
Source-level runtime validation through interval
temporal logic

Karlston D’Emanuele and Gordon Pace

University of Malta

Abstract. The high degree of software complexity achievable through
current software development practices makes software more prone to
failure. A number of work and work practices has evolved in order to
reduce risks related to software correctness and reliability. One of which
is validation, which monitors the system execution at runtime and verifies
that the system states entered are valid according to the behavioural
specification.
This paper describes a framework providing an assertion like validation
environment for integrating software properties specified in interval tem-
poral logic. The framework consists in three parts. The first part provides
a mechanism for converting the human readable assertion to a symbolic
automata, which is then used by the second part of the framework that
performs the validation.

1 Introduction

A common problem in software development or maintenance is that the software
behaviour is not what expected. The main cause is that it is very difficult to map
behavioural specifications in the system’s code. A solution can be to fully test
the system but with the complexities in software that are being reached with
current development techniques, it is infeasible.

Validation is another solution, which through logic based monitors the system
is checked for correctness during runtime. Another important aspect of valida-
tion is that opposing to verification the system specifications do not need to be
abstracted, especially if the monitors are placed local to the area effected. Vali-
dation monitors can be run synchronously with the system, in order to provide
a more reliable solution for capturing errors on occurrence.

This paper presents a solution for integrating interval temporal logic inside
a system core in order to perform runtime validation. The solution emphasises
on guaranteeing that the memory and time necessary for the validation process
can be estimated before commencing evaluation. These guarantees are attained
by converting logical-based formulas into their equivalent Lustre [6] symbolic
automata, where the memory and time required for evaluation are constants.
Then a simple framework for the integration of the solution in a development
environment is outlined.

The paper is organised as follows, in the next section quantified discrete
duration calculus (QDDC) notation together with its semantics is introduced.

2

Section 3 deals with the framework which provides validation mechanisms for
integration into the system code. Finally concluding by mentioning some work
that has been performed in the validations area.

2 QDDC notation

Quantified discrete duration calculus [9] is an interval temporal logic that checks
satisfiability of properties within an interval rather than the more common tech-
niques of sampling values or that of checking satisfiability at the end of intervals.

2.1 Syntax and Semantics

On the assumption that the system state has finite variability and that changes
to the system state are performed sequentially, let σ be a non-empty sequence
of state variables evaluations,

σ =̂ (state variable 7→ IB)+.

A state variable is a proposition and its syntax is defined as

P ::= 0 | 1 | p | P op P | ¬P | − P | + P

where p is a proposition variable and op ∈ {∧,∨,⇒,⇔}.
The QDDC syntax is defined as,

QDDC ::= ddP e | dP e0 | D1̂D2 | D1 b op D2 | ¬D | ∃p·D | η c op c | ΣP op c

where c is a constant, b op ∈ {∧,∨,⇒,⇔} and c op ∈ {<,≤,=,≥, >}.
Let σ[b, e]|= D to denote that a finite non-empty sequence σ satisfies the

QDDC formula D between the two discrete time clocks noted as b and e. Leaving
propositions to have their standard mathematical definition and #(σ) denote the
number of evaluations in the sequence σ, then the QDDC notation semantics is
as follows

σi|= P iff P is true at time clock i.

σi|= −P iff i > 0 ∧ σi−1|= P.

σi|= +P iff i < #(σ)− 1 ∧ σi+1|= P.

σ[b, e]|= ddP e iff ∀i ∈ [b, e) · σi|= P.

σ[b, e]|= dP e0 iff b = e ∧ σb|= P.

σ[b, e]|= D1 b op D2 iff σ[b, e]|= D1 b op σ[b, e]|= D2.

σ[b, e]|= ¬D iff σ[b, e]|=\ D.

σ[b, e]|= η c op c iff (e− b) c op c.

3

σ[b, e]|= ΣP c op c iff
∑e

i=b

{
1 σi|= P
0 otherwise c op c.

