing it does not establish an unwanted
post-condition.

gd A = ¬wp (A, false) Enabledness (9)

Hence, actions abort, skip and x ≔ E are always enabled.
This language allows guarded commands [gA]; sA, for convenience written gA → sA,

where gA is the guard. For the rest of the paper, we assume that any action A can be
written in the form:

A = gA → sA Guarded command (10)

such that:

gd A = gA (11)

and

gd sA = true (12)

Thus, enabledness of an action can be determined by checking its guard portion.
Furthermore, we note that since gd A = true, we can derive the following property of sA
by applying the definition of enabledness (formula 9):

wp (sA, false) = false Property sA (13)

Thereby sA must not establish a false post-condition. The weakest precondition
semantics for an action A = gA → sA is:

wp (gA → sA, q) = gA ⇒ wp (sA, q) wp for guarded command (14)

Having defined the guarded actions, we can define conditional choice and repetitive
construct:

wp (if A fi, q) = wp (A, q) ∧ gA Conditional choice (15)

wp (do A od, q) = (∀n.wp (An, gA ∨ q)) ∧ (∃n.¬gA
n) Repetitive construct (16)

where A
0 = skip and A

n+1 = A
n; A. The repetitive construct defines that each action

enables some action or establishes q and that there must exist some that does not enable
any other, i.e. partial correctness and termination. Consequently, an action A within do
… od may execute only when its guard gA holds.

47

3.2 Inter-action Dependencies

Expressing that an action depends on another action can be modelled using a special
operator. We denote it the dependency operator \\. Letting A and B be actions, where
A\\B denotes that A ↪ B, we define \\ to be:

Def. 1, dependency operator: A\\B = gA ∧ gB → A; B

Whenever having the construct A\\B, we call the dependent action A the native action
and B the trailing action. For the gB to evaluate true after having executed A, we need to
assure that A preserves gB by not assigning the free variables of B so that it would
disable gB. This characteristic is shown in Section 3.3 by calculating the guard for A\\B,
as is the wp for A\\B. Typically, at the time of termination A\\B would be disabled, i.e.
modelled to be executed exactly once.

3.3 Characteristics of the \\-operator

The dependency operator introduces some restrictions. We examine these by defining
how \\ relates to the provided semantics of section 3.1 by exposing its characteristics by
calculating its weakest precondition.

Characteristic 1, wp for \\: wp(A\\B, q)
= wp (gA ∧ gB → A; B, q) // Def. 1
= gA ∧ gB ⇒ wp (A; B, q) // formula 14
= gA ∧ gB ⇒ wp (A, wp (B, q)) // formula 5
= wp (gA ∧ gB → A, wp (B, q)) // rewrite 14

This characteristic coins the meaning of the \\ operator. Initially gA and gB need to
hold and after executing A, a state where B is enabled is reached, and after executing B, q

is established. Hence, A must not disable B.
Assuming that B establishes q whenever gB holds and executed after A, we can

calculate the collective guard of A\\B. This collective guard is deduced with the help of
wp formulae.

Characteristic 2, guard of \\: g(A\\B)
= ¬wp (A\\B, false) // formula 8
= ¬wp (gA ∧ gB → A, wp (B, false) // charac. 1
= ¬(gA ∧ gB ⇒ wp (A, wp (B, false)) // formula 14
= ¬(gA ∧ gB ⇒ wp (A, wp (gB → sB, false))) // formula 10
= ¬(gA ∧ gB ⇒ wp (A, gB ⇒ wp (sB, false)) // formula 14
= ¬(gA ∧ gB ⇒ wp (A, gB ⇒ false)) // formula 13
= ¬(gA ∧ gB ⇒ wp (A, ¬gB ∨ false)) // Def. ⇒
= ¬(gA ∧ gB ⇒ wp (A, ¬gB)) // tautology
= ¬(¬(gA ∧ gB) ∨ wp (A, ¬gB)) // Def. ⇒

= ¬¬(gA ∧ gB) ∧ ¬wp (A, ¬gB) // Def. deM
= gA ∧ gB ∧ ¬wp (A, ¬gB) // double neg

Characteristic 2 defines the general structure of the guard that must hold for the action
A\\B to be enabled. In short, the gA and gB need to hold and A must not disable B.

A\\B is not commutative. This is the case partly because the significance of order i.e.
distinction between the native action and trailing action in definition 1, where the native

48

action must not disable the trailing one. These characteristics support the definition
provided. Hence, we conclude property 1 for non-interference:

Property 1, non-interference native: The native action can only assign the free
variables of the trailing action in a manner that does not disable the guard of the
latter.

Property 1 states that a native action A must assure not to contribute towards disabling
the trailing action B. Therefore, A is not allowed to arbitrarily assign the variables of B.
However, the trailing action B can assign the native action’s variables; otherwise, the
impact of the trailing action would be restricted to the inclusion of the guard of the
dependency relation.

4. Dependency on an action system level

As the fundamentals of an action and the characteristics of the dependency operator are
provided, we extend usage of the operator to be used within an action system. The action
system building blocks are defined in Section 4.1. We consider reactive action systems,
where independent systems operate as a part of a more complex system. To navigate the
complex system and depend on these remote action systems, we introduce a means for
remote referencing in Section 4.2.

