
Doctoral Symposium: An Embedded DSL Framework for
Distributed Embedded Systems

Adrian Mizzi

Department of Computer Science

University of Malta, Malta

adrian.mizzi.00@um.edu.mt

Joshua Ellul

Department of Computer Science

University of Malta, Malta

joshua.ellul@um.edu.mt

Gordon Pace

Department of Computer Science

University of Malta, Malta

gordon.pace@um.edu.mt

ABSTRACT

Programming distributed embedded systems gives rise to a number

of challenges. �e distributed nodes are typically resource con-

strained, requiring expert systems programming skills to manage

the limited power, communication bandwidth, and memory and

computation constraints. �e challenge of raising the level of ab-

straction of programming such systems without incurring too high

of an execution performance penalty is thus an important one, and

many approaches have been explored in the literature.

�e work presented in this paper investigates a framework and

domain speci�c language (DSL) to enable programming of such

systems at a global network level. �e framework enables the com-

pilation, analysis, transformation and interpretation of high-level

descriptions of stream processing applications in which information

is received and processed in real-time.

�e ongoing research aims at investigating the following direc-

tions. Firstly, a framework to allow the manipulation and multiple

interpretations of a stream processor description to support the

heterogeneity aspect of devices. Secondly, a language to hide the

low-level detail from the developer, while allowing the developer

to add hints to enable more e�cient compilations. �irdly, through

transformations, di�erent stream processing applications can be

fused together to run on the same distributed network to make best

of use of available resources.

CCS CONCEPTS

•Computer systems organization→Embedded systems; •So�ware

and its engineering →Domain speci�c languages;

KEYWORDS

distributed embedded systems; functional programming; embedded

DSL; wireless sensor networks; domain speci�c languages

ACM Reference format:

Adrian Mizzi, Joshua Ellul, and Gordon Pace. 2017. Doctoral Symposium:

An Embedded DSL Framework for Distributed Embedded Systems. In

Proceedings of DEBS ’17, Barcelona, Spain, June 19-23, 2017, 4 pages.

DOI: h�p://dx.doi.org/10.1145/3093742.3093906

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DEBS ’17, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). 978-1-4503-5065-5/17/06. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3093742.3093906

1 INTRODUCTION

Over the past 15 years, there has been a growing trend in embed-

ding sensors and microprocessors in everyday objects so they can

communicate information and interact with their environment [18].

�is domain, now commonly referred to as the Internet of �ings,

has experienced great advances in technology such that reductions

in the cost and size of sensors has made it possible to measure and

sense information at high resolution, opening up a new dimension

of applications. Environmentalists can track seabird populations

and nesting behaviours in remote areas. Volcanologists can easily

deploy hundreds of sensors to detect explosions and volcanic activ-

ity, where information is �ltered at source such that only interesting

information is collected and analysed. Building administrators can

place motion, temperature and light sensors in every room in a

building, to automatically turn o� lights and cooling systems to

optimise on energy consumption.

Applications in this domain are o�en seen as stream processing

applications — a continuous �ow of information is �ltered, aggre-

gated and acted upon in real-time at source. �e amount of data and

the processing involved may be non-trivial and across a distributed

network of heterogeneous resource constrained, unreliable, wire-

less nodes. Developing applications on a network of such devices

is not straightforward and the skills of expert low-level systems

programmers are required to implement solutions. Programmers

require a good understanding of energy consumption, distributed

systems and intra-node communication, a varied range of devices

and the heavy resource constraints imposed when using such de-

vices. Radio should be switched on only when needed, nodes need

to be synchronised to communicate together and debugging these

tiny devices is at times limited to a blinking LED. �e need for

expert low-level systems programming skills is somewhat slowing

down progress and creating a higher barrier to entry. Ideally, we

want to make programming of these devices more accessible to

application programmers.

