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Although one might be tempted to attribute the choice of notes in musical scales and
chords to purely aesthetic considerations, a growing body of work seeks to establish
correspondences with mathematical notions. Intriguingly, the most important musical
scales turn out to be solutions to optimisation problems.

In this abstract, we review mathematical characterisations which yield some of the
most important musical scales. We also describe an implementation of these notions
using the functional programming language Haskell, which has allowed us to conduct
interactive experiments and to visualise various approaches from the literature.

1 Pitches, Pitch Classes and Scales
The pitch of a musical note is quantified by its frequency. Pitches are partitioned into
pitch classes with frequencies p × 2n,−∞ < n < ∞ (doubling frequencies) under
the octave equivalence relation. Pitches within the same pitch class, although having
different frequencies, are perceived as being of the same quality [6].

The continuum of pitch classes can be discretised by choosing a finite subset of
pitch classes as a palette. This is the chromatic pitch-class set1, the raw material at a
composer’s disposition. Frequencies are typically chosen at (or near) equidistant points
on a logarithmic scale, so that the brain perceives the distance between successive pairs
of pitches as being the same. Though by no means universal, the use of twelve pitch
classes is predominant in western music [3] and is widely represented in other cultures.
Western music also exhibits a preference for scales containing seven note pitch-class
sets chosen from the twelve-note chromatic set. The scales are characterised not by the
presence of specific pitch classes but by the distances between them.

The clock diagram [2] places chromatic pitch classes at equidistant points on the cir-
cumference of a circle. This representation is useful because it eliminates bias towards
particular pitch classes or distance patterns (unlike staff notation or a piano keyboard),
while embodying the cyclic nature of pitches with respect to octave equivalence.

2 Formalising Musical Scales using Euclidean Geometry
The chromatic pitch classes are represented as c equidistant points on the circumference
of a circle. We write posc(i) (where 0 ≤ i < c) to represent the euclidean coordinates
of the ith point (of c equidistantly distributed points) on the circumference of a circle
centred at the origin and with unit radius such that the 0th position lies at (0, 1). A pitch-
class set ψ is a sequence of d (with d ≤ c) distinct pitch classes ψ = 〈p0, p1 . . . pd−1〉
from a chromatic set of c (i.e. 0 ≤ pi < c). We write Ψd/c to denote the set of all
possible pitch-class sets of size d from c chromatic pitch classes, and Ψc to denote all
possible pitch-class sets of any size from c chromatic pitch classes. We write poly(ψ)
to denote the d-sided polygon which is formed by joining nearest pairs of chosen points
from pitch-class set ψ with straight lines. Given two distinct pitch classes p and p′

in a pitch-class set ψ ∈ Ψd
c , we denote the euclidean distance between the points as

δeuc
c (p, p′) = |posc(p) − posc(p

′)| and the diatonic distance for a pitch-class set ps
between the points as the number of lines between them: δdia

c,ps(p, p
′) = #([p, p′)∩ ps).

1Contrary to the mathematical definition, in musical set theory the pitch classes in a pitch-
class set are ordered.



3 Scales as Solutions to Optimisation Problems
Many important scales can be identified as optimal solutions to geometric measures [1,
5, 4]. Given a metric f ∈ Ψc → R, we identify the set of its maximal (or minimal)
musical scales of length d from c chromatic pitch classes as: maximised/c(f) = {ψ ∈
Ψd/c | f(ψ) = M} where M = max{f(ψ) | ψ ∈ Ψd/c}. In the Haskell implementa-
tion, we use higher-order functions to choose the maximal and minimal solutions of a
given metric. Maximisation is defined as:

maximise f (c,d) =
maximumBy
(\x y -> compare (f (c,d) x) (f (c,d) y))
(scalesOfSize (c,d))

Achieving maximal evenness [1] is analogous to seating a group of, for instance, seven
people at a round table with twelve chairs in such a way that they are spread as evenly
as possible. A set of d pitch classes chosen from c chromatic pitch classes is maxi-
mally even if the pitch classes are arranged as evenly as possible on the circle when
their positions are restricted to the positions of the c chromatic ‘slots’. Going further,
we may optimise metrics over a scale for pitch classes with a particular diatonic dis-
tance between them, rather than limit ourselves to ones which are a diatonic distance
of one apart [5]. We can, for instance, implement the maximal evenness property for a
generalised distance as:

unevennessNApart n (c,d) s = maximum distances - minimum distances
where
distances = map (diatonicDistance (c,d)) (pairsNApart n s)

maximalEvennessNApart n = minimise (unevennessNApart n)

With maximalEvennessNApart 2 (12,7) we identify the seven-note scales which max-
imise evenness between alternate notes in the scale (also known as diatonic thirds),
and our JavaScript visualiser illustrates the result using clock diagrams. The harmonic
minor, the melodic minor, the harmonic major and the major scale appear on the screen:

4 Future Work
We observed that the abstraction and extensibility provided by Haskell lends itself to
free-wheeling exploration. As the framework is augmented to handle higher degrees of
freedom such as harmony and time we expect it to unlock substantial exploratory and
experimental research potential.
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