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ABSTRACT
Number entry systems in medical devices such as infusion
pumps are used to input drug doses that will be administered
to patients. They are safety critical since if the drug dose is
too high or too low, this may cause harm to patients.

Previous work shows that number entry systems with the
same hardware layout can have software that is implemented
in different ways. This means that devices with the same
hardware layout may lead to different results after the same
keystrokes are pressed. Previous work also shows that choos-
ing the best software implementation over the worst can re-
duce the likelihood of human error eight-fold in directional
number entry systems.

Determining whether a software implementation abides by the
requirements is a time consuming task for regulatory bodies
and hospital procurement departments. In this paper we show
how software testing techniques can be used to classify various
software implementations in order to determine whether the
given number entry system satisfies specifications.
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INTRODUCTION
As computer systems become increasingly pervasive, their
regulation, especially in the context of safety critical software
becomes increasingly important. For instance, in the domain
of medical devices, regulatory bodies such as the US Food and
Drug Administration (FDA) publish standards for approval of
device use in medical contexts.

Narrowing our focus to number entry systems, such as those
used to input drug doses on infusion pumps, one finds that
standardising number entry systems to make the ones that
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look the same (in hardware) behave the same, is important to
prevent human errors that can lead to harm. From a regula-
tory perspective however, this is not an easy task. Existing
standards such as ISO 62366 [1] are a requirement for med-
ical device approval by the FDA [12] but this standard does
not mention safety critical number entry systems design, and
furthermore, does not go into any detail of how number entry
systems should be implemented.

The US FDA’s 510k process [12] currently only requires sub-
mission of documentation about the device and does not re-
quire submission of the physical device for inspection. From
a human-computer interaction perspective, this makes it dif-
ficult to spot some obvious interaction issues that might be
unsafe. Checking details manually, such as how the number
entry system is implemented can lengthen the approval pro-
cess significantly leaving manufacturers unable to put their
device on the market sooner and introducing new challenges
to the market.

Given that there are several ways how number entry systems
can be implemented (in software) depending on what choices
are made, the challenge in such contexts goes beyond that of
correctness, breaching the frontier into human-error resilience.
Cauchi et al. [2] show that choosing the best over the worst
design improves out by 10 error rates by a factor of eight. It
is important to select the best implementation over the worst,
however enforcing a standardised implementation for safety
critical uses would be labour intensive if done manually.

Regulatory and procurement processes would thus frequently
want to classify a new machine in order to be able to assess its
expected resilience to human-error, in procurement supporting
the choice of one machine from another, and in the case of
regulations, potentially triggering the need of further proce-
dural safety measures that might need to be enforced. Since
different entities might adopt different classes depending on
intended use, expecting devices to be documented for all such
possible classes by the manufacturer is not realistic.

In this work we address the problem of devices which look
physically identical or similar, but react differently to identical
user interaction patterns. By providing a means of classify-
ing such systems based on their behaviour, we can enforce
standard software interaction design, or at least use such in-
formation to select devices implementing interaction patterns
which are known to be safer for a particular context.



Testing is the most well established approach used to validate
the correctness of a computer system against a specification.
Effectively, a test suite can be seen as a means of classifying
systems into two partitions — those that satisfy the specifica-
tion, and those that do not. However, the partitions defined
by testing need not be these. Furthermore, the use of mul-
tiple properties can be used to provide a more fine grained
partitioning of possible systems.

In this paper, we exploit this view of testing and adopt an
unorthodox use of testing in order to enable the classification
of systems with respect to arbitrary classifications. We apply
this approach on directional number entry systems classifying
them into categories as identified by previous studies such as
[5]. We show how, using standard testing techniques, we can
take an executable model of a medical device and categorise
it automatically in an empirical manner. This approach can
be used to support a more informed choice amongst devices,
even when they lack detailed documentation and information
indicating whether or not they fall under these categories.

