
A Framework for the Generation of Computer System Diagnostics in
Natural Language using Finite State Methods

Rachel Farrell
Dept Computer Science

University of Malta
rachelannefarrell@gmail.com

Gordon Pace
Dept Computer Science

University of Malta
gordon.pace@um.edu.mt

Michael Rosner
Dept Intelligent Computer Systems

University of Malta
mike.rosner@um.edu.mt

Abstract
Understanding what has led to a failure is
crucial for addressing problems with com-
puter systems. We present a meta-NLG
system that can be configured to gener-
ate natural explanations from error trace
data originating in an external computa-
tional system. Distinguishing features are
the generic nature of the system, and the
underlying finite-state technology. Results
of a two-pronged evaluation dealing with
naturalness and ease of use are described.

1 Introduction
As computer systems grow in size and complexity,
so does the need for their verification. Whilst sys-
tem diagnostics produced by automated program
analysis techniques are understandable to devel-
opers, they may be largely opaque to less tech-
nical domain experts typically involved in script-
ing parts of the system, using domain-specific lan-
guages (Hudak, 1996) or controlled natural lan-
guages (CNLs) (Kuhn, 2014). Such individuals
require higher level, less technical explanations of
certain classes of program misbehaviour.

The problem boils down to an NLG challenge,
starting from the trace (representing a history of
the system) and yielding a narrative of the be-
haviour at an effective level of abstraction. The
choice of an appropriate level of abstraction is par-
ticularly challenging since it is very dependent on
the specification being matched or verified.

Pace and Rosner (Pace and Rosner, 2014),
showed how a finite-state (FS) system can be used
to generate effective natural language descriptions
of behavioural traces. Starting from a particular
property, they show how more natural and abstract
explanations can be extracted from a system trace
violating that property. However, the approach is
manual and thus not very feasible for a quality as-
surance engineer. We show how their approach
can be generalised to explain violations of general
specifications. Since the explanation needs to be
tailored for each particular property, we develop a
general system, fitting as part of a verification flow
as shown in Fig. 1. Typically, a quality assurance
engineer is responsible for the top part of the dia-
gram — giving a property specification which will
be used by an analysis tool (testing, runtime verifi-
cation, static analysis, etc) to try to identify viola-
tion traces. With our approach, another artefact

Figure 1: The architecture for general system di-
agnostics

is required, the explanation specification, which
embodies the domain-specific natural language in-
formation for the property in question. From this,
a generic NLG tool produces a specialised gen-
eration tool (embodying the domain-specific in-
formation and general information implicit in the
traces) which can produce explanations for viola-
tions of that property. Our techniques have been
implemented in a generic NLG tool, for which we
show that the cost of adding user explanations for a
property at an appropriate level of abstraction and
naturalness is very low especially when compared
to the cost of extending the system to identify such
behaviours (e.g. developing test oracles or ex-
pressing a property using a formal language). The
main novelty has been to develop a framework for
generalising the approach developed earlier. We
also further substantiate the claim that there is a
place for FS methods in NLG.

2 Trace Explanation Styles

For explanations we adopted a CNL approach.
The target language comprises (i) domain-specific
terms and notions particular to the property being
violated by the traces; and (ii) terms specific to the
notions inherent to traces — such as the notions
of events (as occurrences at points in time) and
temporal sequentiality (the trace contains events
ordered as they occurred over time). Following
Pace and Rosner, we identify a sequence of
progressively more sophisticated explanations of
a particular violation trace. To illustrate this, con-
sider an elevator system which upon receiving a
request for the lift from a particular floor (<r1>–
<r4>), services that floor by moving up or down
(<u>, <d>). Once the lift arrives at a particular
floor (<a1>–<a4>), the doors open (<o>). The

doors can then either close (<c>) automatically,
or after a floor request. Monitoring the prop-
erty that the lift should not move with an open
door, we will illustrate explanations with differ-
ent degrees of sophistication of the violation trace:
<a4,o,r4,a4,r2,c,d,a3,d,a2,o,r3,u>.