One way of addressing this di�culty is through the use of a

domain speci�c language (DSL) [15]. By focusing on the domain,

at the expense of general purpose use, DSLs provide a higher level

of abstraction than general purpose programming languages and

are ideal to make it easier to program resource constrained devices

quickly and e�ectively. A DSL can be used with less e�ort and

cost, and even less skills. However, building a DSL may require

signi�cant initial investment to build the right tools for application

development [8]. To overcome this, and reap the bene�ts of a

DSL early on, one commonly used approach is to embed a DSL

within an existing language — creating a domain speci�c embedded

language (DSEL). �is is a powerful concept as the features of the

host language become available to the embedded language, thereby

DEBS ’17, June 19-23, 2017, Barcelona, Spain A. Mizzi et al.

making it possible to use a fully-�edged programming language to

support the domain speci�c notions in the DSL [5].

�is paper outlines ongoing research work to use language em-

bedding techniques to create a framework to describe and auto-

matically generate embedded systems code for stream processor

applications. Haskell is used as the host language as it provides

several features — such as higher order functions, polymorphism

and a strong type system — to support the embedding of the lan-

guage, which we call D’Artagnan, a DSEL to analyse, generate,

transform and interpret stream processor descriptions. �e idea of

using Haskell, or other functional languages, as a host language

is not new. We take inspiration from the work done in hardware

description with Lava [4] and in digital signal processing with

Feldspar [2]. Our approach shares similarities to Flask [14] with

the embedding of our DSL in Haskell to generate code for resource

constrained devices. Our aim is to create a stream processor de-

scription that can (i) have di�erent interpretations — simulated or

translated (compiled) to low-level code; (ii) be analysed for both

functional and non-functional aspects e.g. node placement and (iii)

be optimised through transformations, such as alternative energy

e�cient communication strategies.

2 RESEARCH CHALLENGES

�e research questions that motivate our work are as follows:

RQ1 — High Level Abstraction How high can we raise the

level of abstraction for developing stream processor ap-

plications on distributed embedded systems? What per-

formance penalty, due to automatic code generation, is

incurred as the level of abstraction is increased? Can any

performance penalty be mitigated in some way?

RQ2 — Multiple Interpretations Considering the hetero-

geneity aspect of distributed embedded systems, how can

we generate code for di�erent architectures? Can the

stream processor be also interpreted in a simulation in-

terpretation at the high level of abstraction to observe the

behaviour in a simulated environment and thereby simpli-

fying the test and debug cycle?

RQ3 — Network Sharing �e cost of se�ing up and main-

taining a sensor network is o�en a barrier to deploying

new applications. Existing solutions for sharing a sensor

network focus on providing a run-time system to manage

and switch context between di�erent applications. Can we

use the high level descriptions to identify ways of fusing

together statically at compile time to share the same sensor

network infrastructure?

RQ4 — Compilation Hints How can the language embed-

ding be enhanced to take hints from the programmer that

in�uence how the compiler generates more e�cient code

based on how the application is going to be used in a real

environment? How can the hint model be generalised to

apply to di�erent contexts?

3 BACKGROUND AND RELATEDWORK

A wireless sensor node is comprised of a processing unit, a wireless

communication interface, a number of sensors and/or actuators,

and a limited power source — see Figure 1. A wireless sensor net-

work (WSN) is made up of a number of nodes and can be considered

as a distributed system, although with a number of di�erences to

traditional distributed systems — the nodes and the overall network

are not as reliable, and node failure and unavailability becomes

a normal part of the behaviour of sensor networks. Constrained

resources are an accepted fact in wireless sensor nodes. Limited

processing capability, limited memory, and limited energy are three

important constraints that have in�uenced how programmers im-

plement applications for WSNs. �e typical amount of memory

(RAM) is tens of kilobytes, whereas program memory is typically

up to 256KB. A programmer’s focus is on writing e�cient, tight

code that takes advantage of the underlying architecture. �is

may o�en result in sacri�ces in code structure and readability. Ra-

dio transceivers should be switched on only when needed and for

short periods of time to reduce power consumption and extend

application lifetime. �e same applies to sensors and other exter-

nal peripherals, as well as the microcontroller itself (by utilising

low-power sleep modes). Coupled with limited debugging utilities

it makes programming of such distributed devices a signi�cant

challenge.

