
Computer-Aided Verification:
How to Trust a Machine with Your Life

Gordon J. Pace

Department of Computer Science and AI,
University of Malta

Abstract. Mathematical predictive analysis the behaviour of circuits
and computer programs is a core problem in computer science. Research
in formal verification and semantics of programming languages has been
an active field for a number of decades, but it was only through tech-
niques developed over these past twenty years that they have been scaled
up to work on non-trivial case-studies. This report gives an overview of a
number of computer-aided formal verification areas I have been working
on over these past couple of years in such a way to be accessible to com-
puter scientists in other disciplines. Brief mention is made of problems
in these areas I am actively working on. It does not purport to be an
overview of the whole field of computer-aided formal verification or a
detailed technical account of my research.

1 Introduction and a Brief History

Today, software and hardware are used to control all sorts of devices
— from washing machines and microwave ovens to braking systems in
cars, medical devices and nuclear power stations. Engineering practice, as
evolved over the centuries, dictates guidelines to follow when designing
bridges and towers to guarantee that they do not fall. However, with
software and digital hardware similar techniques fail to work for a number
of reasons:

– A problem of scale: the techniques fail to scale up to the level of
complexity found in software and hardware;

– Discrete vs continuous: the digital nature of computing systems pre-
cludes the effective use of algebraic laws in design which usually work
well on problems with continuous variables;

– Discontinuity: thorough testing is nigh on impossible on discontinu-
ous systems1.

The more software and complex hardware is used in safety-critical sys-
tems, the more worrying this lack becomes.
Since the 1960s, techniques have been developed to enable mathematical
reasoning about programs. Mathematical models of digital circuits had
been around even before. Such models are obviously necessary to be

1 On a continuous domain problem, we know that if at a certain point the behaviour
is correct, that it should also be so in the immediate neighbourhood of the point.

able to prove properties of programs. However, the complexity of proofs
using these models is formidable. The formal verification of a five-line
algorithm can easily run into pages of dense mathematical formulae. The
question ‘Is the program correct?’ is simply transformed into another:
‘Is the proof correct?’ This problem was addressed by writing computer
proof checkers and proof editors. These tools allowed a proof script to be
checked by a machine. Checking a proof for correctness turns out to be
a computationally simple problem, and it is only the generation of the
proof which is difficult. In 1971, Cook proved the boolean satisfiability
problem to be NP-Complete [10]. Writing a program to calculate a proof
in polynomial time is one way of showing that the satisfiability problem
lies in P and thus that P=NP. This disillusioned those who hoped to
add modules to theorem provers to generate proofs automatically2.

In the late eighties and early nineties, researchers started looking at fi-
nite state systems whose states can be exhaustively enumerated. Typical
examples of such systems are digital circuits, programs which do not use
dynamic features, and systems which use a bound number of resources.
The catch is that the number of states is exponential with respect to the
length of its symbolic description. However, if we look at the reachable
states in the system, it turns out that in certain cases we can manage
to (i) enumerate all the reachable states, verifying the correctness of the
system, or (ii) enumerate sufficiently many reachable states until a ‘bad’
scenario is unveiled. This led to a surge of interest in model-checking algo-
rithms which verify a system automatically by systematically exploring
its state space. In practice, applying such techniques blindly works only
on toy examples.

Although it is still not known whether a polynomial complexity satisfi-
ability algorithm exists, there do exist algorithms which are worst case
exponential, but work reasonably efficiently on most typical cases. Such
algorithms are usually symbolic in nature, in that they try to encode
sets of different boolean variable assignments using a symbolic represen-
tation, thus allowing the description of large sets using limited space.
These algorithms have been used in model-checking tools, pushing the
limits of these tools to work on larger systems. This is usually called
symbolic model-checking, in contrast with enumerative model-checking
techniques already mentioned. Although symbolic model-checking may
seem to be superior, it is largely a question of the problem domain as
to which type of model-checking is more effective. In cases where large
chunks of the state-space are not reachable, enumerative techniques may
actually work better3.

2 In most programming languages (which may use features such as unbounded integers,
unbounded length strings and dynamic lists) the problem is even worse. Gödel’s
incompleteness theorem guarantees that no algorithm to decide the correctness of a
program can exist.