σ[b, e]|= ∃p ·D iff ∃σ′ · σ′[b, e]|= D and
∀i ∈ [b, e],∀q ∈ P · q 6= p ∧ σ′i(q) = σi(q).

σ[b, e]|= D1̂D2 iff ∃i ∈ [b, e] · σ[b, i]|= D1 ∧ σ[i, e]|= D2

A number of derivable operators simplify the use of the notation. The table
below defines four of the mostly used operators.

�D =̂ truêD̂true.

�D =̂ ¬ � ¬D.

P
δ→ Q =̂ �((P ∧ η ≥ δ)⇒ ((η = δ)̂Q)).

P
δ←↩ Q =̂ �(¬ − P̂(P ∧ η < δ)⇒ Q).

2.2 Syntactic Sugar

In order to interweave the QDDC formulas within the code, it is necessary to
define the formulas semantics. Gonnord et. al [5] showed that some QDDC op-
erators are non-deterministic and hence have to be removed or substituted in
order to be evaluated in runtime. Non-determinism arise from the use of the
next evaluation in propositions, +P , the existential (∃p ·D), and the chop op-
erator (D1̂D2). While the first two has to be complete removed since they are
completely non-deterministic. While the chop operator is restricted to its wide
used deterministic version, in other words, the subintervals are bounded with
deterministic occurrences of events.

As with the QDDC notation propositions are used as the underlying driving
mechanism. Let AP (I) be the evaluation of P for the interval I.

P AP (I)
p p
¬P AP (I)

P1 ∧ P2 AP1(I) and AP2(I)
P1 ∨ P2 AP1(I) or AP2(I)
P1 ⊗ P2 (¬AP1(I) and AP2(I)) or (AP1(I) and ¬AP2(I))
P1 ⇒ P2 ¬AP1(I) or AP2(I)
P1 ⇔ P2 AP1(I)⇒ AP2(I) and AP2(I)⇒ AP1(I)

However, propositions alone are not enough to define the QDDC notation
semantics. Therefore, a number of methods over propositions are introduced to
aid in QDDC evaluation [5].

4

Method Description
after(P, b) Returns true if P was true at the start of the

interval (denoted as b). Equivalent to dP e0̂true.

strict after(P, b) Returns true if P was true at the start of the
interval. However, on the start of the interval it
returns false. Equivalent to dtruee0̂d−P êtrue.

always since(P, b) Returns true if P has been constantly true for
the interval, starting at clock cycle b. Formally,
ddP d.

nb since(P, b) Returns the number of occurrences of P . In
QDDC equivalent to ΣP .

age(P, b) Returns the number of times P was true from
the last time it evaluated to false in the interval.

first(P, b) Returns true on the first occurrence of P .

Given the above methods, the fragment of QDDC that can evaluate to false
only as time passes is defined as

G AG(I)
begin(P) after(AP (I) and b)
ddP e strict after(b) and pre(always since(AP (I), b))
η ≤ c nb since(true, b) ≤ c

ΣP ≤ c nb since(AP (I), b) ≤ c
age(P) ≤ c age(AP (I), b) ≤ c

G1 ∧G2 AG1(I) and AG2(I)
G1 ∨G2 AG1(I) or AG2(I)

Note the introduction of the QDDC operator age. The operator is useful in
order to provide alternatives to some of QDDC derived operators. For example,
let then operator to be the concatenation of two subintervals, then P

δ→ Q is
expressed equivalently as,

P
δ→ Q ≡ age(P) < δ then P ∧Q.

Finally, the full fragment of QDDC that can be evaluated in runtime, is

F AF (I)
G AG(I)

end(P) after(b) and AP (I)
G then F AF (first(not AG(I)
F1 ∧ F2 AF1(I) and AF2(I)
¬F not AF (I)

5

The then operator denotes the deterministic version of chop, which state
that the entire interval is satisfied if on the first failure to satisfy the first subex-
pression, the second subexpression is immediately satisfied.