The simplest explanation is achieved in CNL0,
where every symbol is transformed into a separate
sentence, with an additional sentence at the end
giving the reason why a violation occurred.

CNL0
The lift arrived at floor 4. The doors opened. A
user requested to go to floor 4. The lift arrived at
floor 4. A user requested to go to floor 2. The doors
closed. The lift moved down. The lift arrived at
floor 3. The lift moved down. The lift arrived at
floor 2. The doors opened. A user requested to go
to floor 3. The lift moved up. However this last
action should not have been allowed because the
lift cannot move with open doors.

In CNL1, the text is split into paragraphs con-
sisting of sequences of sentence:

CNL1
1. The lift arrived at floor 4.
2. The doors opened. A user requested to go to

floor 4. The lift arrived at floor 4.
3. A user requested to go to floor 2. The doors

closed. The lift moved down. The lift arrived
at floor 3. The lift moved down. The lift
arrived at floor 2.

4. The doors opened. A user requested to go to
floor 3. The lift moved up. However this last
action should not have been allowed because
the lift cannot move with open doors.

In CNL2, aggregation (Dalianis, 1999) tech-
niques combine the single clause sentences from
the previous two realisations to build multi-clause
sentences, thus eliminating redundancy achieved
through (i) the use of commas and words such as
‘and’, ‘then’, ‘but’ or ‘yet’, and (ii) the grouping of
similar events, for example by stating the number
of occurrences (e.g. ‘moved down two floors’).

CNL2
1. The lift arrived at floor 4.
2. The doors opened and a user requested to go

to floor 4, yet the lift was already at floor 4.
3. A user requested to go to floor 2, then the

doors closed. The lift moved down two
floors and arrived at floor 2.

4. The doors opened, a user requested to go to
floor 3, and the lift moved up. However this
last action should not have been allowed be-
cause the lift cannot move with open doors.

Since the explanation contains detail which may
be unnecessary or can be expressed more con-
cisely, CNL3 uses summarisation — for instance,
the first sentence in the explanation below sum-
marises the contents of what were previously para-
graphs 1–3. The last paragraph is left unchanged,
since every sentence included there is required to
properly understand the cause of the error.

CNL3
1. The lift arrived at floor 4, serviced floor 4,

then serviced floor 2.
2. The doors opened, a user requested to go to

floor 3, and the lift moved up. However this
last action should not have been allowed be-
cause the lift cannot move with open doors.

For Pace and Rosner the explanation language
is a CNL, whose basis, described in the Xerox
Finite State Toolkit (XFST) (Beesley and Kart-
tunen, 2003) by a human author, states how sys-
tem trace actions should be expressed. The natu-
ral language explanation is obtained by composing
FS transducers in a pipeline. FS technologies are
best-known for the representation of certain kinds
of linguistic knowledge, most notably morphol-
ogy (Wintner, 2008). In contrast, we used XFST
to implement linguistic techniques such as struc-
turing the text into paragraphs, aggregation, con-
textuality — as previously illustrated.

3 Generalised Explanations

Given a particular property, one can design a NLG
tool capable of explaining its violation traces.
Some of the explanation improvements presented
in the previous section are common to most prop-
erties. We thus chose to address the more gen-
eral problem of trace violation explanations, such
that, although domain-specific concepts (e.g. the
meaning of individual events and ways of sum-
marising them) need to be specified, much of the
underlying machinery pertaining to the implied se-
mantics of the event traces (e.g. the fact that a
trace is a temporally ordered sequence of events,
and that the events are independent of each other)
will be derived automatically. The resulting ap-
proach, as shown in Fig. 1, in which we focus
on the Generic NLG component uses the domain-
specific information about a particular property
(the Explanation Specification script provided by
a QA engineer) to produce an explanation genera-
tor for a whole class of traces (all those violating
that property). A specification language was cre-
ated to facilitate the creation of a specification by
non-specialist users. A script in the general trace-
explanation language is used to automatically con-
struct a specific explanation generator in XFST,
going beyond a NLG system by developing a gen-
erator of trace explanation generators.