4.1. Action system at a glimpse

To start reasoning with action systems, we specify the elements of one, here named 	:

Def. 4, action system: 	 = |[var v,w* proc P:p; R*:r ● Init: A0; do Op: A od]| : i

In 	, v and w* are the variables declared by this action system. Variables v are local and
w* constitute the exported variables (denoted with an asterisk). Procedures are declared
in the clause proc where P: p is a local procedure p named P, only executed if called
upon whilst R* is a globally referable procedure. Action Init:A0 is the initialising action
assigning the declared variables their initial value where Init is the label of this action.
Each action label ∈ Name of action labels in the declaring action system. The do … od
bracket pair constitute the repetitive construct (formula 16) within which the action A
labelled Op is repeatedly executed until A aborts or until termination. Variables i stand
for the optional imported variables that are declared and exported by other action
systems but referenced from this. Together, import i and export w* constitute a situation
resembling shared writable memory where the variable type is declared by the exporting
action system.

Because considering reactive action systems the action system 	 is a part of a more
complex system, where all other action systems are considered as 	‘s environment,
commonly denoted as ℰ. As the action atomicity holds on the whole complex system,
any atomic action of 	 can be preceded by an action in ℰ impacting 	 by writing to 	‘s
global variable space. Hence, the reactive component does not terminate by itself as the
environment can, through the global variables, enable some actions within this. This
makes the termination a global property and the formalism comes to showing properties
of execution traces.

49

Any set of action systems in the reactive system can be composed to form a coherent
monolithic action system. This is realised with the commutative and associative parallel
composition operator ||, defined in Definition 2:

Def. 2, parallel composition ‘||’: Let
	 = |[var va, wa*; proc P:p ● Init:A0; do Op:A od]| : i and
ℬ = |[var vb, wb*; proc R*:r ● Init:B0; do Op:B od]| : j then
 = 	 || ℬ = |[var xm, xn*; proc P:p; R*:r ● Init:A0; B0;

do Op	: A [] Opℬ: B od]| : h where
h = i ⋃ j \ (wa ⋃ wb), xn* = wa ⋃ wb and xm = va ⋃ vb provided that va ⋂ vb = ∅.

Definition 2 states that if a set of action systems operates on a disjoint set of local
variables, va ⋂ vb = ∅, procedure names and action labels, they can be composed without
renaming to one action system where the actions within the repetitive do … od loop are
treated non-deterministically and procedures remain intact. If the local variables are not
disjoint or the local procedure names coincide; non-overlapping can be achieved through
renaming whereas the action labels are be given a suffix indicating their origin. In the
declaration above, action system is a parallel composition of 	 and ℬ where the
possible execution traces remain unchanged. || has the immediate drawback of
compromising modularity and reusability, i.e. composing action systems 	||ℬ = does
not guarantee that once decomposing , 	 and ℬ are recovered in their original form.
Consequently, composition provides a means to form an abstract view of the system as
well as refactoring the system.

4.2. Inter-Action System dependencies

Dependency within one action system is denoted by applying the dependency operator
within the do … od construct with a reference to an action within this same repetitive
construct. For referring to actions in the environment of this action system, means to
make “remote dependency references” need to be defined. The trailing action operates in
its own right, i.e. possibly providing its service to many disjoint actions without these
having to be aware of each other. To reference a remote system providing this service,
we define the @ reference:

Def. 3, @ reference: Let B be an action and ℬar an action system where B ∈ actions
of ℬar, then B@ℬar refers to action B in action system ℬar.

The @ is a postfix to an action where A\\B@ℬar denotes action A to depend on action B
in action system ℬar. Because of the atomicity of \\, action A\\B@ℬar waits for B to
finish; calling this a direct dependency relation. Consequently, several actions can
depend on B@ℬar without interference as B@ℬar is atomic and provides only to one
system at any given time resembling the situation where A requests a resource possessed
by B@ℬar.

Direct dependency relations do however halt the execution of the native system until
the referenced action B@ℬar terminates. As the scheduling for the whole system is not
of interest, breaking the atomicity might be of interest. This can be done whenever
B@ℬar only enables another action, labelled Bwake@ℬar that ought to be executed in the
wake of A. Hence, if B@ℬar enables Bwake and the system can guarantee that Bwake is
executed at some point after the reference, the atomicity of \\ is broken. This lets the
native system continue its execution until the possible results of Bwake are required. Thus,

50

A\\B@ℬar only enables Bwake that is assured to execute prior to the first execution of the
action labelled Bnat.

	 = |[var v,w* proc; ● Init: A0; do Op: gOp → A\\B@ℬar

[] “other actions” od]| : i
ℬar = |[var j,i* proc B*: gBorig ∧ k = false → k ≔ true; ● Init: Bar0;

do Bwake: k = true ∧ gBorig → sBorig; C; k ≔ false
[] Bnat: k = false ∧ gBorig → sBorig
[] “other actions” od]| : l

Here actions labelled Bnat and Bwake assure sBorig to be executed once but in addition to
sBorig, the referenced action labelled Bwake executes an additional action (possibly
stuttering) C and disables itself through assigning k false. As the guard of the globally
referable procedure B* is the same as for the alternatives of Bnat and Bwake, the semantics
of the remote dependency is not altered. The impact on the system is similar to the one
when considering only intra-action system dependencies but the atomicity is deliberately
broken down with the Boolean of k for the sake of immediate progress, i.e. being able to
execute the “other actions” in 	 before Bwake is finished. We call this indirect

dependency. Moreover, if action system 	 is the only system importing variable k, then
we say that k is a dedicated variable for this dependency. The trade-off with breaking the
dependency is that the execution order cannot be guaranteed and it should hence be used
carefully, i.e. as above when B* enables Bwake, A\\(B\\C) ordering is not necessarily kept
as A; Bwake; C because Bwake might actually execute after C, which is obvious as the
atomicity was deliberately broken. However, it can easily be shown that A executes
before C and before Bwake.