RELATED WORK
Oladimeji et al. [11] carried out a lab study to find out which
number entry interfaces (different hardware layouts) are more
resilient to human error and the findings from that study
showed that the directional number entry systems, that we talk
about in this paper, perform best in this regard. In previous
work by Cauchi et al. [3], different properties for directional
number entry systems were identified and the Stochastic Key
Slip Simulation method was introduced in order to find out
which combination of properties for directional number entry
systems makes the design more resilient to human error. The
Stochastic Key Slip Simulation method was run with data that
was collected through an empirical study in [5] in order to
make it more accurate and suitable for the medical domain.
Given that these studies give indication as to what properties
directional number entry systems should have, the work we
present in this paper provides a method by which we can clas-
sify different designs into the different properties in order to
find out whether they obey the properties that they should.

The US FDA, the regulatory body for approving medical de-
vices for market in the US, have been exploring the use of
model based approaches for evaluating properties about medi-
cal device safety [13]. Work by Zhang et al. [13] is focused
towards creating a generic model of an infusion pump with
the aim of making it available to manufacturers for use when
developing infusion pumps. This work is still in the research
phase and using these model based approaches is not manda-
tory for approval of medical devices. The drawback of Zhang
et al.’s approach is that this restricts the freedom of manufactur-
ers in what they can create in their pumps, making competition
between manufacturers more difficult since all infusion pump
code should be generated using the same model. In our ap-
proach of using testing to classify user interfaces, models of
different pumps can vary but safety critical aspects can be
classified in order to ensure that they meet regulations.

Harrison et al. [7] and Masci et al. [10] use formal methods,
namely model checking and theorem proving in order to verify
interaction design properties about infusion pumps. Both these

Key Press Zimed AD BBraun Infusomat Space
0 0

J 00 00
N 10 10
N 20 20
N 30 30
N 40 40
N 50 50
J 050 050
H 950 000.1

Figure 2. A key sequence being input into Zimed AD and BBraun Infu-
somat Space from the same key sequence. This table shows the change
in displays after pressing the key in the “Key Press” column. In the first
row there is no key press to show the starting displays of the two devices.

approaches either require the code of the infusion pump or the
deduction of the system models through reverse engineering.
Because of Intellectual Property rights, it is difficult to obtain
source code of infusion pumps, therefore it is very difficult to
automatically model the system and verify that safe interaction
design properties hold within it. Since our method employs a
black box approach to testing and classification, an execution
model of the infusion pumps is sufficient to be able to classify
different designs.

NUMBER ENTRY USING DIRECTIONAL PADS
One use of directional pads is for entering numbers in devices.
A directional number entry interface consists of a display that
shows the current value and a cursor that highlights the digit
that is currently selected. The N and H buttons change the high-
lighted digit and the J and I buttons move the cursor between
digits. An OK button confirms the input number. A typical
directional number entry interface can be seen in Figure 1.

Although the hardware of directional number entry systems is
fixed, there are interaction design decisions to be taken when
implementing the behaviour of the buttons through software.
These decisions are important and choosing a good design
over a bad design can reduce the likelihood of human error
eight-fold [2].

This work was motivated by an observation of entering the
dose of 950 mL into two infusion pumps that are currently on
the market, the BBraun Infusomat Space and the Zimed AD.
Both infusion pumps use a directional number entry system.
From a display showing 0 on both devices (where the
underline indicates the digit that is highlighted by the cursor),
pressing the plausible key sequence J N N N N N J H on
the BBraun Infusomat Space and Zimed AD simultaneously
resulted in the Zimed AD display showing 950 at the end
of the key sequence and the BBraun Infusomat Space showing
000.1 . This behaviour is illustrated in Figure 2 that shows

how the displays of both devices change when each of the
keys are pressed.

Starting from 0 on both devices, both devices work in the
same way until the final key press of H. This is where the two
number entry systems are implemented to do different things
that result in the different values. There is a significant differ-



Figure 1. A directional number entry interface with a cursor highlighting a digit. In this system, N and H buttons manipulate the highlighted digit, J I
buttons move the cursor between digits, and the OK button confirms the number.

ence in results between the two devices since these devices are
safety critical, this difference could be harmful, or even fatal.

