
1

Meta-Functional Languages for
Hardware Design and Verification

Gordon J. Pace and Christian Tabone
University of Malta

gordon.pace@um.edu.mt, christian.tabone@um.edu.mt

Abstract—General purpose functional languages have been
widely used as host languages for the embedding of domain
specific languages, especially for hardware description languages.
The embedding approach provides various abstraction tech-
niques, enabling the description of generators for whole families
of circuits, in particular parameterised regular circuits. The two-
stage language setting that is achieved by means of embedding,
provides a means to reason about the generated circuits as data
objects within the host language. Nonetheless, these circuit objects
lack information about their generators, and about the manner
in which these where generated. In this paper, we explore the
use of a meta-programming language to extend the embedding
approach thus enabling us to access the underlying circuit
generators, and not just the circuits themselves. We show the
applicability of this approach by using circuit generator analysis
techniques to extract information from a hardware compiler
to enable verification, through the use of model-checking, of
compiler invariants. The main contribution of this paper is to
show how automatic verification of wholefamilies of circuits can
be used in an embedded language setting to verify hardware
compiler invariants.

Keywords-hardware synthesis; correct compilation; embedded
languages.

I. I NTRODUCTION

As circuit size and complexity grows, the need for higher
abstraction in hardware description languages is increasing.
One approach is to have a high level language which is used
to describe circuit generators — running programs in such
a language results in concrete instances of the circuit (or
families of circuits). However, designing and developing anew
language for a specific domain presents various challenges.
Not only does one need to identify the basic underlying
domain-specific constructs, but if the language will be usedfor
writing substantial programs, one has to enhance the language
with other programming features, such as module definition
and structures to handle loops, conditionals and composition.
Furthermore, one has to define a syntax, and write a suite
of tools for the language — parsers, compilers, interpreters,
etc — before it can be used. One alternative technique that
has been explored in the literature is that of embedding the
domain-specific language inside a general purpose language,
borrowing its syntax, tools and most of the programming op-
erators. The embedded language is usually developed simply
as a library in the host language, thus effectively inheriting all
its features and infrastructure.

The use of embedded languages to build hardware de-
scription languages has long been explored [13]. It has been

argued, and shown, that for the exploration of circuit design
(especially at the gate level), and such an approach gives
access to very effective abstraction techniques. Programsare
written in the host language, which when executed, generate
the circuit object itself. Despite the advantages gained from
this two-stage language environment, the approach still does
not give direct access to the circuit generators themselves
— restricting hardware designers to performing analysis and
apply transformation only at the gate level. Unless one can
inspect the code generating the circuits at the programming
level itself, a higher level analysis is impossible. In this
paper, we address this issue by exploring the design of an
embedded hardware description language, Shade, within a
reflectivelanguagereFLect— enabling us to view and process
the circuit generators directly. We show that by following this
approach we are able to prove invariants of whole families
of circuits, and we illustrate this by proving a number of
properties of a hardware compiler for the Esterel language.

The paper is organised as follows — Section II discusses
the current state of the art in the area, followed by Section
III which explains the underlying embedding of Shade in
reFLect, Section IV shows how hardware compilers can be
described in this framework, Section V shows how an Esterel
hardware compiler has been proved to be correct, and finally
we conclude in Section VI.

II. STATE-OF-THE-ART

The functional programming paradigm has long been paired
with the design and verification of circuits, typically by devel-
oping a hardware description language embedded in functional
languages like Haskell. Lava [3], Hydra [9] and Hawk [6] are
such hardware description languages, and are evidence of the
fact that functional languages are not only ideal host languages
for the embedding of any domain specific language, but ac-
commodate the semantics of circuit descriptions in conjunction
with the required abstractions with striking similaritiesto
functional language features [13]. These embeddings enable
various abstraction techniques which enable the description of
generators for generic circuits, such as parametrised circuits
and connection patterns. By delaying the evaluation of circuit
descriptions and by having access to the abstract syntax tree of
the expression, one is able to traverse this structure and output
additional semantic interpretations. The advantage is that the
different semantic interpretations operate on the same instance
of the quoted expression. However, this needs to be done in

two separate stages, first to compose the structure, and then
to interpret the structure.