Power Unit

Sensors Microcontroller Transceiver

Figure 1: �e structure of a wireless sensor node

Several approaches have been proposed for programming wire-

less sensor nodes. �e approaches can be generally grouped into

two: a low-level platform-centric approach and a high-level application-

centric approach. Low-level, or node-level, programming models

focus on abstracting hardware and allowing �exible control of

nodes. High-level, or network-level, programming models give a

global view of the network and focus on facilitating collaboration

among sensors [19].

Node-Level Programming Low-level programming models

are focused on giving �ne grain control on the behaviour of each

node where components are carefully switched on and o� to op-

timise on energy utilisation. �e level of systems programming

expertise needed for node-level programming is high.

A number of operating systems have emerged in the sensor

network community with TinyOS [12] and Contiki [6] being by far

the most popular operating systems for WSNs.

Maté [10] and ASVM [11] are interpreter-based virtual machines

that run on top of TinyOS. �e main aim of application speci�c

virtual machines is to reduce the amount of data that needs to be

transferred to reprogram the nodes.

Doctoral Symposium: An Embedded DSL Framework for Distributed Embedded Systems DEBS ’17, June 19-23, 2017, Barcelona, Spain

Network-Level Programming�ere are two major approaches

for network-level programming. One approach is a database ab-

straction, where the network is seen as a database from where infor-

mation is gathered. �e other is to provide a macro-programming

language which provides a global view of the network and more

�exibility for a wider variety of applications.

TinyDB [13] and Cougar [20] are two examples of a database

query style approach. �is abstraction allows the user to query the

sensor network in a similar way as one would query a database

using an SQL-like language

Macroprogramming languages provide more �exibility to allow

for a wider range of applications where data may �ow between

one node and another, and processed in network. Typically, a

macroprogram is compiled into di�erent node-level code and then

loaded onto the individual nodes.

Pleiades [9] and Kairos [7] are imperative sequential languages

where the programmer is provided with a centralised view of the

sensor network. COSMOS [1] is made up of a lean operating system

called mOS and an associated programming language called mPL. A

programmer can specify the aggregate system behaviour in terms

of distributed data �ow and processing.

Wavescript [17], Regiment [16] and Flask [14] are macropro-

gramming functional languages. Wavescript is a domain speci�c

language for stream processing applications with focus on asyn-

chronous data streams. Regiment, a Haskell-like language, is de-

signed for spatiotemporal macroprogramming sensor networks

that translates a global program into node-level event-driven code.

Regiment provides constructs for aggregating streams, de�ning

and manipulating regions. Flask is a stream processing DSL em-

bedded in Haskell — it allows a programmer to combine stream

operators from a pre-de�ned and extensible library to de�ne a

stream processing application. A Flask program is compiled into

low-level nesC code, and allows node-level functions to be de�ned

in Red, a (partially) functional language, or directly in nesC using

quasiquoting [3].

4 RESEARCH APPROACH

Our work is focused on creating a macro-programming model using

an embedded domain speci�c language approach that allows us

to generate an internal representation that can be analysed, trans-

formed and interpreted in di�erent ways — both as simulated or

compiled code for di�erent target architectures (See Figure 2). In

contrast with Flask, our focus is on the high-level abstraction fea-

tures, which hide away from the programmer low-level details such

as managing radio, power and communication between devices.

However, we also want to give the ability to the programmer to

provide hints to the compiler, such that the compiled code can be

more e�cient based on the programmer’s knowledge.

Firstly, we create and embed in Haskell a DSL that allows us

to describe the behaviour of a stream processing application. �e

stream processor description generates an internal representation

such that interactions between devices are identi�ed and node-

level code can be generated. A two-stage process allows us to

generate code for di�erent architectures in the second stage. �e

same framework also allows us to simulate the behaviour of the

Figure 2: A high-level overview of the D’Artagnan Frame-

work.

application without the need to generate and upload code on the

devices — e�ectively speeding up the test and deploy cycle.