The problem is larger than directional number pad software
implementations working differently between different de-
vices by different manufactures. The directional number pad
implementation of the device is implemented in the device
firmware and the manufacturers upgrade firmware. Analysing
the directional pad number entry system of different firmware
versions of one of the commercial infusion pumps, resulted
that the firmware upgrade changed the directional pad number
entry system implementation. This results in devices that look
identical and work differently. In a hospital, since devices
are in use by patients, the device upgrade process is gradual.
It happens that devices that look identical, work differently
because of the firmware version installed. Nurses are over-
worked, and hospital wards are very busy [9], having different
implementations of directional number entry systems can lead
to unnecessary incidents that can be fatal.

These differences between software implementations of di-
rectional number pads comes down to the various interaction
design decisions that are taken when developing the software.
Taking the case of number entry systems using directional
pads, interaction design decisions can be classified by the
following example features:

• Cursor edge cases — When the cursor is at a display edge
(leftmost or rightmost position), what happens when going
beyond that edge? For instance, a machine with display
size ∆ is said to use cursor wraparound if starting from a
non-error state (i) pressing the left or right button will
always leave the machine in a non-error state; (ii) if the
cursor is at position p, pressing right will move the cursor
to position (p+1) mod ∆; and (iii) if the cursor is at
position p, pressing left will move the cursor to position
(p−1) mod ∆.

• Digit limits — When reaching the minimum or maximum
number for a particular digit (0 or 9) what happens when
attempting to go beyond it? For instance, a machine is said
to use digit wraparound if starting from a non-error state (i)
pressing up or down will always leave the machine in a
non-error state; (ii) if the digit under the cursor is d, then
pressing up will change it to (d +1) mod 10; (iii) if the
digit under the cursor is d, then pressing down will change
it to (d −1) mod 10; and (iv) digits not under the cursor

will remain unchanged upon pressing the up or down
button.

• Arithmetic behaviour — Another option for what
happens upon attempting to go above 9 or below 0 for a
particular digit, is to have the machine considering the
whole display as a number and performing an increment or
decrement upon pressing the up or down button. For
example, if the display shows 0 9 and N is pressed, the
display will now show 1 0 . In this case, one still has
distinct design options as to how the machine will function
when there is overflow or underflow on the whole display.
In practice, logical options possible are: (i) putting the
machine in an error mode; (ii) setting the display to zero;
(iii) setting the display to a string of 9s (the maximum it
can display); (iv) nothing happens when trying to go below
zero or above the maximum value; (v) the machine
performs arithmetic modulo 10∆ (recall that ∆ is the size of
the display).

TESTING FOR CLASSIFICATION
In order to classify arbitrary 5-key machine implementations,
we have built a test suite, with a set of tests for each class of
machines such as the ones identified in Section 3. Although,
in practice, the tests cannot be effectively run on the actual
machine, one would be able to run them on a simulation of
the machine — in our case written in Haskell [8]. For a
particular implementation of a machine, we assume that we
have a Haskell type which represents the internal state of
such a machine1. In particular, since the type represents a
5-key machine, we will assume that is an instance of the
FiveButtonMachine Haskell type class which explains how
the machine is initialised, its interaction, and how to access its
output as seen in Listing 1.

Our implementation automatically induces additional func-
tions on such machines such as (i) run which takes a machine
state and a sequence of key presses, returns the state of the ma-
chine after pressing those keys; (ii) @@ which, given a machine
and display position, returns the digit at the given position;
(iii) delta which, given a machine returns a unit value at the

1The state will typically include the output of the machine (display,
cursor and error state) but also any additional memory the machine
may have e.g. a machine may allow the clearing of the error state
through a double press of the ok key, in which case it would have to
internally remember whether the last key pressed was the ok key.



