Meta-Functional Languages for
Hardware Design and Verification

Gordon J. Pace and Christian Tabone
University of Malta
gordon.pace@um.edu.mt, christian.tabone@um.edu.mt

Abstract—General purpose functional languages have been argued, and shown, that for the exploration of circuit desig
widely used as host languages for the embedding of domain (especially at the gate level), and such an approach gives
specific languages, especially for hardware description Ianguages.access to very effective abstraction techniques. Progeams

The embedding approach provides various abstraction tech- — . . .
niques, enabling the description of generators for whole families written in the host language, which when executed, generate

of circuits, in particular parameterised regular circuits. The two- the circuit object itself. Despite the advantages gainedhfr
stage language setting that is achieved by means of embeddingthis two-stage language environment, the approach stdsdo
provides a means to reason about the generated circuits as datanot give direct access to the circuit generators themselves
objects within the host language. Nonetheless, these circuit olojis restricting hardware designers to performing analysis an

lack information about their generators, and about the manner .
in which these where generated. In this paper, we explore the apply transformation only at the gate level. Unless one can

use of a meta-programming language to extend the embedding iNSpPect the code generating the circuits at the programming
approach thus enabling us to access the underlying circuit level itself, a higher level analysis is impossible. In this

generators, and not just the circuits themselves. We show _the paper, we address this issue by exploring the design of an
applicability of this approach by using circuit generator analysis embedded hardware description language, Shade, within a

techniques to extract information from a hardware compiler - . .
to enable verification, through the use of model-checking, of refIectlvelanguagereFLeCt— enabling us to view and process

compiler invariants. The main contribution of this paper is to the circuit generators directly. We.ShO\{V that by f0”0Wimliﬁt' .
show how automatic verification of wholefamilies of circuits can approach we are able to prove invariants of whole families

be used in an embedded language setting to verify hardware of circuits, and we illustrate this by proving a number of
compiler invariants. properties of a hardware compiler for the Esterel language.
Keywords-hardware synthesis; correct compilation; embedded = The paper is organised as follows — Section Il discusses
languages. the current state of the art in the area, followed by Section
[l which explains the underlying embedding of Shade in
reFLECt Section IV shows how hardware compilers can be
described in this framework, Section V shows how an Esterel
As circuit size and complexity grows, the need for higheafardware compiler has been proved to be correct, and finally
abstraction in hardware description languages is inangasiwe conclude in Section VI.
One approach is to have a high level language which is used
to describe circuit generators — running programs in such
a language results in concrete instances of the circuit (or
families of circuits). However, designing and developingesv The functional programming paradigm has long been paired
language for a specific domain presents various challengedth the design and verification of circuits, typically byved-
Not only does one need to identify the basic underlyingping a hardware description language embedded in furadtion
domain-specific constructs, but if the language will be Used languages like Haskell. Lava [3], Hydra [9] and Hawk [6] are
writing substantial programs, one has to enhance the lgguauch hardware description languages, and are evidence of th
with other programming features, such as module definitidact that functional languages are not only ideal host laggs
and structures to handle loops, conditionals and compasiti for the embedding of any domain specific language, but ac-
Furthermore, one has to define a syntax, and write a suif@mmodate the semantics of circuit descriptions in cortjanc
of tools for the language — parsers, compilers, interpsetewith the required abstractions with striking similaritiés
etc — before it can be used. One alternative technique tHahctional language features [13]. These embeddings enabl
has been explored in the literature is that of embedding tharious abstraction techniques which enable the deswniot
domain-specific language inside a general purpose languagenerators for generic circuits, such as parametriseditsrc
borrowing its syntax, tools and most of the programming ognd connection patterns. By delaying the evaluation ofudirc
erators. The embedded language is usually developed simgiscriptions and by having access to the abstract syntawtre
as a library in the host language, thus effectively inhegitall the expression, one is able to traverse this structure atpdibu
its features and infrastructure. additional semantic interpretations. The advantage isttiea
The use of embedded languages to build hardware dkfferent semantic interpretations operate on the santarine
scription languages has long been explored [13]. It has beamnthe quoted expression. However, this needs to be done in