3 For example, in the case of concurrent programs and communication protocols, the
state of the system would also contain the program counters along the different
threads. Most program counter settings are impossible to reach, making large parti-
tions of the state-space inaccessible. In these cases, enumerative techniques tend to
be more effective.

In the meantime, abstract interpretation techniques also started being
used, where the user gives information on how to abstract the system
under examination, thus reducing the size of the state space. Abstrac-
tion can also used to reduce infinite state systems to finite state ones.
Abstract interpretation algorithms which try to calculate an appropri-
ate abstraction algorithm have also been proposed, and such algorithms
can enable the automatic verification of systems of up to 101500 or more
states4.
Despite this seemingly huge number, this limit still falls well below the
size of complex circuits currently being developed. However, the cost
incurred by Intel when a bug was found on its Pentium chip, and the
danger of a law-suit if, or rather when, a system failure directly leads
to loss of life (or major financial losses) have driven hardware design
companies to use formal verification techniques. In fact, a number of
commercial hardware verification software packages have now been on
the market for a number of years and most microprocessors and complex
chips are partially verified before going on the market.
Software verification is much more complex than hardware verification.
Strong reduction and abstraction techniques are required to be able to do
anything automatically. However, limited success has been demonstrated
on restricted domain problems, such as memory leak analysis and device
driver verification. A number of commercial tools which use static anal-
ysis and verification techniques to guide programmers have just started
appearing on the market.
Despite its short history, model-checking boasts a vast literature. A good
starting point to the field is Edmund Clarke’s book [8] which gives an
overview of model-checking at the time of its writing.
The rest of the report will outline a number of research areas on which I
have been working over these past few years, and identifies the problems
in which I am still working on at the moment.

2 Model Reduction Techniques

In enumerative model-checking, a major problem is that the composition
of tractable systems may turn out to be intractable. Composition oper-
ators which may result in state-space explosion include asynchronous
composition and partially synchronous composition, where some ports
are synchronized, while the others are left to work independently. Unfor-
tunately, these operators appear in various systems such as communica-
tion protocols, and thus cannot be avoided.
One solution proposed was to generate the individual elements of a com-
posed system, and minimize the finite state machines as it composes
them [11]. Systems are described in terms of a composition expression
which states how the basic nodes of the system are composed together.
A simple example of such an expression is:

4 This figure is obviously dependant on the system in question. However, it is interest-
ing to compare this to the typical limits of 107 states for enumerative model-checking
and 10150 for symbolic model-checking using no abstraction.

receiver || hide sel in ((sender1 ||| sender2) ||sel arbitrator)

where || is synchronous composition, ||| is asynchronous composition, and
||P composes together two systems synchronizing all communication over
ports listed in P but communicating asynchronously an all other ports.
hide P in S makes ports P inaccessible outside S. sender1, sender2,
arbitrator and receiver are finite state machines. The algorithm would
minimize these machines, compose them together and minimizes again,
as it moves up the expression tree. In practice this algorithm significantly
improves the performance of the finite state machine generation.
However, one problem remains. Quite regularly, the individual finite state
machines allow for complex behaviour which will be simplified when
composed with another machine in the system. In the example we have
previously given, one could imagine complex senders which can emit data
in any order. On the other hand, the receiver only accepts a number
followed by a character. Combining sender1 and sender2 will result in
an enormous automaton, but most of the states and transitions will be
discarded when we later compose with receiver. In practice we may not
be able to generate the intermediete automaton due to its size, even if the
top level automaton may be quite small. This and other similar problems
severely limit this approach.
One solution to this problem was proposed by Krimm et al [13] where
they propose a solution which allows us to reduce an automaton with
the knowledge that it will be later composed with another node (called
the interface). In the example we gave, sender1 and sender2 can be
reduced by using receiver as an interface. This technique has allowed the
verification of substantially larger systems than was possible before.
Given an automaton with n1 states, and an interface with n2 states,
the algorithm proposed in [13] guarantees that the result will have less
than n1 states, but requires space of the order O(n1 × n2) to generate
the reduced automaton. If the receiver in our example was too large,
reduction may be impossible. To circumvent the problem, either the user
would have to come up with a simplified interface (the algorithm makes
sure that the interface is correct, so there is no risk of giving a wrong
interface) or one can try to generate a smaller version of the interface
automatically to use. The problem of generating the smaller version of
the interface automatically, can be expressed in terms of the language
recognised by automata:

Given an automaton M , we require a new automaton M ′ such that (i)
M ′ does not have more states than M and (ii) the language generated
by M ′ is larger than that generate by M : L(M) ⊆ L(M′).

