
An Embedded Language Approach

to Teaching Hardware Compilation

Koen Claessen1 and Gordon J. Pace2

1 Chalmers University of Technology, Gothenburg, Sweden (koen@cs.chalmers.se)
2 Vérimag Laboratory, Grenoble, France (Gordon.Pace@imag.fr)

Abstract. This paper describes a course in hardware description and
synthesis (hardware compilation), taught as an introductory graduate
course at Chalmers University of Technology, and as an advanced under-
graduate course at the University of Malta. The functional programming
language Haskell was used both to describe circuits and circuit synthesis
schemes.

1 Introduction

There are two essentially different ways of describing hardware. One way is struc-

tural description, where the designer indicates what components should be used
and how they should be connected. Designing hardware at the structural level
can be rather tedious and time consuming. Sometimes, one affords to exchange
speed or size of a circuit for the ability to design a circuit by describing its be-
haviour at a higher level of abstraction which can then be automatically compiled

down to structural hardware. This way of describing circuits is usually called syn-

thesisable behavioural description. Examples of behavioural languages that can
be synthesised are Esterel [1], Occam [7], SAFL [8], and even the traditional
hardware design languages such as Verilog and VHDL include a behavioural
description language.
Teaching hardware synthesis techniques to students can be quite problematic.

As in teaching compilation techniques, one has to choose between one of two
avenues: either plough through the theory and techniques, hoping the students
are sufficiently mature and motivated to explore the ideas, and risking that a
number of fine points of the synthesis procedures are lost since the students
would have no means of trying variations (and see why they do not work so
well), or implement a simple synthesis tool as the course goes on which allows
students to experiment with alternative solutions, add new constructs, etc. The
latter is obviously desirable, but leads to a lot of lecture time dedicated to going
through the implementation, and a lot of student time to understand the fine
points in the implementation to be able to change, and enrich it.
However, using Haskell to write our compiler, together with Lava [3] to de-

scribe (and be able to simulate and verify) hardware, we found that the resulting
code was short, easily understandable and compositional. Some of the features
found in most modern functional programming languages (in particular pattern

matching and higher-order functions) enabled us to teach the course using a real
implementation, while at the same time not wasting much time on the actual
implementation itself.
Functional programming has already been established as a useful teaching

aid for teaching structural hardware design and structural synchronous hardware
simulation [3, 6, 10, 9]. When performing structural hardware design, it can be
tedious to build up components by reducing the problem structurally into a num-
ber of smaller problems. The main advantage gained when having a hardware
design language as part of a programming language is that the programming
language can be used as a meta-language for generating large, ‘regular’ circuits.
This process is also called structural synthesis.
Standard hardware description languages usually have a limited meta-language

used to build circuits (eg for...generate in VHDL), but such meta-languages
tend to be very limited (eg for...generate can only generate linear lists of com-
ponents). The main difference with embedded hardware description languages
is that in principle any circuit can be generated, and parameters to circuit de-
scriptions can be of any complexity.
What is most important in courses that teach hardware synthesis techniques

is to get across how code is compiled – different techniques for optimisation and
other compilation issues. The need to go down to low-level HDL code now be-
comes unnecessary – in fact it is more of a hindrance than a help. We thus found
this to be an ideal topic to use a functional structural hardware description lan-
guage to teach. Small behavioural languages can be embedded in the functional
language and synthesis procedures can be described as generic circuits which are
parameterised by behavioural programs! Thanks to high-level features of mod-
ern functional programming languages, description of compilation procedures
are short and very comprehensible, perfect to get the concepts behind synthesis
across.

2 Course Description

A one week intensive course, consisting of approximately 20 hours (including
practical sessions) was given at Chalmers University of Technology. The course
was primarily aimed at PhD students and advanced undergraduates. The struc-
ture of the course was: two, two hour long taught sessions per day, followed by
aided practicals, where the students had to solve a number of set problems. The
course attracted approximately 15–20 students. The course was also given at
the University of Malta, in a reduced form, mainly aimed at advanced under-
graduates, and without the practical sessions, where it attracted approximately
15 students. It was assumed that students had a strong foundation in computer
science. The course could be seen as being split into five main parts:

Synchronous circuits: The course started with a brief introduction as to what
synchronous ciruits are. It was assumed that the students would have seen
most of this before, so it was possible to swiftly cover topics ranging from

transistor circuits, gate level design, finite state machine implementation and
arithmetic circuits.