5. A short example

To clarify the realistic implementation scope of the ideas presented in this extended
abstract, we outline a short, easily conceivable example. This example bases on fraction
of a Buyer-Seller relation where the seller runs an ERP-system (Enterprise Resource
Planning).

Assuming two actions A ↪ B, a realistic scenario could be that A wants to buy
something sold by B i.e. a normal buyer-seller relation. Letting gA be ‘has money’ and A

constitute the state update, gB could realistically be ‘in stock’ where B merely updates
the stock. Consequently, per Definition 1, gA ∧ gB → A; B, buyer A has money whilst
the product is in stock and once bought the stock is updated. The novelty of this
approach is that in order for A to execute, gB needs to be true, i.e. product must be in
stock for the buyer to buy1 and A need only to know the “interface” of B, i.e. sell if in
stock.

ℬuyer = |[var v,w* proc; ● Init: A0; do Buy: gA → A\\B@�eller od]| : i
�eller = |[var j,i* proc; ● Init: B0; do B: gB → B od]| : l

However, as there is no reason why the ℬuyer should halt until the �eller is
complete, we break the atomicity.

ℬuyer = |[var v,w* proc; ● Init: A0; do Buy: gA → A\\B@�eller od]| : i

1 Mathematically, knowing this a priori is irrelevant as the system can be modelled so that once the

purchase is done, the product must be in stock.

51

�eller = |[var j,i* proc B*: gB ∧ j = false → j ≔ true; ● Init: B0;
do Bwake: gB → B; D
[]Bnat: gB → B od]| : l

Here the �eller’s gB stand for “in stock”. Hence, the dependency relation in the
action labelled Buy is disabled unless gB evaluates true. The auxiliary action D executes
only in the wake of a dependency reference to proc B* and could stand for shipping the
product and invoicing. Naturally, this relation can be extended to a multi-phased
dependency relationship where payment, cancellation, trust and other policies can be
included.

6. Conclusions

As the future is likely going to be about navigating the ubiquity of information, being
able to select, rely on and process relevant information, as well as to reason rigorously
with these, the need to formally treat remote providers of this information is evident. In
this extended abstract, we have shown research results in how inter-service dependencies
can be modelled in the action system framework. We have introduced and briefly
outlined the characteristics of a new dependency operator \\ and exemplified its
feasibility in a short example.

As the research on the \\ operator is far from finished, future work will address chains
of dependencies, non-ordered dependencies as well as refinement. The goal is to gain
and present a library of well defined operators that address the challenges brought along
with the ever increasing distribution of computations and responsibilities. We believe the
service oriented architecture provides a feasible and demanding platform to verify results
upon.

References

1. Neovius, M. and Yan, L.: A Design Framework for Wireless Sensor Networks. In Proceedings
of World Computer Congress - WCC 2006, Ad Hoc networking track, 2006.

2. Roman, G.C., Julien, C., and Payton, J.: A formal treatment of context-awareness, In
Proceedings of FASE’04, 2004.

3. Neovius, M. and Sere, K.: Formal Modular Modelling of Context-Awareness. To appear in
Post-proceedings of FMCO 2008. LNCS, 2009.

4. Degerlund, F. and Sere, K.: A Framework for Incorporating Trust into Formal Systems
Development. In Theoretical Aspects of Computing – ICTAC 2007, 4th International
Colloquium, Proceedings, 2007.

5. Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, 197632.
6. Back, R.J.R and Kurki-Suonio, R.: Decentralization of Process Nets with Centralized Control.

In Proceedings of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, 1983

7. Sere, K.: Stepwise derivation of parallel algorithms, PhD dissertation, Åbo Akademi 1990.
8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, vol. 18, no. 8, 1975.

52

A Contract-Based Approach to Adaptivity in
User-Centric Pervasive Applications?

Martin Wirsing, Moritz Hammer, Andreas Schroeder, and Sebastian Bauer

Ludwig-Maximilians-Universität München, Germany
{wirsing, hammer, schroeda, bauerse}@pst.ifi.lmu.de

Abstract. Pervasive user-centric applications operate in highly dynamic and un-
certain environments. Designing such applications as one monolithic component
taking all possible environments into account inevitably leads to bad system de-
sign. We instead propose constructing partial solutions handling only a subset of
all possible environments, and changing the system as the environment evolves.
We use an assume-guarantee contract framework to infer the conditions under
which configurations exhibit the desired functionality. Furthermore, we show how
a system undergoing reconfigurations can be shown to satisfy a global assume-
guarantee contract.

1 Introduction

Pervasive user-centric applications are applications running on systems seamlessly inte-
grating with their environment and adapting it to the user’s current emotional, cognitive,
and physical state [6]. Such applications must deal with several challenges:

– They must operate in highly dynamic and uncertain environments.
– They often interact with other agents and humans.
– They must remain non-disruptive, and at the same time improve the experience of

the user.