The problem has two trivial solutions: taking M ′ = M , or defining M ′

to be the automaton made up of a single state and which can perform
any action in M . However, we would like a solution which allows an
effective reduction when used as an interface. I have been looking into
different ways of generating an effective automaton M ′. The applications
of this are numerous and a number of case studies which use interfaces

for verification are available, and can be extended to the effectiveness of
the alternative interface generation.
Another reduction technique, based on composition expressions has been
identified in Pace et al [15]. It has been shown to be quite effective
when reducing machines with internal actions which are not visible to
the outside user. The interaction between and combination of these two
reduction algorithms which use composition expressions has not yet been
studied.

3 Model-Checking a Hardware Compiler

There are two essentially different ways of describing hardware. One way
is using structural descriptions, where the designer indicates what com-
ponents should be used and how they should be connected. Designing
hardware at the structural level can be rather tedious and time consum-
ing. Sometimes, one affords to exchange speed or size of a circuit for the
ability to design a circuit by describing its behaviour at a higher level of
abstraction which can then be automatically compiled down to structural
hardware. This way of describing circuit is usually called a synthesisable
behavioural description5. Behavioural descriptions are also often used to
describe the specification of a circuit.
Claessen et al [5] have used a technique from the programming language
community, called embedded languages [?], to present a framework to
merge structural and behavioural hardware descriptions. An embedded
description language is realised by means of a library in an already ex-
isting programming language, called the host language. This library pro-
vides the syntax and semantics of the embedded language by exporting
function names and implementations.
The basic embedded language used is Lava [7, ?]. Lava is a structural
hardware description language embedded in the functional programming
language Haskell [16]. From hardware descriptions in Lava, EDIF netlist
descriptions can be automatically generated, for example to implement
the described circuit on a Field Programmable Gate Array (FPGA).
If one looks at the compiler description in Haskell, the code is short and
can be easily understood. Consider a regular expression compiler: Given
a regular expression, the compiler will produce a circuit which once reset,
will try to match the inputs to the regular expression.

compile :: RegularExpression -> Signal -> Signal

For example, the circuit compiled from the regular expression (using
Haskell syntax) is Wire a :+: Wire b, will have one reset input, and
one output wire. Wire a is interpreted as ‘wire a is high for one time
unit’ (corresponding to the normal regular expression a), and the plus
symbol is language union in regular expressions. The resulting circuit
would thus output high if and only if it has just been reset and, either

5 These are to be distinguished from behavioural descriptions (as used in industrial
HDLs such as Verilog and VHDL) which are used to describe the functionality of a
circuit, but are do not necessarily have a hardware counterpart.

wire a or wire b (or both) carry a high signal. Compilation of language
union would simply by expressed as:

compile (e :+: f) reset = or2 (match_e, match_f)

where

match_e = compile e reset

match_f = compile f reset

Note that each language operator would simply add a finite amount
of new circuit components. Now assume that we would like to prove a
compiler invariant6 inv. This can be proved using structural induction
by showing that expressions such as:

(inv (reset1, match1) /\ inv (reset2, match2) /\

plus_circuit((reset1,match1),(reset2,match2),(reset,match))

) |=> inv (reset,match)

This is actual Lava code, where /\ is conjunction and |=> implication.
The function plus circuit simply ensures that the subcircuits are re-
lated according to the circuitry introduced for compiling :+::

plus_circuit((reset1,match1),(reset2,match2),(reset,match)) =

(reset1 <==> reset)

/\ (reset2 <==> reset)

/\ (match <==> or2(match1, match2)

All this can be elegantly expressed in terms of embedded languages. Note
that the cases of the structural induction are of a finite nature and can
thus be model-checked. This gives an excellent platform to experiment
with and verify compiler invariants, and thus hardware compiler correct-
ness.
In unpublished experiments I have carried out with Koen Claessen, we
have managed to prove that a regular expression compiler satisfies stan-
dard regular expression axioms. I am currently trying to extend this work
for compilers of more complex languages such as Esterel [4].