To enable analysis of circuits at higher levels of abstraction,
block definitions are used in the language Wired [1] — which,
however, pays the price of having to use combinators for the
composition of circuits.

The main weakness of these approaches is that the in-
formation about generators is lost at the programming level.
One solution to this dilemma is to use a reflective language
to host a hardware description language. A number of such
approaches have been explored. Of particular note is Melham
et al.’s work in reFLect [8], in which they explore the use
of reflection to mark subcircuits but at the cost of forcing
hardware designers to interact with the meta-programming
features directly. Even paying this price, their approach does
not enable direct reasoning about circuit generators, which
arguably is a desirable goal. Our approach is closely related to
theirs, except that we structure the language in such a manner
to enable processing the generators directly — thus enabling
us to prove properties of whole families of circuits.

III. E MBEDDING A HDL IN reFLect

reFLect [5] is a strongly-typed functional language with
meta-programming capabilities.reFLect was developed as part
of the Forte tool [12]; a hardware verification system used by
Intel. reFLect provides quotation and antiquotation constructs,
allowing the composition and decomposition of unevaluated
expressions, defined in terms of thereFLect language itself.
These meta-programming constructs allow a form of reflection
within a typed functional paradigm setting, enabling direct
access to the structure of object programs. This is made
possible by giving access to the internal representation of
the abstract syntax tree of the quoted expressions. Traditional
pattern matching can even be used on this representation, al-
lowing the structure of unevaluated expressions to be inspected
and interpreted according to the developer’s requirements.
Antiquotation constructs can be used in conjunction with the
pattern matching mechanism to compose or decompose object
programs, permitting the developer to modify or transform the
quoted expression at runtime before evaluation.

Shadeis a HDL we have developed, as an embedding in
reFLect. Circuits are strongly typed, but are internally stored
as quotedreFLect terms. In a language without reflection one
usually transforms descriptions into data objects by meansof
a deep embedding. Through the use of the meta-programming
features in reFLect, we use quoted shallow embedded de-
scriptions which still allow us access to the circuit structure.
The conservation of an unevaluated expression of a circuit
definition provides the actual structural description thatis
required, which can still be interpreted directly to obtainan
output, thus achieving circuit simulation. Unevaluated terms
thus become the primary type of embedded programs which,
in our case, contain circuit descriptions with the potential to
evaluate to any signal representation.

Primitive gates ensure that the signals are of the correct
structure and type, whilst decomposing the structure within
the type term into the appropriate input signals. These signals

or sub-expressions are hence used to compose the required
expression. Note that the signals are unquoted using the8

command, and then re-quoted using the{| |} parentheses.
inv :: bool sig -> bool sig
let inv (Signal {| 8a |}) = Signal {| NOT 8a |};

and2 :: (bool, bool) sig -> bool sig
let and2 (Signal {| (8a, 8b) |}) = ...

Internally, the primitive gates are composed by quoted
versions of their boolean operator counterparts, using antiquo-
tations to deal with quotations in their parameters. However,
from the end user perspective, who sees only the signature
of these functions, all use of meta-programming features is
hidden away. When defining larger circuits no reference to
the meta-programming features is made.

Other primitive gates are defined using functions similar
to the above, which can be presented to the end user to be
used for other circuit descriptions. The constant expressions
high and low represent the constantly high, and constantly
low signals respectively, and thedelay gate (parametrised by
a boolean value giving the initial value of the output stream)
produces a stream of values identical to the input except that
it is delayed by one clock cycle.

To create loops in a circuit, Shade provides a fix-point op-
erator, illustrated in the following example defining a register
based on a multiplexer:
let mux (s, (a,b)) =
or2 (and2 (inv s, a), and2 (s, b));

let setRegister (set, new_value) =
loop now . let old = delay low now in

mux (set, (old, new_value));

Note that the reuse of user defined circuit components is
identical to the use of the primitive components. Another two
examples, which will be used later on in this paper, are the
circuits sometimes (and always), which given an input,
output a high signal if the input was true sometime (always)
in the past up to, and including, the current point in time:
let sometimes x = loop ok . or2 (x, delay low ok)
let always x = loop ok . and2 (x, delay high ok)

Other similar circuits, such asnever (the input has never
been true up to and including now) andonce (the input has
been true exactly once in the past up to and including now)
can be similarly defined.