In this paper, we take a closer look on how the first challenge in the development of
user-centric applications can be handled: dealing with highly dynamic and uncertain en-
vironments. Our approach involves making explicit assumptions about the environment
and the functionality of the system using assume-guarantee contracts[3]. We annotate
the components constituting the system with assume-guarantee contracts in order to
verify whether a global contract can be satisfied. If this is not the case, we introduce
components monitoring the system. By reconfiguring the system as soon as one of the
monitored conditions get falsified, we achieve adaptivity within the bounds of a given
specification defining the desired system behaviour. Furthermore, knowing the assume-
guarantee pairs of components, the reconfiguration rules and the overall contract to
satisfy, we can verify whether the system under construction satisfies the global system
contracts that describe its overall purpose.
? This work has been partially supported by the EC project REFLECT, IST-2007-215893 and

the GLOWA-Danube project 01LW0602A2 sponsored by the German Federal Ministry of
Education and Research.

53

The remainder of this paper is structured as follows. In Section 2, we give an in-
formal overview of our contract-based approach to adaptivity. Following this informal
description, Section 3 gives an example scenario for the usage of our approach, before
we introduce the formal assume-guarantee framework in Section 4. We conclude in
Section 5.

2 Contract-Based Approach to Adaptivity

User-centric pervasive adaptive systems need to be able to cope with a large amount
of uncertainty. Sensor readings might not be available or be inaccurate, and actuators
might fail to achieve the desired effect on the user. Different users might respond dif-
ferently to stimuli supplied by the system, and users might become bored by a stimulus
after different numbers of repetitions. In order to cope with the challenges of such a
volatile situation, such systems need to be engineered in a manner that supports adapting
to changes of the user and the environment. Obviously, such adaptivity can be realised
by implementing lots of case distinctions that address individual situations. However,
as the number of problems that need to be addressed increases, this will lead to bloated
and unmaintainable code.

Instead, we propose the use of components and reconfiguration to achieve adaptiv-
ity. Components are considered to be black boxes, making explicit only their commu-
nication requirements by means of required and provided ports. A system is comprised
from a number of components and their configuration, which describes how the re-
quired ports are connected to suitable provided ports. Numerous component models
describe how exactly this is achieved, and how the components can communicate in
order to achieve a common goal [4]. For the REFLECT project, we have developed our
own component framework [6], which is specially tailored to building adaptive systems
with multimedia sensors and actuators.

In a component application, individual components provide parts of the functional-
ity required by the entire system. By substituting, adding and removing individual com-
ponents, the system’s behaviour can be changed. This process is called reconfiguration.
Since entire components are replaced, little code needs to be added to the components
to achieve this kind of adaptivity. Instead, it is attained on a level more coarse: the level
of the system architecture.

Still, reconfiguration is a difficult problem, and while many framework support it [5]
the problems often outweigh the utility. One of this problems is the necessity to plan
how reconfiguration should be conducted, which usually requires both anticipation of
possible future problems as well as an algorithm to figure out a reconfiguration plan
that operates on a component configuration that has possibly undergone many recon-
figurations already. The anticipation of future reconfiguration scenarios is a difficult
task. Here, we propose a way to support the planning of reconfiguration by annotating
components with assume-guarantee pairs. Informally, the guarantee describes how a
component will conduct communication over its ports, given that the assumption about
the communication received by its ports holds. In this paper, we introduce a semantics-
based assume-guarantee framework similar to the framework proposed in [2].

54

Fig. 1. Initial System

From such assume-guarantee specifications, a component’s anticipation of possi-
ble employment scenarios can be derived. When designing a system, by connecting a
component to other components, the composition can be checked against the guaran-
tees provided by the communication partners, and possible mismatches can be detected.
Checking composability in such a way has a long tradition (e.g., [1]). Furthermore, the
intended behaviour of the entire application can be specified by assume-guarantee pairs,
where the assumptions address the physical environment, and the guarantees the out-
put produced. Again, the compatibility of a component configuration to such global
specifications can be checked, and invalid application designs can be detected.

However, an invalid application configuration can still be useful under certain con-
ditions. Identifying these assumptions and monitoring their validity allow to restrict the
execution of the generally invalid application to valid situations at runtime. If the as-
sumptions are about to get invalidated in a system run, it is still possible to execute a
reconfiguration to a system that will show the desired behaviour in the new environ-
ment. The role of monitors is hence to allow to deploy system configurations needing
assumptions that are not satisfied in the general case, and trigger reconfigurations as
these assumptions get falsified.

3 Example Scenario: Adaptive Advertising

In order to illustrate our approach, we use a simple adaptive advertising scenario. The
general idea of adaptive advertising is to adapt the displayed ad to the current situation
in front of it – whether there are several people just passing by, a small group of persons
watching the ad carefully, or just one person in front of it waiting for someone else.
The system uses cameras to observe the passers-by, and by this enables the ad to react
to e.g. the number of passers-by watching the advertisement, to discover their interest
in the advertisement by analysing their gaze direction and exposure time, or to enable
gesture-based interactions with a passer-by becoming interested in the ad.