Verilog: Up to this point, circuits were represented in graphical form. An
overview of Verilog was given to show how circuits can be represented (struc-
turally) in textual form, and behavioural specifications may be written for
test purposes. This part finished with a first glimpse of synthesis: how cer-
tain behavioural descriptions may be converted into finite state machines
and then converted into circuits, via a few simple examples.

Lava: This is where functional programming kicked in. Lava[3] is a structural
hardware description language embedded in Haskell and was used to give a
metalanguage to design complex hardware systems.

Hardware Synthesis: This was the main culmination of the course. A sim-
ple imperative style language was embedded in Haskell and we proceeded
to write a compiler which produces Lava circuits from these programs au-
tomatically. More complex features were added to the language, and some
issues of optimising the circuits were discussed.

Combining Languages: The ease by which different languages can be com-
piled into hardware leads to the natural question — Can one have a frame-
work in which different parts of the circuits can be written in different lan-
guages in a straightforward, yet safe manner? This session closed the course
by presenting our then ongoing research into this problem [4].

Everyday, the students had to solve a number of problems in circuit design.
The problems depended on the topic covered during the day, but one of the
tasks, to design a hardware stack, was repeated for each of the different de-
sign techniques presented, so that students could compare the advantages, and
drawbacks of each approach.

3 Lava

Lava is a structural hardware description language embedded in the functional
language Haskell [2]. The embedding is implemented as a hardware description
library that consists of two parts. The first part of the library provides a number
of primitive functions that can be used to build circuits. Examples of these are
logical gates (and2, or2, xor2, etc.), registers and other state holding elements
(in this paper, we will use the implicitly clocked delay element), and circuit
combinators (serial and parallel composition, row and column).
Here is an example of a simple circuit that uses one xor gate and one delay

element to implement a toggle. The delay element is initialised with the value
low, and after that, at every point in time, produces the input from the previous
point in time as output.

toggle :: Signal Bool -> Signal Bool

toggle inp = out

where out’ = delay low out

out = xor2 (inp, out’)

The second part of the Lava library provides functions that can process circuit
descriptions. Examples of these are circuit simulation (where the circuit is run on
provided inputs), generation of VHDL code (where we use symbolic simulation to
get a concrete representation of the circuit), and generation of input to circuit
verification tools and theorem provers (again, we use symbolic simulation for
this).
Here is an example of how we can use Haskell as a meta-language to describe

the structure of a family of circuits. The following Lava code produces a tree
structure to compute the disjunction of n-inputs (n > 0) with only depth log(n)
combinational depth (the number of gates in the longest path between inputs
and outputs) of 2-input disjunction gates:

orTree :: [Signal Bool] -> Signal Bool

orTree [input] = input

orTree inputs = or2 (orTree firstHalf, orTree secondHalf)

where (firstHalf, secondHalf) = splitAt (length inputs ‘div‘ 2) inputs

However, more abstract features of modern functional programming languages
make this approach even more powerful. The following example shows how the
binary tree structure used in the previous example can be generalised to work
for any 2-input, 1-output circuit thanks to higher order functions:

tree :: ((a,a) -> a) -> [a] -> a

tree circ [input] = input

tree circ inputs = circ (tree circ firstHalf, tree circ secondHalf)

where (firstHalf, secondHalf) = splitAt (length inputs ‘div‘ 2) inputs

Now, orTree simply becomes an instance of this generic circuit generator, namely
tree or2. This is but one instance of circuit combinators, of which one may build
a sufficient library to be able to elegantly describe complex circuits (see e.g. [5]).
Note that in the process, the circuit combinator has become polymorphic in its
input type, which means it can be used for many more purposes than just on
bits.

4 Teaching Hardware Compilation

To illustrate hardware compilation concepts, we chose to take a small imperative
language (with parallel composition) and to show how it can be compiled into
hardware. The language, we called MiniFlash borrows much from hardware
synthesis languages such as Esterel [1], Handel [11] and, synthesisable Verilog
and VHDL. We start by embedding MiniFlash syntax as an abstract datatype
in Haskell.