4 Hybrid Systems

In real life, digital systems interact with analogue ones. While programs,
and digital circuits can be fully analysed in terms of boolean values, a
large class of (classical) engineering systems can only be modelled as a
set of differential equations. Typical systems are expressed as a set of

6 In this context, a compiler invariant is a property relating the inputs and outputs of
a circuit produced by the compiler whatever the compiled program.

equations, defining the rate of change (with respect to time) of the vari-
ables which describe the system. Quite frequently, however,one needs to
look at the interaction between continuous and discrete systems. A typi-
cal example is a thermostat controlling a heating element. The equation
defining the temperature can be defined in terms of a case equation:

Ṫ =

{
−l(T) if T ≥ 28
H − l(T) if T < 28

Where T is the temperature, and Ṫ is the rate of change of the temper-
ature with respect to time. l(T) is the rate of heat loss at temperature
T , and H is the heating rate of the thermostat (which turns on when
the temperature falls below 28). Note that the system can be in either
of two different modes or states, one with the thermostat turned on and
the other with the thermostat turned off.

In such systems, discrete variables determine the system states which, in
turn, determine the differential equations which describe the behaviour of
the system variables. Such a system is called a hybrid system. Typically,
hybrid systems are described using timed automata [1]. The thermostat
example can be seen expressed as a (simplified) timed automaton in the
following diagram:

T = H − l(T) T = − l(T)
. .

T < 28.

T 28.

As already noted, analysis of such systems is extremely difficult, and is in
general undecidable. There is substantial research attempting to identify
subproblems which are decidable. One such class of problems are Simple
Planar Differentiable Inclusions (SPDIs) as identified by Asarin et al
[2]. SPDIs are a subclass of hybrid systems with only two continuous
variables. The best way to understand this subclass is to look at their
visual representation.

An SPDI can be represented as a finite set of adjacent polygons on a
plane. With each polygon we associate a differential inclusion (a pair of
vectors which define the range of the rate of change of y with repect to
x).

A typical example to illustrate SPDIs is the swimmer problem which
depicts the motion of a swimmer in a whirpool:

The differential inclusions define the directions in which the swimmer
may swim when in a particular region (polygon). When the swimmer
reaches the edge of a region, her dynamics change to match the inclusion
in the new region. The figure also includes a path which may be taken
by the swimmer under the SPDI constraints.

The kind of question one would typically want to ask of such a system is
a reachability question. If the swimmer were to start in a certain location,
can she end up in a dangerous location? In [2], Asarin et al have proved
the correctness of an algorithm to decide this question for SPDIs. The
algorithm depends upon the identification of the concept of meta-paths
each of which describes a family of paths within the SPDI (abstracting
away the number of times loops are taken). Meta-paths enjoy a number
of interesting properties:

1. Given any two polygon edges in the SPDI, we can find a finite num-
ber of meta-paths such that any path in the SPDI starting on the
first and finishing on the second edge is an element of at least one
of the meta-paths.

2. This set of meta-paths can be algorithmically generated.

3. Given a meta-path, we can decide whether there is a feasible path
obeying the differential inclusions in the SPDI along that meta-path.

These three properties guarantee the decidability of the reachability
problem. The algorithm was implemented in [3]. The main shortcoming
of the algorithm is that it searches the graph in an inherently depth-
first manner. Even though a short counter-example may exist, the algo-
rithm might have to try very long traces before finding the short counter-
example. This also means, that unless an exhaustive search is done, we
cannot guarantee that the counter-example found is the shortest one
possible (a desirable thing since it would then simplify debugging of the
system).