A simple scenario within the vast ranges of possibilities the adaptive advertising
setting offers is an adaptive car advertisement, in which the displayed car reacts to the
position of users in front of the display: By moving around the display, a selected user
controls the orientation of the car.

55

Fig. 2. System with Reconfiguration

The contract to be satisfied by this system consists of two guarantees: (G1) Being an
interactive ad, the system should react to a user in front of the display. (G2) The content
displayed must change at least every ten seconds: an advertising campaign using a large-
scale display should not waste its capabilities by showing static content.

A first realisation of the system consists of four components (cf. Fig. 1): a camera
component for image acquisition, a position detection component detecting the posi-
tion of persons in front of the display, a control component selecting the person to be
given control over the car movements and how his position should be related to the
car’s rotation, and finally a rendering component displaying content. This simple re-
alisation is problematic, however. It cannot provide the guarantee that the displayed
content changes every ten seconds, as the car movement depends on the control of a
person in front of the display. Using a simple assume-guarantee calculus, we can show
that the system is incomplete although it provides part of the desired functionality.

By introducing a monitor observing whether someone is in front of the display, the
system can be made aware that it is about the violate its contract. Then, a reconfiguration
can be triggered which alters the system such that it shows a constantly revolving car
(cf. Fig. 2). In more formal terms, introducing a monitor allows to assume that the
environment exhibits certain features (e.g. always have someone in front of the display)
that it does not exhibit in the general case. Note that the second system (Fig. 2, right)
also needs monitoring, as it again does not satisfy G1: The second system does provide
interactive content to its viewers, and therefore must be changed as soon as a person is
in front of the display.

In the following section, we introduce a formal framework allowing to check the
properties described informally above, and show how it can be proven that the overall
system satisfies the global contracts G1 and G2.

4 Assume-Guarantee Specifications

We annotate every component in our adaptive system by a pair of assertions (A,G).
The assertion A formulates a property the component assumes from its environment

56

whereas G is the guarantee it provides to the environment given that A is satisfied. In
this way every component can be proven to be correct with respect to their assume-
guarantee specification.

We introduce a simple assume-guarantee framework which is formulated on the
semantic domain in terms of runs over a given signature. A signatureΣ consists of a set
of provided and required ports, denoted by portsprv (Σ) and portsreq(Σ) respectively.
We assume the notion of a subsignature Σ ⊆ Σ′ and the supremum of two signatures
Σ supΣ′; both notions are defined in the obvious way. A Σ-run is an abstract structure
representing one possible behaviour of the system. One possibility – among others – to
refine the notion of runs is to see them as capturing reception and sending of messages
on ports (given by Σ) over (discrete or continuous) time.

Assumptions, guarantees as well as implementations of components are considered
to be assertions. Given a signature Σ, a Σ-assertion E (also denoted by E : Σ) is
identified with a set of Σ-runs. We assume that every Σ-assertion E can be lifted to a
Σ′-assertion E ↑Σ′

for Σ ⊆ Σ′. Moreover, we define the composition of assertions by
E1 : Σ1 + E2 : Σ2 := E1 ↑Σ ∩ E2 ↑Σ for Σ = Σ1 sup Σ2. From now on, signatures
and liftings are omitted where they are not essential.

Assume-guarantee pairs are formulated as pairs of assertions (A : ΣA, G : ΣG).
Satisfaction is defined simply by inclusion of runs – more precisely, every run in M
which is in A (i.e. satisfies A) must be in G.

Definition 1. Let M : Σ be an implementation, and A : ΣA, G : ΣG two assertions.
M satisfies (A : ΣA, G : ΣG), denoted by M |= (A,G), if and only if ΣA, ΣG ⊆ Σ
and M ∩A ⊆ G.

Parallel composition of implementations preserves this satisfaction relation.

Lemma 1. Let M1 : Σ1, M2 : Σ2 be two implementations, and let portsprv (Σ1) ∩
portsprv (Σ2) = ∅ and portsreq(Σ1) ∩ portsreq(Σ2) = ∅. If M1 |= (A1, G1) and
M2 |= (A2, G2) and A is an assertion for which it holds A∩G1 ⊆ A2, A∩G2 ⊆ A1,
and A ⊆ A1 ∪A2 holds, then M1 +M2 |= (A,G1 ∩G2).

When building component systems we want to check whether the resulting spec-
ification satisfies a global system specification. Therefore we introduce a refinement
relation which allows assumptions to be weakened and guarantees to be strengthened.

Definition 2. (A,G) refines (A′, G′), denoted by (A,G) � (A′, G′), if A′ ⊆ A and
G ⊆ G′.

A major requirement for refinement relations is its compatibility with the satisfaction
relation for implementations, i.e. whenever an implementation satisfies a refined con-
tract, it satisfies the original contract.

Lemma 2. If M |= (A,G) and (A,G) � (A′, G′) then M |= (A′, G′).

A global system specification (Asys, Gsys) can then be verified in the following way.
Assume that the composed system M1 + . . . + Mn satisfies (A,G), then in order to
show that it also satisfies the global system specification (Asys, Gsys) it suffices to show
(A,G) � (Asys, Gsys).

57

In order to verify dynamic, reconfigurable systems, we must define the notions of
a composable system that is configured at each moment by connectors. From now on,
we consider more concrete runs of the form ρ : R+

0 → S with S a domain for states of
runs.