The embedding of a HDL gives the ability to provide
multiple interpretations to the same circuit description [13].
Shade provides various interpretations for the described cir-
cuits, such as simulation by traversing the circuit structure
using the meta-programming characteristics found inreFLect

and performing an appropriate interpretation. The possibility
to apply pattern matching over quoted expressions, enablesus
to inspect, analyse and translate the structure into other formats
such as netlists.

Shade also supports circuit verification though the use of
external model checkers. Instead of embedding a property
language, we follow an observer-based approach, in which
properties are also described as circuits which take the inputs
and outputs of the circuit to be verified and return the result
as a single boolean output. Hence, for a circuit to satisfy a

property, the observer circuit has to output a constant high
value. Although this limits the verifiable class of properties
to safety properties, this approach avoids the need of an
additional embedded language. Currently Shade is connected
to the SMV model checker [7].

For instance, consider a property to verify that if both inputs
of a multiplexer are equal, then no matter what the value of
the sector wire is, the output is equal to the common input
values. This property can be expressed as follows. Note that
equality (===) and implication (==>) operators are built using
the primitive gates.
let obs_mux ((s, (a, b)), o) = (a === b) ==> (o === a)

Combining this with the multiplexer circuit, and passing
the output of this observer to create a model using a circuit
interpretation which generates the input of a model checker,
enables the property to be verified automatically.

As an illustrative example we show the use of Shade to
define parallel prefix circuits, in particular Sklasky networks.
The implementation in Shade of more complex prefix circuits
can be found in [11].

Parallel prefix networks are circuits which given (i) a
number ofn input wiresi0, i1, . . . in−1; and (ii) an associative
binary operator⊕, output n wires carrying the valuesi0,
i0 ⊕ i1, i0 ⊕ (i1 ⊕ i2), etc. A well-known prefix circuit
generator is the Sklansky network — performing the parallel
prefix operation by dividing the input bus into two recursively.
The binary operator is applied to the last bit of the first half
over the entire second half of the bus. In implementing the
Sklansky prefix network circuit (see Figure 1), we focus on
how the marking of blocks is handled within such descriptions.
The recursive definition for the Sklansky network is given as
the auxiliary functionskl’ marking blocks as the recursive
description unfolds. Note the use ofmakeBlock to delimit
the recursive calls in the circuit generator.
letrec skl n op inp =

let skl’ 1 op inps = inps
/\ skl’ n op inps =

val (lst,rst) = splitSignalBus n inps in
let ls2 = skl (busLength lst) op lst in
let rs2 = skl (busLength rst) op rst in
let carry = lastSignal ls2 in
let apply r = op (carry, r) in
ls2 @ map apply rs2 in

makeBlock (skl’ n op) inp;

The circuit generator corresponds to an infinite family of
circuits — one for each width of the bus. Although we
can use Shade to access model checkers to verify particular
instances of Sklansky networks, it is not straightforward to
verify properties of the whole family of circuits. In the rest of
the paper we discuss how we can provide access to the circuit
generators to be able to reason about such families of circuits,
rather than just individual instances.

IV. H ARDWARE COMPILERS

The characteristics of embedded languages provide ways to
advance to higher levels of abstraction used for circuit de-
scriptions. In the case of regular circuits, concise descriptions
in the host language can be used to describe large, complex
circuits, using modularity and abstraction techniques from the

Fig. 1. A Sklansky parallel prefix circuit

host language. However, in such approaches the abstraction
layers that are achieved still lead to a structural description of
the circuit. An alternative approach which is increasinglybeing
used is that of automatic hardware synthesis, or compilation;
from a high level algorithmic description directly into a
structural description.