I. INTRODUCTION

Il. STATE-OF-THE-ART

two separate stages, first to compose the structure, and tbersub-expressions are hence used to compose the required
to interpret the structure. expression. Note that the signals are unquoted using' the
To enable analysis of circuits at higher levels of abstoacti command, and then re-quoted using {He|} parentheses.
block definitions are used in the language Wired [1] — whichay :: bool sig -> bool sig
however, pays the price of having to use combinators for thet inv (Signal {| ‘a |}) = Signal {| NOT ‘a |};
composmo.n of circuits. . and2 :: (bool, bool) sig -> bool sig
The main weakness of these approaches is that the liet and2 (Signal {| (‘a, ‘b) |}) = ...
formation about generators is lost at the programming level
One solution to this dilemma is to use a reflective langua
to host a hardware description language. A number of s
approaches have been explored. Of particular note is Melh
et al’s work in reFIECt [8], in which they explore the use
of reflection to mark subcircuits but at the cost of forcin
hardware designers to interact with the meta-programmi
features directly. Even paying this price, their approaobsd
not enable direct reasoning about circuit generators, iwhifo

blv is a desirabl Lo his closelv mlat the above, which can be presented to the end user to be
arguably IS a desirable goal. DUr approach Is closely € used for other circuit descriptions. The constant expoessi
theirs, except that we structure the language in such a man

. X Hféh and low represent the constantly high, and constantly
to enable processing the generators__dlrectly_ —_thus ergibllI'aw signals respectively, and thielay gate (parametrised by
us to prove properties of whole families of circuits. a boolean value giving the initial value of the output strgam
produces a stream of values identical to the input except tha
[1l. EMBEDDING A HDL IN reFL€Ct it is delayed by one clock cycle.

reFIECt [5] is a strongly-typed functional language with To create loops in a circuit, Shade provides a fix-point op-

meta-programming capabilitiesFl€Ctwas developed as parterator, iIIustrated_ in the. following example defining a stgr
of the Forte tool [12]; a hardware verification system used a;ased on a multiplexer:
Intel. reFL€C provides quotation and antiguotation constructé,ef)rg“?agz'z Ef"mt;))s’ “a. and2 (s, b)):
allowing the composition and decomposition of unevaluated
expressions, defined in terms of theFIlECt language itself. I et setRegister (set, new_value) =
These meta-programming constructs allow a form of reflactio ' °©°P now . et old = delay low now in _
. mux (set, (old, new value));
within a typed functional paradigm setting, enabling direc
access to the structure of object programs. This is madeNote that the reuse of user defined circuit components is
possible by giving access to the internal representation iggntical to the use of the primitive components. Anotheo tw
the abstract syntax tree of the quoted expressions. Toaelti €xamples, which will be used later on in this paper, are the
pattern matching can even be used on this representation,Cicuits somet i nes (and al ways), which given an input,
lowing the structure of unevaluated expressions to be otsge output a high signal if the input was true sometime (always)
and interpreted according to the developer's requiremenid the past up to, and including, the current point in time:
Antiquotation constructs can be used in conjunction with th et sometimes x = loop ok . or2 (x, delay |ow ok)
pattern matching mechanism to compose or decompose objéét @ ways x = loop ok . and2 (x, delay high ok)
programs, permitting the developer to modify or transfoh@ t ~ Other similar circuits, such asever (the input has never
quoted expression at runtime before evaluation. been true up to and including now) andice (the input has
Shadeis a HDL we have developed, as an embedding imeen true exactly once in the past up to and including now)
reFLECL Circuits are strongly typed, but are internally storedan be similarly defined.
as quotedeFl€Ctterms. In a language without reflection one The embedding of a HDL gives the ability to provide
usually transforms descriptions into data objects by mednsmultiple interpretations to the same circuit descriptid][
a deep embedding. Through the use of the meta-programmigade provides various interpretations for the descrilied c
features inreFLeCt we use quoted shallow embedded deeuits, such as simulation by traversing the circuit strietu
scriptions which still allow us access to the circuit staset using the meta-programming characteristics foundefi€Ct
The conservation of an unevaluated expression of a circaitd performing an appropriate interpretation. The politsibi
definition provides the actual structural description tigt to apply pattern matching over quoted expressions, enalsles
required, which can still be interpreted directly to obtaim to inspect, analyse and translate the structure into otherdts
output, thus achieving circuit simulation. Unevaluatedn® such as netlists.
thus become the primary type of embedded programs whichShade also supports circuit verification though the use of
in our case, contain circuit descriptions with the potdrtta external model checkers. Instead of embedding a property
evaluate to any signal representation. language, we follow an observer-based approach, in which
Primitive gates ensure that the signals are of the corrgmbperties are also described as circuits which take thatsnp
structure and type, whilst decomposing the structure withand outputs of the circuit to be verified and return the result
the type term into the appropriate input signals. Theseassgnas a single boolean output. Hence, for a circuit to satisfy a