Definition 3. A set of implementations M1, . . . ,Mn is called composable iff Σi ∩ Σj
is the empty signature for all i 6= j. A configuration of M1, . . . ,Mn is a set of runs
C over Σ ∪ Con(Σ), ρ : R+

0 → P(Σ ∪ Con(Σ)), where Σ = supni=1Σi is the
supremum over all signatures, and Con(Σ) = portsreq(Σ) × portsprov (Σ) is the set
of all connectors. A configuration is valid iff for all ρ ∈ C. (r, p) ∈ ρ(i) implies that
r, p ∈ ρ(i) or r, p 6∈ ρ(i). 1 The composition under C, (M1 + . . .+Mn)|C is the set
C ∩ (M1 + . . .+Mn) ↑Σ∪Con(Σ).

Lifting M1 + . . .+Mn to Σ ∪Con(Σ) means the set of all runs in which each state of
a run ρ ∈M1 + . . .+Mn was extended with each subset of connectors Con(Σ).

A composable system is therefore a set of implementations that do not share any
ports a priori, hence allowing a configuration to define the port connections through its
runs (note that we consider only valid configurations in the following). Then, a com-
position under configuration is the set of runs that are compatible with the connections
defined by a run in the configuration.

Example 1. We give a very small example for a composable system and a configuration
in the following. Let portsreq(Σ1) = {a}, portsprv (Σ1) = ∅ and portsprv (Σ2) =
{b}, portsreq(Σ2) = ∅ be two signatures. Let M1 = {ρ1, ρ

′
1} : Σ1 and M2 = {ρ2} :

Σ2 be properties such that

ρ1(i) =
{
{a} if 0 ≤ i ≤ 2
∅ otherwise. ρ2(i) =

{
{b} if 1 ≤ i ≤ 3
∅ otherwise.

ρ′1(i) = ∅ for all i.

As the signatures of M1 and M2 are disjoint, M1 and M2 are composable. Let hence C
be a configuration of M1 and M2 containing all ρc for which it holds that (a, b) ∈ ρc(i)
for 2 ≤ i ≤ 3. Then, the composition M = {ρ} = (M1 +M2)|C consists of the single
run ρ such that

ρ(i) =

{a} if 0 ≤ i < 1
{a, b, (a, b)} if 1 ≤ i ≤ 2
{b} if 2 < i ≤ 3
∅ otherwise.

ρ is the composition of the runs ρ1 with ρ2 under one ρc ∈ C. Note that ρ′1 is not part
of the composed system, as there is no run in M2 to which it is compatible.

Note that Lemma 1 is still valid for composition under configuration, as the set of
implementations is further constrained. It is also possible to take the configuration runs
into the guarantee, as can be seen easily.

1 In a more general setting we would require that the r and p are equal in value. Here however,
we only consider predicates.

58

We now apply the described approach to our example scenario of Sect. 3. First, we
must refine the general assume-guarantee framework to a real-time LTL logic given as
follows.

Definition 4. The set of RT-LTL-formulae is inductively defined by the grammar

A ::= true | p | p1 ∼ p2 | ¬A | A ∨A | 2tA

with ports p, p1, p2 ∈ Σ. Let ρ : R+
0 → P(Σ ∪ Con(Σ)) be a valid run over Σ and

Con(Σ). Then ρ |= A iff for all i ∈ R+
0 . ρ, i |= A. The satisfaction relation |= between

pairs ρ, i and RT-LTL-formulae A is defined as follows.

1. ρ, i |= true.
2. ρ, i |= p iff p ∈ ρ(i).
3. ρ, i |= p1 ∼ p2 iff (p1, p2) ∈ ρ(i).
4. ρ, i |= ¬A iff ρ, i 6|= A.
5. ρ, i |= A ∨B iff ρ, i |= A or ρ, i |= B.
6. ρ, i |= 2tA iff ∀i ≤ j ≤ i+ t. ρ, j |= A.

In the following, we use 2A as abbreviation for 2∞A. 3tA andA⇒ B are defined
as usual. Note that 2A is equivalent to A.

Example 2. The system contract that must be shown for the system is the tuple

(GI, (2310CI) ∧ (20.5PT ⇒ 31R)).

Here, GI is “the camera produces a good image”, CI “the image shown on the display
changed”, PT is “there is a person in front of the ad”, and R stays for “the system
responded to the person in front of the ad”. Following Lemma 2, we must show that the
contract guaranteed by the composition, (A,G), is a refinement of the system contract
(Asys, Gsys). For the sake of brevity, we will focus on discussing the system guarantee
2310CI . In the example, the guarantee G of the composition (cf. Fig 2) can be shown
to guarantee the following five properties, where C1 is a shorthand notation for a con-
junction of connection constraints defining “the system is in configuration 1” (cf. Fig.
2, left), and C2 denotes similarly “the system is in configuration 2” (cf. Fig. 2, right).

1. C1 ⇒ PT ⇒ CI

2. C2 ⇒ CI

3. C1 ⇒ (23¬PT)⇒ (33.7C2)
4. C2 ⇒ (20.5PT)⇒ (30.7C1)
5. C1 ∨ C2

Note that property 3 and 4 express changes in configurations: property 3 expresses
that the first configuration (reacting to viewers) will be reconfigured in 3.7 seconds
to the second configuration (showing animated content) if the scene in front of the
display stays empty for three seconds. This property can be derived from the guarantee
of Monitor 1 together with the connection properties of configuration one. Similarly,

59

property 4 expresses that the system will be changed within 0.7 seconds if a person is
seen in front of the display for at least 0.5 seconds. Note that obviously, property 3 to 5
are derived from the behaviour of monitors and the specification of the configuration.