data MiniFlash = Skip

| Delay

| Emit

| MiniFlash :>> MiniFlash -- sequential composition

| IfThenElse (Signal Bool) (MiniFlash, MiniFlash)

| While (Signal Bool) MiniFlash

| MiniFlash :|| MiniFlash -- fork ... join

The language has been kept purposefully simple. A program can only output
one boolean signal. This is low unless at least one of the running parallel pro-
grams performs an Emit instruction during the current clock cycle. This kind
of ‘absent unless specified’ approach has been used by Esterel. Skip and Emit

do not take up clock cycles to execute, Delay blocks the program for one clock
cycle. Sequential composition, conditionals and loops behave as usual, while the
parallel composition has a fork-join semantics — both programs are started at
the same time, and the block terminates when both branches have terminated.
With this basic embedding we can construct a number of program construc-

tors to ease specification:

forever p = While high p

wait s = While (inv s) Delay

The first question is what kind of circuit we shall obtain
by compiling such a program. Since, unlike a MiniFlash

program, a circuit has no notion of starting and finishing,
we need to add this as information to the circuit produced.
We will have an input wire which is set to high when we
want to start a program, and an output wire which will be
set to high when the program terminates. We also have to
tell the environment what value is output by the program,
resulting in a circuit with the shape adjacent.

finish

start

emit

type Circuit = Signal Bool -> (Signal Bool, Signal Bool)

The compilation task would thus be a function of type:

compile :: MiniFlash -> Circuit

The compiler can be specified as a recursive function using pattern matching to
separate the different operators. As an example of a base case, compiling Delay
is straightforward — it takes one whole cycle to terminate, and always outputs
low:

compile Delay start = (emit, finish)

where finish = delay low start -- we finish after one clock cycle

emit = low -- no output

As an example of a recursive compilation step, the case for the conditional in-
struction looks as follows:

compile (IfThenElse cond (prog1, prog2)) start = (emit, finish)

where (emit1, finish1) = compile prog1 start1

(emit2, finish2) = compile prog2 start2

start1 = and2 (start, cond)

start2 = and2 (start, inv cond)

emit = or2 (emit1, emit2)

finish = or2 (finish1, finish2)

Both branches are computed by preparing the corresponding start wires, and
calculating the circuits recursively. We emit if one of the branches emits, and we
finish when one of the branches finishes. This is correct since we know that only
one branch is running at the same time. The Lava code to compile the rest of
the language is given in appendix A.
Once the compiler is implemented, one can easily test it out using the simu-

lation facilities in Lava, or by exporting to VHDL and using more sophisticated
simulators.

risingEdge s = forever (wait (inv s) :>> wait s :>> Emit)

risingEdgeCircuit s = emit

where start = delay high low

(emit, finish) = compile (risingEdge s) start

Lava> simulateCon risingEdgeCircuit [high, low, high, high]

[low, low, high, low]

Using this approach, the students found it easy to follow not just the circuit
diagram, but also its implementation. The implementation allowed them to ex-
periment by simulating programs, to understand obscure parts of the compilation
and explore alternative definitions and the implementation of other constructs.
We feel that this led to a better appreciation of the issues involved behind hard-
ware synthesis.

5 Processing Compiled Programs

One of the benefits we get from using an embedded language is that after this
compilation definition we can immediately simulate and verify programs. Here
is an example of a simple Flash program. Note how we can use Haskell function
declarations for describing procedures, i.e. this program can be used as a sub-
program anywhere else.

unordered (a,b) = compile ((wait a :|| wait b) :>> emit) start0

where start0 = delay high low

We can immediately simulate the circuit on inputs:

Lava> simulate unordered [(low,high),(low,low),(high,high)]

[(low,low),(low,low),(low,high)]

Also, we can define a property of the compiled program:

property (a,b) = emit <==> finish

where (emit, finish) = unordered (a, b)

And check that it always holds using external model-checkers from within the
Lava environment:

Lava> verify property

Proving: ... Valid.

A similar approach of specifying properties can be used to specify properties
about the compilation process, to for example check that parallel composition is
commutative.

6 Exercises

Exercises given in a new course serve, not only to judge the students, but also to
judge how successful the course was in conveying ideas across to the students.
At the end of every day of lectures, the students were required to solve a num-

ber of hardware design problems. A recurring exercise was that of constructing
a circuit implementing a stack, and supporting three operations: push, pop and
top.
At the end of the first day, the stack was to be designed using block diagrams,

and was thus, for simplicity a 4-place, 1-bit stack. Students were encouraged to
find a compositional design to simplify the design. At the end of the second day,
the stack was to be implemented in Verilog and tested on a simulator. Students
were also asked to explore what changes would need to be made to have a bigger
stack size, or wider data path. Finally, after the Lava lectures, the students were
to reimplement the stack in Lava, and generalise be able to store other datatypes,
and parametrise the stack description by its depth. The main motivation was
to show how useful it can be to be able to generically describe hardware. The
advanced students also had to verify a number of properties about their stack
implementation. At first, the main problem faced by the students was that of
finding a modular design to their implementation. However, by the end of the
week, we found students were improving on their original design, making it more
modular, and amenable to verification (for the students who were also doing the
verification exercises).
As for the synthesis exercises, we gave two problems to solve. Students who

were not sufficiently familiar with Haskell before the course, were to design (us-
ing pen and paper) a compilation scheme for MiniFlash augmented with an
exception mechanism.