Internally, the primitive gates are composed by quoted
Y&rsions of their boolean operator counterparts, usinigj@ox

ions to deal with quotations in their parameters. Howeve

the end user perspective, who sees only the signature

of these functions, all use of meta-programming features is
Ridden away. When defining larger circuits no reference to
t%e meta-programming features is made.
Other primitive gates are defined using functions similar

property, the observer circuit has to output a constant hi
value. Although this limits the verifiable class of propesti
to safety properties, this approach avoids the need of jan
additional embedded language. Currently Shade is corghegte
to the SMV model checker [7].

For instance, consider a property to verify that if both itspu NONON N N NN
of a multiple>.<er are equal, thep no matter what the valge gif. 1. A Sklansky parallel prefix circuit
the sector wire is, the output is equal to the common |nputg
values. This property can be expressed as follows. Note that
equality £==) and implication £=>) operators are built using
the primitive gates.
let obs_mux ((s, (a, b)), o) = (a === b) ==> (0 === a)

host language. However, in such approaches the abstraction
layers that are achieved still lead to a structural desoripf
the circuit. An alternative approach which is increasingiyng
Combining this with the multiplexer circuit, and passingsed is that of automatic hardware synthesis, or compilatio
the output of this observer to create a model using a circiibm a high level algorithmic description directly into a
interpretation which generates the input of a model checketructural description.
enables the property to be verified automatically. Pace and Claessen [4] present a framework in which such
As an illustrative example we show the use of Shade tgorithmic or behavioural descriptions can be mergediwith
define parallel prefix circuits, in particular Sklasky netk® the structural descriptions, by following the embedding ap
The implementation in Shade of more complex prefix circuitsroach. The idea is to develop another layer on top of the
can be found in [11]. already existing embedded HDL. The behavioural descriptio
Parallel prefix networks are circuits which given (i) danguage is embedded by specifying the syntax in terms of
number ofn input wiresio, iy, . . . i,—1; and (i) an associative a datatype, and the structural description for each of the
binary operator®, outputn wires carrying the valuesy, language constructs is described. The compilation praeedu
io @ i1, i0 ® (i1 © d2), etc. A well-known prefix circuit corresponds to a circuit parametrised by the data object
generator is the Sklansky network — performing the paralledpresenting the language constructs.
prefix operation by dividing the input bus into two recurfve An ongoing issue with hardware compilation is that the
The binary operator is applied to the last bit of the first hafompilation procedure should ideally be verified to be cor-
over the entire second half of the bus. In implementing thect. In practice this can be a long and tedious process.
Sklansky prefix network circuit (see Figure 1), we focus oDeveloping various high level DSLs to solve a problem is
how the marking of blocks is handled within such descritionincreasingly becoming a common trend, which mean that
The recursive definition for the Sklansky network is given asardware verification has to be done more frequently, some-
the auxiliary functionskl * marking blocks as the recursivetimes by the same hardware designer. Pace and Claessen
description unfolds. Note the use oakeBl ock to delimit [10] showed how certain hardware compiler invariants can be

the recursive calls in the circuit generator. model checked automatically through the use of the compiler
letrec skl nopinp = description and structural induction over the program type
let ski’ 1 op inps =inps However, using a functional language such as Haskell, with