1 class FiveButtonMachine a where
2 initialise :: a
3 getDigitDisplay :: a -> DigitDisplay
4 getCursorPosition :: a -> Position
5 getErrorMode :: a -> Bool
6 up, down, left, right, ok :: a -> a

Listing 1. Five Button Machine

position of the cursor (e.g. if the cursor lies in the third least
significant digit position, the function would return 100).

To test these machines, we will be using the random testing
library QuickCheck [6]. The only remaining requirement on
the machine implementation is a means of generating arbitrary
instances of the machine type (by making it an instance of
the QuickCheck Arbitrary type class). Based on such a
machine implementation, we have implemented tests which
can be run to check whether a given machine implementation
is of a particular type or not.

Consider the class of machines which implement cursor
wraparound, which was characterised as three properties ex-
plaining how, starting from a non-error state, the error state
and cursor position change upon pressing the left and right
button. This can be seen in Listing 2.

The specification defines a QuickCheck property
prop_is_cursor_wraparound, which given a machine
state st, checks that: if st is not in error mode, then (i)
moving left or right will not raise the error flag; (ii) moving
left changes the cursor position modulo the display size;
and (iii) similarly moving right changes the cursor position.
QuickCheck can then be used to test whether the property is
true for arbitrary instances of the machine state (the machine
state st) in the following manner:
Main> quickCheck prop_is_cursor_wraparound
+++ OK, passed 100 tests.

If we run this on a machine that does not change the cursor
position when an attempt is made to go beyond the display
limits, QuickCheck would identify a counter-example, thus
allowing us to deduce that the machine is not in the class of
cursor wraparound ones:
Main> quickCheck prop_is_cursor_wraparound
*** Failed! Falsifiable (after 1 test):
Machine in non-error mode with display <5832[6]>

Similarly, consider the class of digit wraparound machines.
Such machines would have to pass tests corresponding to the
properties identified in Section 3. For instance, the property
that states that provided the machine starts off in a non-error
mode, then pressing up or down will not change a digit if
it does not fall under the cursor would be implemented as
follows — note that in this case, we let QuickCheck quantify
not only on the machine state, but also on the display positions
for which we will check that they have not changed as in
Listing 3.

Finally, consider arithmetic machines — to check that a ma-
chine is in this class includes checking that the test which en-

sures that pressing up works arithmetically as long as it would
not exceed the the maximum displayed by the machine as in
Listing 4. Note that the delta is a function which indicates
the numeric amount to be added or subtracted (arithmetically)
in a particular machine state.

As already discussed, arithmetic machines can be split into
a number of subcases, depending on how they react to over
and underflow. For instance, the subcase of overflow and
underflow being handled modulo 10∆ where ∆ is the size of
the display is given in Listing 5. The first two lines define when
a machine state is in danger of overflow if the up button is
pressed or underflow if the down key is pressed. The property
then specifies that if the machine is not in an error state and
would overflow upon pressing Nor underflow upon pressing H,
then the value afterward pressing that key would work using
arithmetic modulo 10∆.

DISCUSSION AND CONCLUSIONS
In critical systems, differences in software implementations
can cause harm and, in some cases, even deaths[4, 3]. Since
directional number entry systems can have software imple-
mentation with different interpretations of what key presses
perform means that keying in the same key presses from the
starting screen can lead to different results. Moreover, when
medical device firmware is upgraded, some of the critical
number entry design features may change, and nurses in busy
hospital wards are faced with devices that physically look
identical but behave differently when the same buttons are
pressed — this is hazardous. By enabling the procurement of
devices with similar interaction patterns such problems can be
reduced.

Given the large number of interaction-design solutions even
for a simple 5-button device (e.g. Cauchi et al. [2]) shows that
directional number pads can be implemented in 32 different
ways) and choosing the best design over the worst is important
since it reduces the likelihood of human error eight-fold, the
need to be able to classify implementations based on their
behaviour and thus assess their safety is crucial.