data MiniFlash = ... | Throw | Catch MiniFlash

All managed to come up with a satisfactory solution, and we were also pleased
to note that a number of them also attempted, and succeeded, in implementing
their solution in Lava. We feel that this indicates that the choice of enriching the
course with an actual implementation of synthesis written in Lava was a good
choice.
Students familiar with Haskell were asked to implement assignment variables

in the language. The exercise was split into three parts: implementing one as-
signment variable (assignment statements taking one clock cycle to perform),
multiple assignment variables, and finally, for the most adventurous, add assign-
ment statements which take ‘no time’ to perform.

data MiniFlash = ...

| Declare (Variable -> Miniflash)

| Variable := Signal Bool

| Read Variable (Signal Bool -> MiniFlash)

Again, all students solved the problem, although only two tried and managed to
(partially) solve the last exercise. Since it was meant to be a very hard challenge,
we were pleased that two students actually managed to find a partial solution.

7 Experience and Conclusions

We feel that we managed to teach quite advanced concepts in both hardware
compilation and functional programming to students who had no background in
hardware design or in functional programming!
From a hardware point of view, the embedded functional language approach

gave us a quick and easy way to describe compilation processes precisely and get
an ‘implementation for free’. The resulting descriptions were easy to understand
and easily extended by the students.
From a functional programming point of view, we managed to convincingly

show that embedded languages are a good idea. Also, we quite naturally in-
troduced concepts such as polymorphism and higher-order functions, which are
both motivated by the desire for an economical description of the hardware
design or compilation process.

References

1. Gérard Berry. The Esterel primer. Available from http://www.esterel.org, 2000.
2. K. Claessen and D. Sands. Observable sharing for functional circuit description.

In Asian Computing Science Conference, Phuket, Thailand, 1999. ACM Sigplan.
3. K. Claessen and M. Sheeran. A tutorial on Lava: A hardware description and ver-

ification system. Available from http://www.cs.chalmers.se/˜koen/Lava, 2000.
4. Koen Claessen and Gordon Pace. An embedded language framework for hardware

compilation. In DCC’02, ETAPS, Grenoble, France, 2002.
5. Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification of

a sorter core. In CHARME. Springer, 2001.
6. Byron Cook, John Launchbury, and John Matthews. Specifying superscalar mi-

croprocessors in Hawk. In Formal Techniques for Hardware and Hardware-like

Systems. Marstrand, Sweden, 1998.
7. David May. Compiling Occam into silicon. In C. A. R. Hoare, editor, Develop-

ments in Concurrency and Communication, University of Texas at Austin Year of
Programming Series, chapter 3, pages 87–106. Addison-Wesley, 1990.

8. Alan Mycroft and Richard Sharp. A statically allocated parallel functional lan-
guage. In Automata, Languages and Programming, pages 37–48, 2000.

9. J. O’Donnell. Generating netlists from executable circuit specifications in a pure
functional language. In Functional Programming Glasgow, Springer-Verlag Work-
shops in Computing, pages 178–194, 1993.

10. J. O’Donnell. From transistors to computer architecture: Teaching functional cir-
cuit specification in Hydra. In Functional Programming Languagues in Education,
volume 1125 of Lecture Notes In Computer Science, pages 221–234. Springer Ver-
lag, 1996.

11. Ian Page. Constructing hardware-software systems from a single description. Jour-

nal of VLSI Signal Processing, 12(1):87–107, 1996.
12. Ian Page and Wayne Luk. Compiling Occam into field-programmable gate arrays.

In Wayne Luk and Will Moore, editors, FPGAs, pages 271–283. Abingdon EE&CS
books, 1991.

13. Niklaus Wirth. Hardware compilation: Translating programs into circuits. Com-

puter, 31(6):25–31, 1998.