4 Specifying Trace Explanations

Scripts for our framework allow the user to spec-
ify the domain-specific parts of the explanations
for a particular property, leaving other generic
language features to be deduced automatically.
The core features of the scripting language are:
Explaining events: Rather than give a com-
plete sentence for each event represented by a
symbol, we split the information into the subject
and predicate, enabling us to derive automatically
when sequential actions share a subject (thus
allowing their combination in a more readable
form). For example, the EXPLAIN section of the
script is used to supply such event definitions:

EXPLAIN {
<a4>: {

subject: "the lift";
predicate: "arrived at level four";

}
...
}

Events in context: Certain events may be better
explained in a different way in a different context.
For instance, the event a4 would typically be de-
scribed as ‘The lift arrived at floor four’, except for
when the lift is already on the fourth floor, when
one may say that ‘The lift remained at floor four’.
Regular expressions can be used to check the part
of the trace that precedes or follows a particular
event to check for context:
<a4>: {

subject: "the lift";
predicate {

context: {
default: "arrived at level four";
<r4>_ : "remained at floor four";

}
}

}

Compound explanations: Sometimes, groups of
symbols would be better explained together rather
than separately. Using regular expressions, the
EXPLAIN section of the script allows for such
terms to be explained more succinctly:
<r2><c><d><a3><d><a2>: {

subject: "the lift";
predicate: "serviced floor 2";

}

Errors and blame: Errors in a violation trace typ-
ically are the final event in the trace. We allow not
only for the description of the symbol in this con-
text, but also an explanation of what went wrong
and, if relevant, where the responsibility lies:
ERROR_EXPLAIN {

[<u>|<d>]: {
blame: "due to a lift controller malfunction";
error_reason:

context: {
default: "";
[<o>[<r1>|<r2>|<r3>|<r4>]]_:

"the lift cannot move with open doors";
}

}
}

Document structure: A way is needed to know
how to structure the document by stating how sen-
tences should be formed and structured into para-
graphs. Using CNL1 as an example, we can add
a newline after the lift arrives at a floor. Similarly,
based on the example for CNL2, we specify that
the event sequence <o><r4><4> should be ag-
gregated into a (enumerated) paragraph:
SENTENCE_AGGREGATION{

[<1>|<2>|<3>|<4>]: { newline: after; }
<o><r4><4>;

}

5 Evaluation
Two aspects of our approach were evaluated: (i)
How much effort is required to achieve an accept-
able degree of naturalness, and (ii) How difficult it
is for first time users to write specifications.

5.1 Effort In-Naturalness Out
Since, using our framework a degree of natural-
ness can be achieved depending on the complexity
of the logic encoded in our script, unsatisfactory
explanations may be caused by limitations of our
approach or just a badly written script. The frame-
work was first evaluated to assess how effort put
into writing the script for a particular property cor-
relates with naturalness of the explanations.

To measure this, we considered properties for
an elevator controller, a file system and a coffee
vending machine. We then built a series of scripts,
starting with a basic one and progressively adding
more complex features. For each property, we
thus had a sequence of scripts of increasing com-
plexity, where the time taken to develop each was
known. These scripts were then executed in our
framework on a number of traces, producing a cor-
pus of natural language explanations each with the
corresponding trace and associated script develop-
ment time. The sentences together with the cor-
responding trace (but not the script or time taken
to develop it) were then presented using an online
questionnaire to human judges who were asked to
assess the naturalness, readability and understand-
ability of the generated explanations.