Pace and Claessen [4] present a framework in which such
algorithmic or behavioural descriptions can be merged within
the structural descriptions, by following the embedding ap-
proach. The idea is to develop another layer on top of the
already existing embedded HDL. The behavioural description
language is embedded by specifying the syntax in terms of
a datatype, and the structural description for each of the
language constructs is described. The compilation procedure
corresponds to a circuit parametrised by the data object
representing the language constructs.

An ongoing issue with hardware compilation is that the
compilation procedure should ideally be verified to be cor-
rect. In practice this can be a long and tedious process.
Developing various high level DSLs to solve a problem is
increasingly becoming a common trend, which mean that
hardware verification has to be done more frequently, some-
times by the same hardware designer. Pace and Claessen
[10] showed how certain hardware compiler invariants can be
model checked automatically through the use of the compiler
description and structural induction over the program type.
However, using a functional language such as Haskell, with
no meta-programming capabilities, transforming the compiler
description into the verification framework has to be performed
by hand, even if it follows a uniform pattern. Thus, the
major disadvantage with this approach is that the transformed
description might not match exactly with the structure of
the hardware compiler, due to user induced errors since the
descriptions are defined separately by the hardware designer.
Despite the relation between the two circuit generators, when
using a language like Lava, there is no possible way to
maintain a programmable connection between the two. In
Shade, we can allow the designer to write a domain specific
hardware compiler, and verify properties without the need to
rewrite a transformation function. We achieve this by using
the meta-programming features ofreFLect, to automatically
transform the compiler into an appropriate generator capable
to construct observer models that can be interpreted by a finite
state model checker.

A. Compiling Flash

We illustrate the process by looking at the embedding of
a hardware compiler in Shade — using the Flash language

from [4], which is a basic language with imperative program-
ming constructs. Programs in Flash are simply instances of a
datatype inreFLect:
lettype Flash = Skip | Shout | Delay

| IfThenElse (bool sig) Flash Flash
| Seq Flash Flash | Par Flash Flash
| While (bool sig) Flash;

Note that Flash has the standard imperative language fea-
tures, such as sequential composition and conditional, butit
also supports a fork-join construct. For simplicity, programs in
Flash have a single output wire low by default, but which can
be pushed up to high (for one clock cycle) using theShout
instruction. The basic instructionsShout andSkip terminate
immediately (in the same clock cycle), whereasDelay takes
one clock cycle to terminate. The instructionShout is the
only instruction used to set the output wire to high. Flash
programs will be compiled into circuits with one input wire
start (which will be high for one clock cycle to start the
program), and two output wiresshout and finish (the
first is the output of the program, while the latter will be
high for one clock cycle when the program has terminated).
For more details about Flash and its compilation refer to [4].
The hardware compilation schemes for Flash are given in
Figure 2. In Shade, the constructs designs can be implemented
directly using pattern matching over the datatype, and calling
the compile function recursively over the subprograms. The
following is the code to handle two of the syntactic cases:
letrec compile Shout start =

let shout = start in
let finish = start in
(shout, finish)

/\ compile (Seq p q) start =
val (pShout, pFinish) = compile p start in
val (qShout, qFinish) = compile q pFinish in
let shout = or2 (pShout, qShout) in
(shout, qFinish);

B. Compiler Invariants

A compiler should conform to its specification — for ex-
ample, circuits produced by the Flash compiler should should
never terminate unless started some time before. Another
property is that if a program is started once, then this should
only terminate once. Consequently, we can specify that a
program generates a termination signal for each time it is
started.

One way to verify whether such properties, or invariants,
are satisfied by the hardware compiler is to use formal
model checking [10]. To prove the correctness of an invariant,
structural induction is applied over the language constructs,
where each construct is proved to satisfy the given property
by assuming that this is also satisfied by the subprograms,
thus proving that any compiled program satisfies the property.
When considering Flash, one can prove an invariantπ over a
program using structural induction:

⊢ π(Skip) ⊢ π(Shout) ⊢ π(Delay)
∀ c, P, Q · π(P) ∧ π(Q) ⊢ π(IfThenElse c P Q)
∀ P, Q · π(P) ∧ π(Q) ⊢ π(Seq P Q)
∀ P, Q · π(P) ∧ π(Q) ⊢ π(Parallel P Q)
∀ c, P · π(P) ⊢ π(While c P)
∀ P · π(P)