2.3 Examples

Before commencing with further formalisms, this section provides two simple
examples of how systems can be expressed in QDDC formulas.

Guess a number example. Consider the simple guess a number game, where
the number of attempts are limited. Whenever the user attempts to guess the
number, he or she can either try a number smaller or higher than the target or
the target number. The game can easily be specified using QDDC logic, as

((ddLess xor Greateree and η < δ)̂(η ≤ δ ⇒ d¬Less and ¬Greatere0))∗.

where delta is the number of attempts the user has.
The first subexpression of the chop operator specifies the condition that the

user is trying to guess the number within the allowed attempts, while the sec-
ond subexpression verifies that the user guessed the number within the provided
limit. The Kleene closure is used to allow the formula to be used repeated when-
ever a new game is started.

Now, lets try to specify the same formula using the restricted logic to inter-
weave it with the game code. Due to the constraints placed by the way a program
is executed, a small modification is required. The modification is required since
whenever the chop starts a new subinterval, the length of the entire interval is
lost. Hence while leaving the limit of attempts to be checked programmatically
and placing both Less and Greater variables are to true whenever the limit is
exceeded to ensure that the chop operator fails, the formula to be integrated
inside the code is:

(ddLess xor Greateree then end(¬Less and ¬Greater))∗.

Memory allocation example. Now consider a slightly more useful example.
One of the major glitch in developing software in C/C++ is memory alloca-
tion. Freeing memory that was not allocated or already freed, or never freeing
allocated memory give rise to misbehaviour in software which is very difficult to
trigger or notice. Through the use of two simple QDDC formulas integrated with
the memory de/allocation methods one can easily check for these problems.

Let P <∼ Q stand for P must hold one clock cycle before the occurrence of
Q. Given that the event of memory allocation is labelled as Alloc and that of
memory deallocation labelled as Free, then, the formulas required for the simple
memory check program are,

ΣAlloc > ΣFree <∼ ΣFree. (1)

6

(ddΣAlloc > ΣFreeêddΣAlloc = ΣFreee)∗. (2)

Formula 1 is used to ensure that under no circumstances the number of freed
memory exceeds the number of memory allocated. The second formula describes
the behaviour in memory usage, that is, either some memory is still allocated
or it is all free. The second subexpression in formula 2 ensures that at the end
of program execution all memory has been freed. Defining these formulas for
interweaving is straightforward.

ΣFree⇒ ΣAlloc ≥ ΣFree.

(ddΣAlloc > ΣFreeee then ddΣAlloc = ΣFreeee)∗.

It is important to note that more complex scenarios can be similarly handled
using the restricted QDDC for integrating the formulas in the code.

3 Encoding QDDC syntax

Using the syntactics presented in Section 2.2 and Lustre representation for sym-
bolic automata, in this section we present the solution adopted for encoding the
restricted QDDC syntax. The solution is adopted from Gonnord et. al [5].

Consider it is required to evaluate the QDDC formula ddP e. The formula
is evaluated as strict after(b) and pre(always since(AP (I), b)). In other
words, we need to evaluate two methods because the pre() is an operator over
QDDC variables that returns the value they contained one clock cycle before.

First, let define the algorithms for the two methods. The strict after(b)
states that when b is true the method returns false, but subsequently it must
return true. Therefore, given tat each different method invoked has a QDDC
variable associated with it, for example after(p) has a variable named after p
to store its value history and on the assumption that all variables are initialised
to false then,

strict after b = false→(pre(b) ∨ pre(strict after b)).

The arrow sign after false is used to indicate that the variable strict after b
is initialised to false. One must also note that the or operator is lazily evaluated
left-hand parameter first because on the first clock cycle the pre() might not
be initialised.

As the always since(P, b) name suggests the method returns true if the
variable parameter has been constantly true from the start of the interval.

always since P b = false→(b ∨ pre(always since P b)) ∧ P .

Finally, the variable associated with the QDDC formula, const P, is assigned
the value,

7

const P = strict after(b) and pre(always since(P, b)).