A Compiling MiniFlash

The purpose of this appendix is to give a complete definition of the compilation of
MiniFlash. Although the examples given in the paper should suffice to convey
the idea behind how hardware compilation was presented in the course of the
lectures, this section completes the missing definitions there.
Programs in MiniFlash are represented as object of type MiniFlash.

data MiniFlash =

Skip

| Delay

| Emit

| MiniFlash :>> MiniFlash -- sequential composition

| IfThenElse (Signal Bool) (MiniFlash, MiniFlash)

| While (Signal Bool) MiniFlash

| MiniFlash :|| MiniFlash -- fork ... join

Upon compilation, we will produce a circuit, which takes an input signal
(which triggers off the program), and produces two output signals – the output
of the program, and a signal indicating whether the program has just terminated.

type Circuit = Signal Bool -> (Signal Bool, Signal Bool)

The compilation task is thus a function of type:

compile :: MiniFlash -> Circuit

The compiler can be easily written using pattern matching over the datatype
MiniFlash.
Compiling Skip and Emit is straightforward:

compile Skip start = (emit, finish)

where

finish = start -- we finish as soon as we start

emit = low -- we never push the output high

compile Emit start = (emit, finish)

where

finish = start -- we finish as soon as we start

emit = start -- we push the output high when started

start

finish

low emit

start

finish

emit low

start

finish

emit

P

Q

start

finish

emit

Skip Emit Delay Sequential composition

emit

Q

P

start

finish

cond

finish

Synchroniser

P

Q

emit

start

emit

start

finish

P

cond

Conditional Parallel composition While loops

Fig. 1. Compiling MiniFlash

Compiling Delay is identical to Skip, except that the instruction takes one
whole cycle to terminate:

compile Delay start = (emit, finish)

where

finish = delay low start -- we finish one clock cycle after the start

emit = low -- we never push the output high

The compilation shemata of the compound constructs, can be best under-
stood by studying the circuit diagrams in figure 1. The Haskell/Lava code is a
direct translation of the figures.
Consider sequential composition:

flash (prog1 :>> prog2) start = (emit, finish)

where

(emit1, middle) = compile prog1 start

(emit2, finish) = compile prog2 middle

emit = or2(emit1, emit2)

The case for the conditional instruction looks as follows:

compile (IfThenElse cond (prog1, prog2)) start = (emit, finish)

where

(emit1, finish1) = compile prog1 start1

(emit2, finish2) = compile prog2 start2

start1 = and2 (start, cond)

start2 = and2 (start, inv cond)

emit = or2 (emit1, emit2)

finish = or2 (finish1, finish2)

Both branches are computed by preparing the corresponding start wires, and
calculating the circuits recursively. We emit if one of the branches emits, and we
finish when one of the branches finishes. This is correct since we know that only
one branch is running at the same time.
The case for the while loop is one of the more interesting cases, due to the

feedback loop passing the finish wire of the subcircuit back to the start wire (via
a disjunction gate).

compile (While cond prog) start = (emit, finish)

where

(emit, finish’) = compile prog start’

restart = or2 (start, finish’)

start’ = and2 (restart, cond)

finish = and2 (restart, inv cond)

We might (re)start the body of the while loop, if the whole loop is started
or if the body has just finished. In that case, depending on the condition, we
restart the body or we finish. Note that we have created a loop since finish’
depends on start’ depends on restart depends on finish’. In fact, the circuit
will only work correctly if the subprogram takes time to execute.
Parallel composition is another interesting case. At face value, it is similar

to the conditional statement except that (i) we start both branches at once, and
(ii) the program finishes as soon as both subprograms have terminated.

compile (prog1 :|| prog2) start = (emit, finish)

where

(emit1, finish1) = compile prog1 start

(emit2, finish2) = compile prog2 start

emit = or2 (emit1, emit2)

finish = synchroniser (finish1, finish2)

We start both processes as soon as the parallel composition is started. We
emit when one of the processes emits. But when do we finish? We use a little
circuit, called synchroniser, which keeps track of both processes, and generates
a high on the finish signal exactly when both processes have finished.

synchroniser (finish1, finish2) = finish

where

both = and2 (finish1, finish2)

one = xor2 (finish1, finish2)

wait = delay low (xor2 (one, wait))

finish = or2 (both, and2 (wait, one))

The wire both is high when both processes are finishing at the same time.
The wire one is high when exactly one process is finishing. The wire wait is high
when one process has finished but not the other.
Various paper can be found in the literature with an in depth study of the

compilation of high-level imperative-style languages. See eg [12, 13, 1].