To perform the above formal reasoning on circuits, the prop-
erties need to be encoded as observer circuits and appropriately
attached to the compiler circuit. Therefore, one has to (i)
compile the construct with empty subprograms; (ii) connect
the input and output wires of each empty subcomponent to an
observer circuit; (iii) connect the input and output wires of the
outer block to an observer; (iv) universally quantifying over the
outer circuit inputs, and the inner block outputs; and (v) prove
that the conjunction of the inner observers implies the outer
observer. Consider the case of sequential composition hand
coded below, which says that for a given observer circuitobs,
the circuit generated by the sequential composition of two
circuits satisfying the observer will itself satisfy the observer:
let seq obs (s, (pSh, pF), (qSh, qF)) =
let qS = pF in
let f = qF in
let sh = or2(pSh, qSh) in
let pOk = obs(pS, (pSh, pF)) in
let qOk = obs(qS, (qSh, qF)) in
let ok = obs(s, (sh, f)) in
and2(pOk, qOk) ==> ok;

Similar cases would be written for each syntactic case,
and verifying a compiler invariant then corresponds to model
checking each of the cases.

C. Temporal Induction

In practice, for most properties the approach does not work.
The structural induction cases we are attempting to prove state
that if the inner compiled blocks are working well now, then
so is the outer block. If the inner blocks break the invariant
for a period of time, but then satisfy it again later on, in
this approach we expect that the outer block starts satisfying
the invariant again. In practice we need a stronger notion —
once the inner blocks have stopped working sometime in the
past, the outer block is relieved of its obligation to satisfy the
invariant. For instance, consider the following invariantwhich
states that if a Flash program terminates (it produces a high
signal over thefinish wire), then the program must have
been started at some point in time:
let flashInv01 (start, (shout, finish)) =
finish ==> sometimesInThePast start;

Using the näıve version of structural induction shown above,
the model checker identifies a counter example for the sequen-
tial case in which the values of the start, finish wires and the
output of the invariant observer for the outer block, and thetwo
inner blocks of the sequential composition of two programs.
Note that the first block finished without starting in the first
time unit, but then proceeded to work correctly in the second
time unit. This induced the second block to produce a finish
signal in the second time unit, thus finishing the outer block
in the second time unit (when both inner blocks satisfy the
invariant) without ever having received a start signal:

start fin inv start1 fin2 inv1 start2 fin2 inv2
0 0 1 0 1 0 1 0 1
0 1 0 0 0 0 0 1 1

The solution to such a problem is either to strengthen the
invariant or by adding temporal induction into the verification
methodology as given below:

P

cond

shout

finish

start

Q

P

start

shout

finish

cond

Synchroniser

Q

P shout

finish

startlow shout

start

finish

start

finish

shout

Q

P

finish

start

shoutlow

finish

start

shout

IfThenElse Parallel

Sequential

Delay

Shout

Skip

While

Fig. 2. Hardware designs of Flash

⊢ π(Skip)
⊢ π(Shout)
⊢ π(Delay)
∀ c, P, Q · always(π(P) ∧ π(Q)) ⊢ π(IfThenElse c P Q)
∀ P, Q · always(π(P) ∧ π(Q)) ⊢ π(Seq P Q)
∀ P, Q · always(π(P) ∧ π(Q)) ⊢ π(Parallel P Q)
∀ c, P · always(π(P)) ⊢ π(While c P)
∀ P · π(P)

D. Automating Hardware Verification

Note that the design of these cases can become quite
complex and error prone. Furthermore, when developing a
hardware compiler, changes to the compiler code will have
to be reflected faithfully in the syntactic cases. It is thus very
desirable to be able to extract this information automatically
from the hardware compiler code. Through the use of the host
meta-language it is actually possible to extract it, reducing user
intervention, thus ensuring that the structural inductioncases
are automatically and accurately generated.