Explanations were rated on a scale from 1–61.
Evaluators were presented with a fraction of the
generated explanations, shown in a random order,
to prevent them from making note of certain pat-
terns, which might have incurred a bias. Over 477
responses from around 64 different people.

The results of this analysis can be found in Ta-
ble 1, which shows the scores given to explana-
tions for the different systems and for traces pro-
duced by the scripts with different complexity.
The results show that the naturalness of the gen-
erated explanations was proportional to the time
taken to write the scripts — the best-faring expla-
nations having a high rate of aggregation and sum-
marisation. Interestingly, even with scripts written
quickly e.g. 15–20 minutes2 many evaluators still
found the explanations satisfactory.

Figure 2 shows the results of plotting time taken
to write the script (x-axis) against naturalness of
the explanation (y-axis). For the coffee machine
and elevator controller traces, the graphs begin to
stabilise after a relatively short time, converging
to a limit 80% of which is roughly achieved dur-
ing the first 20–30% of the total time taken to cre-
ate the most comprehensive script we wrote. The
graph for the file system traces gives a somewhat
different view; a higher overall score is obtained,
yet we do not get the same initial gradient steep-
ness3. A reason for the discrepancy in the graph
shape could be that traces obtained for this system
contained many repeated symbols in succession,
hence until a script handled this repetition, the ex-
planations received low scores. This shows that
there may exist a relation between the kind of sys-
tem being considered and the effort and linguistic
techniques required to generate natural sounding
explanations for its traces.

1From 1–6: unnatural and difficult to follow, unnatural but
somewhat easy to follow, unnatural but very easy to follow,
contains some natural elements, fairly natural, very natural
and easy to follow.

2Recall that one script can be used to explain any counter-
example trace for that property, and would thus be repeatedly
and extensively used during system verification or analysis.

3It is worth noting that, for example, the first data point
in all graphs occurs at the time after which similar linguistic
techniques were included in the script.

Table 1: Overall scores given to generated explanations

System Time Score
/mins 1 2 3 4 5 6 Mean Mode Median

10 1 8 10 9 2 10 3.83 3,6 4
Elevator 16 2 4 4 9 15 9 4.35 5 5
system 24 1 2 2 4 15 6 4.6 5 5

39 1 0 3 8 8 11 4.77 6 5
12 5 7 11 3 3 1 2.83 3 3

File 19 5 8 7 7 8 7 3.62 2,5 4
system 22 2 5 13 5 6 3 3.5 3 3

32 0 2 4 5 14 18 4.98 6 5

Coffee
ma-
chine

10 3 4 4 12 5 8 4 4 4
15 3 6 4 8 14 4 3.92 5 4
25 1 3 5 3 9 8 4.38 5 5
28 1 1 3 10 10 11 4.67 6 5
38 2 1 2 4 18 17 4.95 5 5

We can thus conclude that whilst a certain inher-
ent limit exists, natural-sounding explanations can
be well achieved using this system. Effort however
is rather important, and usually, the more time in-
vested in building a script, the better the quality
of the output. Nevertheless, even with minimal ef-
fort, a script author highly familiar with the input
language can obtain a rather satisfactory output.

5.2 User Acceptance Test
To assess the framework’s accessibility, we ran a
four-hour experiment with four new users familiar
with concepts such as regular expressions. They
were requested to produce scripts to explain dif-
ferent properties unaided and were then asked to
rate the ease of use and expressivity of the input
language, their satisfaction with the output gener-
ated, and whether it matched their expectations.
Given the low number of participants, the results
are only indicative, and assessing the quality of the
scripts they produced would not have given statis-
tically meaningful results.

Overall, these users characterised the script-
ing language between somewhat difficult to easy
to use. Dealing with contextual explanation of
events presented the greatest challenges, although
all managed to produce an error explanation which
required using this concept. Apart from simply ex-
plaining every symbol as a complete sentence, the
users also managed to create scripts involving ag-
gregation and summarisation. The users expressed
satisfaction with the explanations produced, al-
though one of the subjects commented that scripts
sometimes had to be executed to understand ex-
actly the effect of a particular line of code.