/\ skl” n op inps
val (Ist,rst)
let Is2

splitsSignal Bus n inps in no meta-programming capabilities, transforming the cdenpi
skl (busLength Ist) op Ist in description into the verification framework has to be perfed

let rs2 skl (busLength rst) op rst in phy hand, even if it follows a uniform pattern. Thus, the

let carry lastSignal Is2 in ior disad ith thi his th h <d

let apply r op (carry.) in major disadvantage with this approach is that the transtdrm

Is2 @ map apply rs2 in description might not match exactly with the structure of
makeBl ock (ski’ n op) inp; the hardware compiler, due to user induced errors since the

The circuit generator corresponds to an infinite family glescriptions are defined separately by the hardware designe
circuits — one for each width of the bus. Although wdespite the relation between the two circuit generatorssnwh
can use Shade to access model checkers to verify particging a language like Lava, there is no possible way to
instances of Sklansky networks, it is not straightforwasd tmaintain a programmable connection between the two. In
verify properties of the whole family of circuits. In the tef Shade, we can allow the designer to write a domain specific
the paper we discuss how we can provide access to the cird@tdware compiler, and verify properties without the need t
generators to be able to reason about such families of tircurewrite a transformation function. We achieve this by using

rather than just individual instances. the meta-programming features ®FIECt to automatically
transform the compiler into an appropriate generator dapab
IV. HARDWARE COMPILERS to construct observer models that can be interpreted byta fini

The characteristics of embedded languages provide Wayss{ﬁte model checker.
advance to higher levels of abstraction used for circuit de- -
scriptions. In the case of regular circuits, concise dptioris A- Compiling Flash
in the host language can be used to describe large, compleXVe illustrate the process by looking at the embedding of
circuits, using modularity and abstraction techniquesiftbe a hardware compiler in Shade — using the Flash language

from [4], which is a basic language with imperative program- To perform the above formal reasoning on circuits, the prop-
ming constructs. Programs in Flash are simply instances oéwies need to be encoded as observer circuits and appedpria

datatype inreFLECt attached to the compiler circuit. Therefore, one has to (i)
lettype Flash = Skip | Shout | Delay compile the construct with empty subprograms; (ii) connect
I ISf ThglnEl rs]eFI(bog' lsi g) FlFi'slsth::i’slshh the input and output wires of each empty subcomponent to an
eq as as ar as as . P . .
| Wile (bool sig) Flash: observer circuit; (iii) connect the input and output wirdshe

.) outer block to an observer; (iv) universally quantifyingeothe
Note that Flash has the standard imperative language fgger circuit inputs, and the inner block outputs; and (\Qver
tures, such as sequential composition and conditionalitbutat the conjunction of the inner observers implies the route
also supports a fork-join construct. For simplicity, p@@is in - gpserver. Consider the case of sequential composition hand
Flash have a smglg output wire low by default,_ but which cagygeq below, which says that for a given observer cirahi,
be pushed up to high (for one clock cycle) using 8fout e circuit generated by the sequential composition of two

@nstrug?ioni The b;‘SiC instrulctiokrShOIIJt a”gSki_aZ terminljte circuits satisfying the observer will itself satisfy thesahver:
immediately (in the same clock cycle), wherdae ay takes =~ seq obs (s, (pSh. pF). (qSh, af)) =

one clock cycle to terminate. The instructi@nout is the let gS pF in
only instruction used to set the output wire to high. Flash let f gF in

i i i ireui ; i ; let sh or2(psh, gsh) in
programs WI|| be. compl!ed into circuits with one input wire . obs(pS, (pSh. ph)) in
start (which will be high for one clock cycle to start the et qok = obs(gs, (gsh, qF)) in
program), and two output wireshout andfi ni sh (the let ok

obs(s, (sh, f)) in

first is the output of the program, while the latter will be and2(pck. qok) ==> ok;

high for one clock cycle when the program has terminated). Similar cases would be written for each syntactic case,
For more details about Flash and its compilation refer to [4dnd verifying a compiler invariant then corresponds to nhode
The hardware compilation schemes for Flash are given dhecking each of the cases.