By quoting the hardware compiler one can access the
structure of the actual compiler code to identify the different
cases — by performing structural induction, the compiler
description is broken into the individual alternative cases. For
each of the cases the circuit is transformed using the type as
the observer, and an appropriate function is composed as the
result. Meta-programming is essential in order to automatethe
necessary transformations, since this enables inspectionof the
function describing the hardware compiler. This approach has
been used to prove several compiler invariants. For instance,
the invariantflashInv01 can now be verified automatically.

The strength of this approach is that when changing the
compiler code, the inductive cases need not be recoded to
match the new compiler code, ensuring that the inductive
cases and the compiler code match and thus that we are really
verifying properties of the actual compiler we have written.

V. CORRECTCOMPILATION OF ESTEREL INTO HARDWARE

Esterel [2] is a synchronous programming language with
characteristics that enables the programming of concurrent

systems. Concurrent constructs enable different sectionsof
the same program to function in parallel, yet in synchrony
with each other. This is achieved by enabling communication
through the broadcasting of signals. Esterel is used to program
reactive systems, such as real-time controllers, communication
protocols and system drivers. Apart from simulation tools,
Esterel compilers can translate programs into C code and
hardware description languages, such as VHDL or Verilog.

The Esterel language is similar to the Flash language
we presented earlier, but with a more intricate semantics to
handleschizophrenia[2], which arises when a restarted loop
terminates immediately. The compilation process is similar to
that of Flash, but adds an additional finish wire.
compile program start =
let ...
in (emit, (finish1, finish2))

To appreciate the intricacies of the language, consider the
following Esterel program:
let prog w = While high
(Par (IfThenElse w Delay Skip, Delay));

Consider the situation when the program is started with a
high signal onw. Once the loop starts it triggers the fork-
join construct, terminating one clock cycle later. In particular
consider the finish wire on the output of the conditional case,
which is high in the second cycle. Upon termination of the
fork-join block, the loop is started again. Note that now ifw
is low, the conditional terminates immediately, overlapping the
finish signal at the same time unit as the previously produced
one. Since outputting high on the same wire over the same
clock cycle has no noticeable effect, the second finish signal
is lost to the synchroniser of the fork-join construct, which
proceeds to wait indefinitely till the first branch produces
another high signal. To avoid the overflow on the finish wire,
the second finish appears on the second finish wire.

The constructive semantics for Esterel solve this problem
by duplicating the logic related to such termination wires,
thus each circuit would contain multiple termination wires
depending on the number of possible occurrences. An in-

depth study of the schizophrenia problem is given in the
circuit translations of the constructive semantics of Esterel
[2]. Although the solution is well known, ensuring correctness
of the compilation is not straightforward due to the intricate
compilation. Using structural induction with automatically
induced cases, we proved invariants of Esterel compilation.

• The finish wires work correctly: This property ensures
that the finish wire encoding works correctly in that the
use of the finish wires can never produce the combination
low, high:
let esterelInvariant1 ... = f2 ==> f1;

• No start, no finish: Another sanity check for the compiler
is that an Esterel program may never terminate unless
explicitly started:
let esterelInvariant2 ... =
never go ==> inv (or2 fs)

• Single start, single finish: If only a single start is ever
given, the circuit may not output on the second finish
wire, and may at most, output only once on the first finish
wire. The following observer uses theonce circuit which
outputs high as long as the input has been high at most
once in the past:
let esterelInvariant3 ... = once go ==>
and2 (never f2, or2 (never f1, once f1))

• One finish for each start: Each finish must have a cor-
responding start, as long as the environment disallows a
program to be started unless it has previously finished
(encoded in the observerusedWell).
let esterelInvariant4 (go, (e, (f1, f2))) =
let wasRunning = ... in
always (usedWell (go, (e, (f1, f2)))) ==>

and2(f1 ==> or2 (go, wasRunning)
,f2 ==> and2 (go, wasRunning))

• The second finish wire is never high twice in succession:
As long as the environment disallows a program to be
started unless it has previously finished, it will never be
the case of having two successive high signals on the
second finish wire.
let esterelInvariant5 (go, (e, (f1, f2))) =
always (usedWell (go, (e, (f1, f2)))) ==>