The fact that all users managed to produce suc-
cessful scripts within four hours indicates that it
is not excessively difficult to use. That the over-
all idea was easily understood and the input lan-
guage quickly learnt suggests that this kind of sys-
tem could minimise the overheads associated with
the task of automated explanation generation for
systems more complex than those illustrated here.

6 Related Work
BabyTalk BT-45 (Reiter et al., 2008) generates
textual summaries of low-level clinical data from

a Neonatal Intensive Care Unit. Summaries are
created for different audiences, such as doctors
and nurses, to help them in making treatment
decisions. Generated summaries were found to
be useful, but lacking in narrative structure com-
pared to those created by humans. Further inves-
tigation is needed to determine where the trade-
offs lie between acceptable explanations, underly-
ing data complexity, and computational efficiency.
Power (Power, 2012) describes OWL-Simplified
English, a CNL for non-specialists used to edit
semantic web ontologies in OWL, notably em-
ploying FS techniques for the definition of a user-
oriented communication language. See also (Gal-
ley et al., 2001) whose NLG system combines
FS) grammars with corpus-based language mod-
els. These works are limited to producing gener-
ators for any trace, rather than creating a higher-
order framework which is used to write scripts
which produce the generators.

7 Conclusions
Understanding why a violation occurred has many
benefits for end-users of verification techniques
and can save time when designing complex sys-
tems. The solution presented has the advantage of
not being difficult to use by people with a com-
puter science background, and can generate natu-
ral, easily understandable explanations despite in-
herent limitations of FS technologies. Should the
constraints of regular languages prove to be such
that this system would not be applicable in many
areas, there is the possibility of not using FS tech-
niques without any major changes in the frame-
work’s general architecture. Another possibility
would be examining how the techniques discussed
could be applied to provide dynamic explanations
of online systems.

Figure 2: Graphs of the naturalness score given against the time after which the corresponding input
script was created

References
Kenneth R Beesley and Lauri Karttunen. 2003. Finite-

state morphology, volume 3 of Studies in computa-
tional linguistics. CSLI Publications.

Hercules Dalianis. 1999. Aggregation in naltural
language generation. Computational Intelligence,
15(04).

Michel Galley, Eric Fosler-lussier, and Ros Potami-
anos. 2001. Hybrid natural language generation
for spoken dialogue systems. In In Proceedings of
the 7th European Conference on Speech Communi-
cation and Technology, pages 1735–1738.

Paul Hudak. 1996. Building domain-specific embed-
ded languages. ACM Computing Surveys, 28:196.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguis-
tics, 40(1):121–170, March.

Gordon J. Pace and Michael Rosner. 2014. Explain-
ing violation traces with finite state natural language
generation models. In Brian Davis, Kaarel Kalju-
rand, and Tobias Kuhn, editors, Controlled Natu-
ral Language, volume 8625 of Lecture Notes in
Computer Science, pages 179–189. Springer Inter-
national Publishing.

Richard Power. 2012. Owl simplified english: A
finite-state language for ontology editing. In To-
bias Kuhn and Norbert E. Fuchs, editors, Controlled
Natural Language, volume 7427 of Lecture Notes
in Computer Science, pages 44–60. Springer Berlin
Heidelberg.

Ehud Reiter, Albert Gatt, François Portet, and Marian
van der Meulen. 2008. The importance of narra-
tive and other lessons from an evaluation of an nlg
system that summarises clinical data. In Proceed-
ings of the Fifth International Natural Language
Generation Conference, INLG ’08, pages 147–156,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Shuly Wintner. 2008. Strengths and weaknesses of
finite-state technology: a case study in morphologi-
cal grammar development. Natural Language Engi-
neering, 14(04):457–469.