In (the as yet unpublished) [14], we have identified a breadth-first search
solution to the problem. The algorithm is still based on the idea of meta-
paths, but information is stored in a combination of enumerative and
symbolic techniques so as to be able to express the solution in terms of
a more standard reachability algorithm:

reached := { start edge };
repeat

old reached := reached;

reached := reached ∪ one-step(reached);

if (not disjoint(reached, finish edge))

then exit with counter-example;

until (reached ≈ old reached);

report ‘No counter-example’;

The algorithm starts with the start edge and adds other edges as
they are reachable in one step (a path from one edge to another in
the same region), until either nothing new is added (with certain
provisos) or the finish edge is reached giving a counter-example.
This algorithm is still to be implemented and compared to the
depth-first version. Furthermore, the techniques used in our new
algorithm (in particular the conditions required for the proof) indi-
cate that a class of automata, more general than SPDIs, amenable
to this technique can be identified. Work still needs to be done to
identify this class and prove the generalised results.

5 Conclusions

In this report I have tried to give a brief outline of the history
and relevance of formal verification techniques, to set the scene for
some of my recent research and its current and future directions.
At the risk of sounding like a collection of paper introductions and
conclusions sections, not much detail is given in any of the research
topics. Having only recently returned to the University of Malta,
I hope that this report defines some research areas in which I am
interested, possibly leading to fruitful collaboration with others in
the department.

References

1. R. Alur and D.L. Dill, A theory of timed automata, Theoretical Com-
puter Science 126:1(183–235), 1994.

2. E. Asarin, G. Schneider and S. Yovine, On the Decidability of the
Reachability Problem for Planar Differential Inclusions, in Lecture
Notes in Computer Science 2034, 2001.

3. E. Asarin, G. Pace, G. Schneider and S. Yovine, SPeeDI — a Verifi-
cation Tool for Polygonal Hybrid Systems, in Computer-Aided Ver-
ification (CAV 2002), in Lecture Notes in Computer Science 2404,
2002.

4. G. Berry, The Constructive Semantics of Pure Esterel, Unfinished
draft, available from http://www.esterel.org, 1999.

5. K. Claessen and G. Pace, An Embedded Language Framework for
Hardware Compilation, in Designing Correct Circuits 2002 (DCC
2002), Grenoble, France, 2002.

6. K. Claessen, M. Sheeran and S. Singh, The Design and Verification of
a Sorter Core, in Correct Hardware Design and Verification Methods
2001 (CHARME 2001), Lecture Notes in Computer Science 2144,
2001.

7. K. Claessen and M. Sheeran, A Tutorial on Lava: A Hard-
ware Description and Verification System, Available from
http://www.cs.chalmers.se/˜koen/Lava, 2000.

8. E.M. Clarke, O. Grumberg and D.A. Peled, Model Checking, MIT
Press, 2000.

9. E.M. Clarke, O. Grumberg and D.E. Long, Model Checking and Ab-
straction, ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 16:5(1512–1542), 1994.

10. S.A. Cook, The Complexity of Theorem-Proving Procedures, in An-
nual ACM Symposium on Theory of Computing, pages 151–158,
New York, 1971.

11. S. Graf, B. Steffen and G. Lüttgen, Compositional Minimisation of
Finite State Systems Using Interface Specifications, in Formal As-
pects of Computing 8:5(607–616), 1996.

12. P. Hudak, Building Domain-Specific Embedded Languages, ACM
Computing Surveys, 28:4, 1996.

13. J.-P. Krimm and L. Mounier, Compositional State Space Generation
from Lotos Programs, in Tools and Algorithms for the Construction
and Analysis of Systems 1997 (TACAS 1997), in Lecture Notes in
Computer Science 1217, 1997.

14. G. Pace and G. Schneider, Invariance Kernels for the Verification of
Polygonal Differential Inclusions, work in progress, 2003.

15. G. Pace, F. Lang and R. Mateescu, Calculating τ -Confluence Com-
positionally, in Computer-Aided Verification (CAV 2003), in Lecture
Notes in Computer Science (volume to appear), 2003.

16. S. Peyton Jones, J. Hughes et al., Report on the Programming Lan-
guage Haskell 98, a Non-strict, Purely Functional Language,, Avail-
able from http://haskell.org, 1999.