In this work we have presented an atypical use of testing —
that of classifying number entry systems. By building a test
suite using Quickcheck to test various software designs on a
simulation of directional number entry systems, it is possible
to identify which of the various features of directional number
entry system the system under analysis has. In the process of
using testing for classification, a regulatory body may provide
a specification of the feature or class of interfaces in the form
of properties which functions should satisfy. QuickCheck then



1 prop_is_cursor_wraparound st =
2 not (getErrorMode st) ==>
3 let st_l = left st
4 st_r = right st
5 in not (getErrorMode st_l) .&&. not (getErrorMode st_r) --(i)
6 .&&. getCursor st_l == (getCursor st - 1) ‘mod‘ displaySize --(ii)
7 .&&. getCursor st_r == (getCursor st + 1) ‘mod‘ displaySize --(iii)

Listing 2. Cursor Wraparound Property

1 prop_is_digit_wraparound_other_digits st p’ =
2 not (getErrorMode st) && p’ /= getCursor st ==>
3 let st_u = up st
4 st_d = down st
5 d = getDigitDisplay st @@ p’
6 in getDigitDisplay st_u @@ p’ == d
7 .&&. getDigitDisplay st_d @@ p’ == d

Listing 3. Digit Wraparound Property

1 prop_is_arithmetic_normal_up st =
2 (not (getErrorMode st) && (n+delta st <= maximumDisplayed))
3 ==> (not (getErrorMode st’) .&&. n’==n+delta st)
4 where
5 n = digitsToValue (getDigitDisplay st)
6 st’ = up st
7 n’ = digitsToValue (getDigitDisplay st’)

Listing 4. Arithmetic Property

1 overflow st = digitsToValue (getDigitDisplay st)+delta st > maximumDisplayed
2 underflow st = digitsToValue (getDigitDisplay st)-delta st < 0
3

4 prop_is_arithmetic_overflow_wraparound st = (
5 not (getErrorMode st) && overflow st ==>
6 digitsToValue (getDigitDisplay (up st)) ==
7 digitsToValue (getDigitDisplay st)+delta st-10^displaySize)
8 ) .&&. (
9 not (getErrorMode st) && underflow st ==>

10 digitsToValue (getDigitDisplay (down st)) ==
11 digitsToValue (getDigitDisplay st)-delta st+10^displaySize
12 )

Listing 5. Arithmetic Property Over/Underflow



tests that the properties hold in a large number of randomly
generated cases.

One advantage of our approach is that it allows automated clas-
sification of black-box systems, without the need of looking
into the implementation or trusting the machine documenta-
tion (if it does indeed document the interaction model). This
ensures generalisability requiring just the specification of the
(software) interface and classification of any other class of
(user) interfaces. On the other hand, the solution still suffers
from the Achilles heel of testing — not being able to discover
counter-examples does not imply their absence. Therefore,
although a machine does not behave according to a particular
feature, a test suite might still fail to show this. In the domain
of 5-button systems, in which the state space of the system is
not that large, this is not such an issue. However, in larger in-
terfaces such issues might arise, in which case better designed
test suites would be required in order to give more faith in the
analysis.

Interestingly, our approach does not distinguish between ma-
chines which were not intended to have a particular feature
from ones which were intended to be, but do not due to a
wrong implementation. Clearly, from a regulatory or safety
perspective, either type of machine should not be acceptable.
During our implementation of sample machines, the test suite
helped us discover instances which were intended to imple-
ment a particular feature but did not, due of bugs.

As an extension of this work, we aim to apply this to a num-
ber of other classes of interface, and see how the approach
can be generalised to product lines (which considers systems
in which features can be composed into products — collec-
tions of which, resulting from the composition of different
features result in product families e.g. the different flavours
of an operating system being a product family. Furthermore,
we intend to apply the testing language Gherkin (a business
readable domain specific language for test specification) to
enable features to be specified by non-technical experts.
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