Properties 1 and 2 on the other side describe the behaviour of the system under each
configuration: in configuration 1 (reacting to viewers), the displayed image changes if a
person is in front of it. In configuration 2 (showing animated content), the image always
changes.

With the help of a small realtime-LTL calculus, then, we can to show that these five
properties imply 2310CI , which is one step in showing the refinement G ⊆ Gsys. Al-
together, it can be shown that the composition under the given reconfiguration refines
the global contract. Hence, by switching between two initially insufficient configura-
tions, the system is indeed showing the desired global behaviour.

5 Conclusion

Building pervasive user-centric applications brings several challenges, as they are op-
erating in highly dynamic and uncertain environments. In this paper, we took a closer
look in how this challenge can be taken by using a simple assume-guarantee-framework.
The assume-guarantee approach allows to make assumptions of a configuration about
the environment explicit. By monitoring these assumptions, it is possible to deploy an
application that does not satisfy its contract in the general case, but only under given
assumptions. As soon as these assumptions are violated, the system is reconfigured, so
that the new configuration satisfies the contract under the now given assumptions.

An interesting future work is the introduction of probabilistic assume-guarantee
contracts, as presented in [2]. Pervasive user-centric applications interface with the
real world through sensors and actuators, which may be unreliable in and exhibit not
only non-deterministic, but also probabilistic behaviour. With a probabilistic assume-
guarantee framework, it would be possible to model this uncertain behaviour of the
environment, and reason about the performance of pervasive user-centric applications
in these environments.

References
1. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In 8th European software

engineering conference (ESEC ’01), pages 109–120. ACM Press, 2001.
2. B. Delahaye and B. Caillaud. A Model for Probabilistic Reasoning on Assume/Guarantee

Contracts. ArXiv e-prints, November 2008.
3. Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst., 5(4):596–619, 1983.
4. K. Lau and Z. Wang. Software component models. IEEE Transactions on Software Engineer-

ing, 33(10):709–724, 2007.
5. M. Sadjadi and P. McKinley. A survey of adaptive middleware. Technical Report MSU-CSE-

03-35, Computer Science and Engineering, Michigan State University, 2003.
6. Andreas Schroeder, Marjolein van der Zwaag, and Moritz Hammer. A Middleware Architec-

ture for Human-Centred Pervasive Adaptive Applications. In 2nd Int. Conf. on Self-Adaptive
and Self-Organizing Systems (PerAda ’08), volume 0, pages 138–143, Los Alamitos, CA,
USA, 2008. IEEE Computer Society.

60

Passage retrieval and intellectual property

in legal texts

Santiago Correa, Davide Buscaldi, Paolo Rosso
Natural Language Engineering Lab., EliRF Research Group
Dept. Sistemas Informáticos y Computación
Universidad Politécnica de Valencia, Spain
{scorrea, dbuscaldi, prosso}@dsic.upv.es, http://users.dsic.upv.es/grupos/nle

Alfonso Rios
Maat Knowledge, Spain
arios@mat-g.com, http://www.maat-g.com/

 Question Answering (QA) can be viewed as a particular form of Information Retrieval (IR),
in which the amount of information to return is the minimum required to satisfy the user needs
expressed by a specific question such as: "Where is the Europol Drugs Unit?”1. A Passage
Retrieval (PR) system is an IR system which, given a list of keywords (e.g.: "Electricity,"
"Motor", etc..) or a question such as the previous one, returns fragments of texts (passages) that
are relevant to the user needs.
 The Cross-Language Evaluation Forum2 (CLEF), organises competitions for the
assessment of multilingual information retrieval systems. In CLEF-2009 edition, due to the
growing interest in natural language processing of legal texts from both the university and the
business sector, tracks such as ResPubliQA3 and IP4 have been organised. We have participated
in both tracks in the framework of the collaboration between the Natural Language Engineering
Lab. of the Universidad Politécnica de Valencia (UPV) and the Maat Knowledge enterprise. In
order to address both tracks on QA in legal texts and on Intellectual Property (IP) of patent
retrieval, we have used the JIRS (JAVA Information Retrieval System) search engine, a freely
available5 PR system which has been developed at the UPV [1]. The results have been sent to
the tracks organisers and will be presented at CLEF-2009 along with the ones of the other
teams that have participated in the two tracks.
 In the following sections we describe the main concepts of the JIRS system and how it has
been applied to the ResPubliQA and IP tracks of CLEF-2009.