Figure 2. In Shade, the constructs designs can be implethente
directly using pattern matching over the datatype, andnzall c
the compile function recursively over the subprograms. The

following is the code to handle two of the syntactic cases: N practice, for most properties the approach does not work.
The structural induction cases we are attempting to prate st

Temporal Induction

letrec conpile Shout start =

let shout = start in that if the inner compiled blocks are working well now, then
l(e:] fi ni ?_h = ﬁ; art in so is the outer block. If the inner blocks break the invariant
shout, Inls : H H H H H
I conpile (Seq p q) start = for a period of time, but then satisfy it again later on, in
val (pShout, pFinish) = compile p start in this approach we expect that the outer block starts satigfyi
val (gShout, gFinish) = conpile g pFinish in the invariant again. In practice we need a stronger notion —

| et shout = or2 (pShout, qgShout) in

(shout, gFinish): once the inner blocks have stopped working sometime in the

past, the outer block is relieved of its obligation to satisfe
. . invariant. For instance, consider the following invariartich
B. Compiler Invariants states that if a Flash program terminates (it produces a high
A compiler should conform to its specification — for exsignal over thef i ni sh wire), then the program must have
ample, circuits produced by the Flash compiler should shoueen started at some point in time:
never terminate unless started some time before. AnOth@f ¢ ashinvo1 (start, (shout, finish)) =
property is that if a program is started once, then this ghoul finish ==> soneti nmesl nThePast start;

only terminate once. Consequently, we can specify that aUsing the néve version of structural induction shown above,

program generates a termination signal for each time it 4, 54| checker identifies a counter example for the sequen

started, tial case in which the values of the start, finish wires and the
One way to verify whether such prqpert!es, or invarianty tput of the invariant observer for the outer block, ande

are SatISﬂed. by the hardware compiler is to use for.m ner blocks of the sequential composition of two programs.

model chep King .[lO]'. To prove the correctness of an INV&MaR, ote that the first block finished without starting in the first

structural induction is _applled over the_ Ianguag_e CON&HUC 1o unit, but then proceeded to work correctly in the second

where each construct is proved to satisfy the given propegiy, it This induced the second block to produce a finish

by assuming that this is a]so satisfied by_the subprogrargfgnal in the second time unit, thus finishing the outer block
thus proving that any compiled program satisfies the Pr9PETy"the second time unit (when both inner blocks satisfy the

When cons[dermg Flash, One can prove an Invaraover a invariant) without ever having received a start signal:
program using structural induction:

start fin inv| startl fin2 invl| start2 fin2 inv2
F 7(Skip) F 7 (Shout) F mw(Delay) 0 0 1 0 1 0 1 0 1
V¢, P,Q - m(P)A7w(Q) F 7(IfThenElse c P Q) 0 1 0 0 0 0 0 1 1
VP,Q- - 7(P)AT(Q) F 7(SeqP Q)) o
VP,Q - 7(P) Am(Q) + m(Parallel P Q) The solution to such a problem is either to strengthen the
vV c,P - w(P) - mw(While c P) invariant or by adding temporal induction into the verifioat
VP - w(P) methodology as given below:

Skip Delay

start start ‘
IfThenElse Parallel While
low | shout low]_shout start start
o start|
finish finish l
Shout Sequential cond|
start lstart
finish 5 shout
shout I) shout
lfinish i
finish H finish
l finish
Fig. 2. Hardware designs of Flash
tig:iéﬁl) systems. Concurrent constructs enable different sectidns
- n(Delay) th.e same program to funct_ion in paraIIeI,_ yet in sync.hro.ny
¥ ¢,P,Q - always(m(P) An(Q)) + m(IfThenElse c P Q) with each other. This is achieved by enabling communication
vV P,Q - always(w(P) A7w(Q)) - 7(Seq P Q) through the broadcasting of signals. Esterel is used torgnog
VP,Q - always(m(P) Am(Q)) F m(Parallel P Q) reactive systems, such as real-time controllers, comratioit
V c,P - always(w(P)) F w(While c P)