(f2 ==> delay T (inv f2))

• A third finish wire is redundant: Although adding a
second wire seems a reasonable solution to the problem,
it may be unclear why a third wire is not necessary. One
way of showing that such a wire would be redundant
is by extending the Esterel hardware compiler to have
three finish wires, and proving that the third finish wire
is constantly low:
let esterelInvariant6 ... = always (
usedWell (go, (e, (f1, f2, f3)))) ==> inv f3)

In this manner, by means of model-checking techniques, we
have proved that the control path of compiled Esterel programs
maintains certain compiler invariants, thus increasing our
confidence in the compilation process.

VI. CONCLUDING DISCUSSION

In this paper, we have built on these results by enabling
placement combinators to be added to the block markings,
without disrupting the functional style of the circuit descrip-
tions. Furthermore, we have shown how meta-programming

features can be used to automatically generate and extract
verification models from the circuit generators of hardware
compilers. Reflection enables us to provide a framework
in which user intervention is minimised, thus ensuring that
changes to the hardware compiler reflect faithfully the observer
circuits required for the structural induction reasoning.

An advantage of our approach to other related ones, is that
the hardware designer using Shade need not be aware of meta-
programming features, which are kept hidden inside Shade.
The only exception to this design principle is the need to quote
a hardware compiler before analysis.

The use of model checking for structural reasoning about
families of systems has been used under various guises in
different domains. Our application of the technique, auto-
matically extracting the inductive cases from the descriptions
enhances the use embedded languages for hardware design
support. The primary gains in the use of meta-programming
within Shade are marking and manipulation of circuit blocks,
and the analysis of circuit generators. In this paper we have
explored the use of Shade to automatically extract structural
induction cases for a hardware compiler, to enable the model
checking of control path invariants. We are currently working
on extending these results for the analysis of the data path in
such languages, which poses new challenges, since the size of
the output may grow as the output wires increase.

REFERENCES

[1] Emil Axelsson, Koen Linstr̈om Claessen, and Mary Sheeran. Wired:
Wire-aware circuit design. InProc. of Correct Hardware Design and
Verification Methods (CHARME), volume 3725 ofLNCS, 2005.

[2] G. Berry. The constructive semantics of Pure Esterel. Available from
http://www-sop.inria.fr/esterel.org/filesv5_92/,
1999.

[3] Per Bjesse, Koen Linström Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. InProc. of International Conference
on Functional Programming. ACM SIGPLAN, 1998.

[4] K. Claessen and G. J. Pace. An embedded language framework for
hardware compilation. Inthe proceedings of Designing Correct Circuits
2002, 2002.

[5] Jim Grundy, Tom Melham, and John O’Leary. A reflective functional
language for hardware design and theorem proving.Journal of Func-
tional Programming, 16(2):157–196, 2006.

[6] J. Launchbury, J. R. Lewis, and B. Cook. On embedding a microarchi-
tectural design language within haskell.SIGPLAN Not., 34(9):60–69,
1999.

[7] Kenneth L. McMillan. Symbolic Model Checking: An approach to
the state explosion problem. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1992.

[8] Tom Melham and John O’Leary. A functional HDL in reFLect.In the
proceedings of Designing Correct Circuits 2006, 2006.

[9] J. O’Donnell. Overview of hydra: a concurrent language for synchronous
digital circuit design.Int. J. of Information, pages 249–264, 2006.

[10] G.J. Pace and K. Linström Claessen. Verifying hardware compilers. In
Computer Science Annual Workshop 2005. University of Malta, 2005.

[11] Gordon J. Pace and Christian Tabone. Access to circuit generators in
embedded hdls. Inthe proceedings of Designing Correct Circuits 2008,
2008.

[12] C.-J. Seger, R.B. Jones, J. O’Leary, T. Melham, M.D. Aagaard, C. Bar-
rett, and D. Syme. An industrially effective environment for formal
hardware verification.IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(9), 2005.

[13] Mary Sheeran. Hardware design and functional programming: a perfect
match.Journal of Universal Computer Science, 11(7):1135–1158, 2005.