Secondly, we want to enhance the framework with a generic hint

capability, such that the programmer can in�uence the transfor-

mations and interpretations according to his/her own knowledge.

In the absence of hints, the system can still generate good code.

However, the programmer’s input can lead to systems be�er suited

for the application at hand. For example, the programmer may indi-

cate preference to use a speci�c node in the WSN more than others

due to a renewable energy supply. �e compiler can then generate

code with this information and combine it with other application

restrictions and network information.

�irdly, through the ability to transform the internal represen-

tation, we want to �nd ways to statically fuse several stream pro-

cessing applications together at compile-time to run on the same

network of devices. �e ability to share networks of devices is

considered a key enabler for more applications to be developed and

deployed as it helps to bring down the cost of ownership. �e ap-

proach taken by existing solutions is generally to have a run-time

environment capable of dynamically loading/unloading applica-

tions and context switching between one application and another.

5 CURRENT STATUS

In this section we describe the current status of ongoing research

and how the research questions have been addressed so far.

High Level Abstraction To answer the �rst question RQ1,

apart from reviewing existing literature, we developed a

prototype framework that will serve as the foundation for

our work. We embedded our DSL in Haskell and used it

to implement a case-study for an intelligent and energy
e�cient building cooling and lighting system which given a

layout of a building automatically generates custom code

to run on the sensor nodes present in the building. Results

have shown that an application wri�en with our DSL that

is capable of generating code for any building layout can

DEBS ’17, June 19-23, 2017, Barcelona, Spain A. Mizzi et al.

be wri�en in 10 lines of code. �is is compared to over 500

lines of hand-wri�en low-level C code that is only suitable

for a speci�c layout. We have also evaluated the perfor-

mance of the automatically generated code in a processing

intensive application in comparison to hand-wri�en code

with the increase in size and performance being negligible

(less than 0.5%), since standard compiler optimisations iron

away the overheads.

Multiple Interpretations At a top-level, the framework sup-

ports two main interpretations (RQ2). �e �rst is a simula-

tion interpretation, such that the behaviour of the stream

processing application can be observed in a simulated envi-

ronment, where sensor readings can be supplied and results

analysed. �e second type is a two-stage code interpreta-

tion — the �rst stage is intermediate code (an abstraction

of C), and the second stage is target-speci�c code. �is

approach allows us to generate code for di�erent types of

devices. In our work so far, we have generated code for

two types of devices, both running the Contiki operating

system. �e model can be easily extended to support other

devices and operating systems.

6 CONCLUSIONS

�is paper proposes a framework intended to raise the level of

abstraction for programming distributed embedded systems by

using techniques from the domain of embedded languages. �e

framework is capable of generating code for di�erent architectures

to run on a network of heterogeneous devices, and the behaviour

of a high-level stream processor description can be observed in a

simulated interpretation. So far, we have answered almost half of

the research questions, therefore in the coming months we will

continue along two directions: fusing applications statically (RQ3)

and compiler hints (RQ4). �e framework will be enhanced to fuse

together di�erent stream processing applications at compile time by

transforming and combining the internal representations. Also, we

intend to create a generic hint model that allows the programmer

to use his/her expertise and knowledge to in�uence the compiler

to generate optimised and e�cient code.

7 ACKNOWLEDGMENTS

�e research work disclosed in this publication is partially funded

by the ENDEAVOUR Scholarships Scheme. “�e scholarship may

be part-�nanced by the European Union — European Social Fund”.

REFERENCES

[1] Asad Awan, Suresh Jagannathan, and Ananth Grama. 2007. Macroprogramming

heterogeneous sensor networks using cosmos. In ACM SIGOPS Operating Systems
Review, Vol. 41. ACM, 159–172.

[2] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård, A.