protocols and system drivers. Apart from simulation tools,
Esterel compilers can translate programs into C code and
hardware description languages, such as VHDL or Verilog.
D. Automating Hardware Verification The Esterel language is similar to the Flash language
Note that the design of these cases can become qm@ presen_ted earli.er, but with a. more intricate semantics to
complex and error prone. Furthermore, when developing"gndleschizophrenig2], which arises when a restarted loop
hardware compiler, changes to the compiler code will halg'minates immediately. The compilation process is simda
to be reflected faithfully in the syntactic cases. It is thesyy that of Flash, but adds an additional finish wire.
desirable to be able to extract this information autom#gicaconpil e programstart =
from the hardware compiler code. Through the use of the hos ﬁt (emit, (finishi, finish2))
meta-language it is actually possible to extract it, redgciser _ o i
intervention, thus ensuring that the structural inductiases 1© @PPreciate the intricacies of the language, consider the
are automatically and accurately generated. following Esterel program:
By quoting the hardware compiler one can access thet prog w = Wile high _
structure of the actual compiler code to identify the diffar (Par (1fThenEl se w Delay Skip, Delay));
cases — by performing structural induction, the compiler Consider the situation when the program is started with a
description is broken into the individual alternative ageor high signal onw. Once the loop starts it triggers the fork-
each of the cases the circuit is transformed using the typejai construct, terminating one clock cycle later. In pautar
the observer, and an appropriate function is composed as ¢easider the finish wire on the output of the conditional case
result. Meta-programming is essential in order to autortiete which is high in the second cycle. Upon termination of the
necessary transformations, since this enables inspeatitie fork-join block, the loop is started again. Note that nowwif
function describing the hardware compiler. This approaah his low, the conditional terminates immediately, overlagpihe
been used to prove several compiler invariants. For instantinish signal at the same time unit as the previously produced
the invariant | ashl nv01 can now be verified automatically.one. Since outputting high on the same wire over the same
The strength of this approach is that when changing tleock cycle has no noticeable effect, the second finish signa
compiler code, the inductive cases need not be recodedigdost to the synchroniser of the fork-join construct, whic
match the new compiler code, ensuring that the inductiygoceeds to wait indefinitely till the first branch produces
cases and the compiler code match and thus that we are reatipther high signal. To avoid the overflow on the finish wire,
verifying properties of the actual compiler we have written the second finish appears on the second finish wire.
The constructive semantics for Esterel solve this problem
V. CORRECTCOMPILATION OF ESTERELINTO HARDWARE py duplicating the logic related to such termination wires,
Esterel [2] is a synchronous programming language withus each circuit would contain multiple termination wires
characteristics that enables the programming of concurrelepending on the number of possible occurrences. An in-

VP - w(P)

depth study of the schizophrenia problem is given in theatures can be used to automatically generate and extract
circuit translations of the constructive semantics of Eedte verification models from the circuit generators of hardware
[2]. Although the solution is well known, ensuring correess compilers. Reflection enables us to provide a framework
of the compilation is not straightforward due to the intteca in which user intervention is minimised, thus ensuring that
compilation. Using structural induction with automatigal changes to the hardware compiler reflect faithfully the olese
induced cases, we proved invariants of Esterel compilationcircuits required for the structural induction reasoning.

« The finish wires work correctly: This property ensures An advantage of our approach to other related ones, is that
that the finish wire encoding works correctly in that théhe hardware designer using Shade need not be aware of meta-

use of the finish wires can never produce the combinati®focgramming features, which are kept hidden inside Shade.
low, high: The only exception to this design principle is the need taguo

let esterellnvariantl ... = f2 ==> f1; a hardware compiler before analysis.

« No start, no finish: Another sanity check for the compiler The use of model checking for structural reasoning about
is that an Esterel program may never terminate unlefamilies of systems has been used under various guises in
explicitly started: different domains. Our application of the technique, auto-
let esterellnvariant2 ... = matically extracting the inductive cases from the desicniyst

never go ==>inv (or2 fs) enhances the use embedded languages for hardware design

. S_ingle start,_sin_gle finish: If only a single start is eVegpport. The primary gains in the use of meta-programming
given, the circuit may not output on the second finis;ithin Shade are marking and manipulation of circuit blgcks
wire, and may at most, output only once on the first finisfng the analysis of circuit generators. In this paper we have
wire. The following observer uses toace circuit which aypjored the use of Shade to automatically extract strattur
outputs high as long as the input has been high at mQsfjction cases for a hardware compiler, to enable the model