The use of the capital letter P within the algorithms is to indicate that the
parameter value can either be a QDDC variable or an expression as in the case
of evaluating ddLess xor Greatere in the first example in Section 2.3. The meth-
ods in Section 2.2 are all evaluated using the same reasoning as in the above
example-driven evaluation. For example, after(P) and age(P, b) are evalu-
ated as:

after(P) = false→(P ∨ pre(after(P))).

nb since(P, b) = if after(b) and P then
0→pre(nb since(P, b)) + 1

else
0→pre(nb since(P, b)).

age(P) = if P then
0→pre(age(P)) + 1

else
0.

first(P, b) = if after(b) then
P ∧ ¬(strict after(P)).

The basic operators in the algorithms above are the next operator, and the
borrowed Lustre operators pre() and the initialisation operator (→). The lat-
ter consists in a simple initialisation process that assigns the formula variable,
example after P, with the value preceding the operator.

Each variable that requires to use its previous value(s) is required to create
additional memory space, the size of the variable data type, in order to store
the old values. The process for keeping historical data regarding a variable is
outlined in the algorithm below.

Variable assignment
Evaluate proposition
If keeping history
Assign variable old value to current value

Assign variable current value to the value returned in step 1.

In the assignment algorithm lines 2 and 3 ensure that if the variable is keeping
history of its history, example pre(pre(P)), the algorithm is called recursively
to update all history memory locations.

Being able to evaluate the restricted QDDC notation, the next operator is
used to advance the basic clock by one clock cycle and perform the validation
process outline below.

8

validate = ∀ QDDC variables
read data from the pointed memory location

∀ QDDC formulas
evaluate formula
if formula fails then
stop process and report error.

4 Framework

The framework presented provides an assertion-like environment, which at user
specified time intervals validates the system state with a set of interweaved
QDDC formulas.

By leaving the user to perform the interweaving by placing the formulas as as-
sertions within the code, the framework consists of three layers. The fundamental
layer provides the validation engine that takes a set of automata representing
the formulas and using the syntactic presented in Section 2.2, evaluates their
satisfaction. To simplify the use of the engine, another layer is added on top
of the engine. This layer allows the user to pass a well-formed QDDC formula
and converts it into a symbolic automata, which is then fed to the underlying
layer whenever the user requests the system to check its consistency. Finally in
order to simplify the framework use and to abstract the user from the underlying
system, an interface layer is provided.

Engine. The engine layer is responsible for validating the system with the
formulas provided, as described in Section 3. The layer also provides a mechanism
to report violations to the user because a formula might return false but will still
be valid, like in the case of a then statement.

Conversion is achieved through the use of a parser, which checks for well-
formed formula by analysing the string representing the formula with the gram-
mar defined in Section 2.2. During the formula checking the parser also attempts
to build a symbolic automaton for its representation. It is important to note out
that since the conversion is performed at runtime, the symbolic automaton gen-
erated is not optimised but rather it consists of small automata concatenated
together according to the formula.

5 Related work

The field of validation is gaining in importance, however, not a lot of work has
been performed because the main focus is still on verification. Two of the major
projects in the use of state variables for checking the system correctness are
Bandera [1] and Temporal Rover [2, 4, 3].

The Bandera project is dedicated to the Java programming language and
extracts a system model from the source code. The model extracted is minimised

9

through the use of abstraction and slicing techniques. The project also provides
a visualisation tool for checking the model for consistency, and allows the user
to place behavioural constraints and check them through a simulated execution.

Bandera use of constraints over a model of the system is similar to our work.
That is, both works use a description of the expected behaviour to check the
system correctness. However, the main difference is that Bandera checks are
performed over an abstracted model of the system that might not fit well in the
system. While our framework performs the checks on the real system and during
its execution. An advantage the Bandera project has over our solution is that
the user is not required to be knowledgeable of how systems can be described
formally. Nevertheless, our solution provides an environment that allows errors
to be captured following the destinated user feedback rather than using a pre-
selected scenarios that the developer team thinks that might occur.