1. Passage retrieval system JIRS

 Most of nowadays passage retrieval systems are not oriented to the specific question
answering problem, because they only take into account the keywords of the question in order

1 Question from ResPubliQA@CLEF-2009
2 www.clef-campaign.org/
3 http://celct.isti.cnr.it/ResPubliQA/
4 http://www.ir-facility.org/the_irf/clef-ip09-track
5 http://sourceforge.net/projects/jirs/

61

2 Santiago Correa, Davide Buscaldi, Paolo Rosso, Alfonso Rios

to obtain the relevant passages. JIRS is a PR system based on n-grams (an n-gram is a sequence
of n adjacent words extracted from a sentence or a question.) JIRS is based on the premise that
in a large collection of documents, an n-gram associated with a question must be found in this
collection at least once. The PR system has the ability to find structures of questions in a large
collection of documents quickly and efficiently through the use of different n-grams models.
JIRS searches for all possible n-grams of the question in the collection and it quantifies them in
relation to the n-grams quantity and weight that appear in these passages. For example, let us
suppose that we have a database of publications of a newspaper. Using the JIRS system we aim
at finding in the document of the collection an answer to a question such as “Who is the
president of Colombia?”. For instance, the system could retrieve the following two passages:
"... Álvaro Uribe is the president of Colombia ...” and “...Giorgio Napolitano is the president of
Italy...”. Of course, the first passage should be given more importance because it contains the
5-gram “is the president of Colombia”, whereas the second passage contains only the 4-gram
“is the president of”. In order to calculate the n-gram weight of each passage, first of all we
need to identify the most relevant n-gram and assign to it a weight equal to the sum of the
weights of all its terms. The weight of each term is set to:

�� = 1 −
��� (��)

����� (�)
 (1)

 Where nk is the number of passages in which the term appears and � is the total number of
passages. A more detailed description of the system JIRS can be found in [1].

2. Passage retrieval for question answering

 ResPubliQA@CLEF-2009 competition address the problem of question answering in legal
texts. Given a pool of 500 independent natural language questions, each system must return the
passage (not the exact answer) which answers each question from the JRC-Acquis6 collection
of EU documentation where both questions and documents are translated and aligned for a
subset of languages.
 In order to use the JIRS system in this QA track, we had to analyse and transform the
documents of the collection for indexing them in the JIRS search engine. The collection of the
competition is made of documents in XML format, each one divided into paragraphs delimited
by the tag <p>. Therefore, each paragraph has been defined as a document, tagged with the
name of the document where it is contained and the paragraph number that corresponds to it.
Once all the documents have been extracted from the collection, they have been indexed in
JIRS according to the language that has been analysed. Once obtained the database indexed by
JIRS, we had searched for the answer to each question of the track (see example in the previous
page). For each question, the system has returned a list with the most likely documents where
an answer to the question was found, according to the way JIRS works. In an additional
experiment, we made use of the parallel collection provided for the competition by obtaining a
list of answers in different languages (Spanish, English, Italian and French), choosing as best
answer the one better ranked by JIRS and then translating all of them to a single language. A
detailed description of how the system JIRS has been used in this QA track can be found in [2].

6 http://langtech.jrc.it/JRC-Acquis.html

62

Passage retrieval and intellectual property in legal texts 3

3. Passages retrieval for intellectual property

 The CLEF IP track is coordinated by Information Retrieval Facility7 (IRF) and
Matrixware8. Its aim is to investigate IR techniques for patent retrieval in order to search for
the prior art of a patent on a certain topic in order to determine whether or not a certain degree
of plagiarism of ideas occurred. The track provided a collection of more than 1M patent
documents, mainly derived from European Patent Office sources, in three languages: English
French and German. Queries and relevance judgements have been produced manually by
Intellectual Property experts (using a set of queries given by themselves) and automatically,
using patent citations from seed patents.
 The set of 500 patents in xml format contained information that was not useful. Therefore,
the first step has been to eliminate this type of information. In addition, patents have a
identification number which makes them unique, although it is possible to find different
versions of a unique patent. Therefore, we had to eliminate this kind of repeated information.
Last, we had to remove stop words from the documents. At the end of this pre-process, we
obtained a smaller size collection, which could be indexed by the JIRS search engine. To ask
JIRS for the related patents, we had to build the related words sequence to each patent,
considering from each of the 500 patents its title and its relevant terms obtained after a
summarization technique [3]. For each patent, the information of the title and its relevant terms
was concatenated and given to JIRS as a words sequence.
 A detailed description of how the system JIRS has been used in the task can be found in [4].

Acknowledgement

The work of the first author has been possible thanks to a scholarship funded by Maat
Knowledge in the context of the project with the Universidad Politécnica de Valencia Módulo

de servicios semánticos de la plataforma G. We also thanks the TEXT-ENTERPRISE 2.0
TIN2009-13391-C04-03 research project.

References

1. Buscaldi D., Rosso P., Gómez J.M., Sanchis E. Answering Questions with an n-gram based Passage

Retrieval Engine. Journal of Intelligent Information Systems (82), 2009 (in press).

2. Correa S., Buscaldi D., Rosso P. NLEL-MAAT at CLEF-ResPubliQA. Proc. 10th Int. Cross-Language
Evaluation Forum CLEF-2009 working notes (to be published in September 2009).

3. Hassan S., Mihalcea R., Banea C., Random-Walk TermWeighting for Improved Text Classification.
IEEE International Conference on Semantic Computing, ICSC-2007, 2007.

4. Correa S., Buscaldi D., Rosso P. NLEL-MAAT at CLEF-IP at CLEF-ResPubliQA. Proc. 10th Int.
Cross-Language Evaluation Forum, CLEF-2009 working notes (to be published in September 2009)

7 http://www.ir-facility.org/the_irf/
8 http://www.matrixware.com/

63