Iontce irt‘ thel Ipast:. 3 g checking of control path invariants. We are currently wogki
et esterellnvarian ... = once go == . . .
and2 (never f2, or2 (never f1, gnce £1)) on extending these results for the analysis of the data path i

. One finish for each start: Each finish must have a cortiCh languages, which poses new challenges, since thefsize o
responding start, as long as the environment disallowd!§ Output may grow as the output wires increase.
program to be started unless it has previously finished

(encoded in the observeisedWel |). REFERENCES
let esterellnvariant4 (go, (e, (f1, f2))) = [1] Emil Axelsson, Koen Linstim Claessen, and Mary Sheeran. Wired:
et wasRunning = ... in Wire-aware circuit design. IiProc. of Correct Hardware Design and
al ways (usedvell (go, (e, (f1, f2)))) ==> Verification Methods (CHARMEYolume 3725 ofLNCS 2005.
and2(fl ==> or2 (go, wasRunning) [2] G. Berry. The constructive semantics of Pure Esterel. ilalate from
, 2 ==> and2 (go, wasRunning)) http://www«sop.inria.fr/esterel.org/filesvs 92/,

« The second finish wire is never high twice in succession: 1999.

As long as the environment disallows a program to béS] Per Bjesse, Koen Lingdm Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. Rroc. of International Conference

started unless it has previously finished, it will never be on Functional ProgrammingACM SIGPLAN, 1998.

the case of having two successive high signals on thél
second finish wire.
l et esterellnvariant5 (go, (e, (f1, f2))) = (5]
al ways (usedWell (go, (e, (f1l, f2)))) ==>
(f2 ==> delay T (inv f2))

o A third finish wire is redundant: Although adding a [6]
second wire seems a reasonable solution to the problem,
it may be unclear why a third wire is not necessary. On
way of showing that such a wire would be redundant
is by extending the Esterel hardware compiler to hav?g]
three finish wires, and proving that the third finish wire

is constantly low: [9]
let esterellnvariant6 ... = always (
usedwel | (go, (e, (f1, f2, £3)))) ==> inv f3) [10]

In this manner, by means of model-checking techniques, vy,
have proved that the control path of compiled Esterel progra
maintains certain compiler invariants, thus increasing OHZ]
confidence in the compilation process.

VI. CONCLUDING DiscussIiON [13]

In this paper, we have built on these results by enabling
placement combinators to be added to the block markings,
without disrupting the functional style of the circuit depe
tions. Furthermore, we have shown how meta-programming

K. Claessen and G. J. Pace. An embedded language framework f
hardware compilation. Ithe proceedings of Designing Correct Circuits
2002 2002.

Jim Grundy, Tom Melham, and John O’Leary. A reflective ftiocal
language for hardware design and theorem providgurnal of Func-
tional Programming 16(2):157-196, 2006.

J. Launchbury, J. R. Lewis, and B. Cook. On embedding a raicfd-
tectural design language within haskelBIGPLAN Not. 34(9):60-69,
1999.

1 Kenneth L. McMillan. Symbolic Model Checking: An approach to

the state explosion problenPhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1992.

Tom Melham and John O’Leary. A functional HDL in reFLedh the
proceedings of Designing Correct Circuits 2Q@006.

J. O’Donnell. Overview of hydra: a concurrent languagesynchronous
digital circuit design.Int. J. of Information pages 249-264, 2006.

G.J. Pace and K. Lingim Claessen. Verifying hardware compilers. In
Computer Science Annual Workshop 200Biversity of Malta, 2005.
Gordon J. Pace and Christian Tabone. Access to ciranetors in
embedded hdls. Ithe proceedings of Designing Correct Circuits 2008
2008.

C.-J. Seger, R.B. Jones, J. O’Leary, T. Melham, M.D. AadaC. Bar-
rett, and D. Syme. An industrially effective environment farrhal
hardware verificationlEEE Transactions on Computer-Aided Design of
Integrated Circuits and System24(9), 2005.

Mary Sheeran. Hardware design and functional programgnarperfect
match.Journal of Universal Computer Sciencil(7):1135-1158, 2005.