Persson, M. Sheeran, J. Svenningsson, and A. Vajdax. 2010. Feldspar: A domain

speci�c language for digital signal processing algorithms. In Formal Methods and
Models for Codesign (MEMOCODE), 2010 8th IEEE/ACM International Conference
on. h�ps://doi.org/10.1109/MEMCOD.2010.5558637

[3] Alan Bawden et al. 1999. �asiquotation in Lisp.. In PEPM. Citeseer, 4–12.

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hard-

ware Design in Haskell. In Proceedings of the �ird ACM SIGPLAN International
Conference on Functional Programming (ICFP ’98). ACM, New York, NY, USA,

174–184. h�ps://doi.org/10.1145/289423.289440

[5] Koen Claessen and Gordon J. Pace. 2002. An Embedded Language Framework

for Hardware Compilation. In Designing Correct Circuits ’02, Grenoble, France.

[6] Adam Dunkels, Bjorn Gronvall, and �iemo Voigt. 2004. Contiki-a lightweight

and �exible operating system for tiny networked sensors. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE, 455–462.

[7] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. 2005.

Macro-programming wireless sensor networks using Kairos. In International
Conference on Distributed Computing in Sensor Systems. Springer, 126–140.

[8] P. Hudak. 1998. Modular domain speci�c languages and tools. In So�ware Reuse,
1998. Proceedings. Fi�h International Conference on. 134–142. h�ps://doi.org/10.

1109/ICSR.1998.685738

[9] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govin-

dan. 2007. Reliable and e�cient programming abstractions for wireless sensor

networks. In ACM SIGPLAN Notices, Vol. 42. ACM, 200–210.

[10] Philip Levis and David Culler. 2002. Maté: A tiny virtual machine for sensor

networks. ACM Sigplan Notices 37, 10 (2002), 85–95.

[11] Philip Levis, David Gay, and David Culler. 2005. Active sensor networks. In

Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 343–356.

[12] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,

Alec Woo, David Gay, Jason Hill, Ma� Welsh, Eric Brewer, et al. 2005. Tinyos:

An operating system for sensor networks. In Ambient intelligence. Springer,

115–148.

[13] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. 2005.

TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on database systems (TODS) 30, 1 (2005), 122–173.

[14] Geo�rey Mainland, Greg Morrise�, and Ma� Welsh. 2008. Flask: Staged func-

tional programming for sensor networks. In ACM Sigplan Notices, Vol. 43. ACM,

335–346.

[15] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to

develop domain-speci�c languages. ACM computing surveys (CSUR) 37, 4 (2005),

316–344.

[16] Ryan Newton, Greg Morrise�, and Ma� Welsh. 2007. �e Regiment Macropro-

gramming System. In Proceedings of the 6th International Conference on Informa-
tion Processing in Sensor Networks (IPSN ’07). ACM, New York, NY, USA, 489–498.

h�ps://doi.org/10.1145/1236360.1236422

[17] Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Madden, and

John Gregory Morrise�. 2008. Design and Evaluation of a Compiler for Embedded

Stream Programs. SIGPLAN Not. 43, 7 (June 2008), 131–140. h�ps://doi.org/10.

1145/1379023.1375675

[18] Gregory J Po�ie and William J Kaiser. 2000. Wireless integrated network sensors.

Commun. ACM 43, 5 (2000), 51–58.

[19] Ryo Sugihara and Rajesh K Gupta. 2008. Programming models for sensor net-

works: A survey. ACM Transactions on Sensor Networks (TOSN) 4, 2 (2008),

8.

[20] Yong Yao and Johannes Gehrke. 2002. �e cougar approach to in-network query

processing in sensor networks. ACM Sigmod record 31, 3 (2002), 9–18.

https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/289423.289440
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1145/1236360.1236422
https://doi.org/10.1145/1379023.1375675
https://doi.org/10.1145/1379023.1375675

	Abstract
	1 Introduction
	2 Research Challenges
	3 Background and Related Work
	4 Research Approach
	5 Current Status
	6 Conclusions
	7 Acknowledgments
	References