A major validation project is Temporal Rover by Time-Rover. Temporal
Rover provides an assertion-based environment for the integrating specifications
defined in temporal logic into programs [2, 4, 3]. The project consists in a precom-
piler that produces a file similar to the original with tangling code, representing
the assertions and the validation engine.

Temporal Rover is far more powerful than the solution presented here. One
of the advantages over our solution is that the system handles non-deterministic
scenarios by creating instances for all possible solutions. Nevertheless, our solu-
tion lacking in non-determinism handling provides the user with a lightweight
environment that reports errors as soon as they occur.

Another project is the integration of temporal assertions into a parallel de-
bugger [8]. The parallel debugger project performs the validation by making use
of a macrostep debugger, which while the program is being executed the asser-
tions are checked for their validity. It is difficult to compare the project with our
solution since there is lack of technical detail regarding the underlying work.

6 Conclusion and Future work

A major trouble in software development is verifying the system correctness.
The concept of validation provides a solution for checking correctness during
the execution. Through validation it is also possible to trigger errors before they
propagate and report their occurrence in more depth than it is possible with
traditional error handling.

Using temporal logic formulas for defining the system specifications and al-
lowing their integration into the system source code provides a robust environ-
ment for providing more reliable systems. The framework presented in this paper
provides an environment for performing synchronous monitoring over system ex-
ecution.

The grammar provided in Section 2.2 is enough expressive to handle the
majority of QDDC formulas. Nonetheless, there are some commonly used QDDC
expressions that require to be expressed in equivalent expressions. Since the

10

framework does not handle optimisations and it is an inconvenience for the user,
the framework can be enhanced to support common QDDC expressions directly.

One of the framework drawback is the that formulas are converted at run-
time since they are manually interweaved. Using an approach similar to that of
aspect-oriented programming [7, 11, 10], where the formulas are supplied through
a separate file and their observational interval defined through markups in the
system code, the formulas can be converted through a pre-compiler which also
handles the generation of tangled code.

Finally, another enhancement is to allow the validation to be performed asyn-
chronously. This is fruitful in situations where immediate error reporting and
handling is not critical and also in situations where time response during testing
is important, especially if the framework is disabled in the system final version.

References

1. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Păsăreanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models
from java source code. In International Conference on Software Engineering, 2000.

2. Doron Drusinsky. The temporal rover and the ATG rover. In SPIN 2000, 2000.
3. Doron Drusinsky and J.L. Fobes. Executable specifications: Language and appli-

cations. CrossTalk - The Journal of Defense Software Engineering, 17(9):15–18,
September 2004.

4. Doron Drusinsky and Klaus Havelund. Execution-based model checking of
interrupt-based systems. In Workshop on Model Checking for Dependable Software-
Intensive Systems. Affiliated with DSN’03, The International Conference on De-
pendable Systems and Networks, pages 22–25, 2003.

5. L. Gonnord, N. Halbwachs, and P. Raymond. From discrete duration calculus to
symbolic automata. In 3rd International Workshop on Synchronous Languages,
Applications, and Programs, SLAP’04, Barcelona, Spain, March 2004.

6. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

7. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

8. József Kovács, Gábor Kusper, Róbert Lovas, and Wolgang Schreiner. Integrating
temporal assertions into a parallel debugger. In Proceedings of the 8th International
Euro-Par Conference, pages 113–120, 2002.

9. P. Pandya. Specifying and deciding quantified discrete-time duration calculus for-
mulae using DCVALID. Technical Report TCS00-PKP-1, Tata Institute of Fun-
damental Research, 2000.

10. Mario Schüpany, Christa Schwanninger, and Egon Wuchner. Aspect-oriented pro-
gramming for .NET. In First AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (AOSD-2002), March 2002.

11. Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. AspectC++: an AOP ex-
tension for C++. Software Developer’s Journal, pages 68–76, May 2005.

