
Verifiable External Blockchain Calls: Towards
Removing Oracle Input Intermediaries

Joshua Ellul1,2[0000−0002−4796−5665] and Gordon J. Pace1,2[0000−0003−0743−6272]

1 Centre for DLT, University of Malta, Malta
2 Department of Computer Science, University of Malta, Malta

{joshua.ellul,gordon.pace}@um.edu.mt

Abstract. It is widely accepted that blockchain and other distributed
ledgers cannot initiate requests for input from external systems and are
reliant on oracles to provide such inputs. This belief is founded on the fact
that each node has to reach a deterministic state. In this paper we show
that this belief is a preconceived one by demonstrating a method that
supports calls to external systems initiated from the blockchain itself.

Keywords: External calls · Oracle input · Blockchain architecture.

1 Introduction

Many have argued that decentralisation is a cure to many woes arising from
issues of trust. By removing centralised points-of-trust, one can build solutions
which empower participants. Blockchain and other distributed ledger technolo-
gies (DLTs) allow for the decentralisation of computational systems and services
built on top of them. Whilst there is truth to such statements, the real world
lies outside the blockchain, and although data and algorithms residing on the
blockchain can be decentralised, any reference to the real world must necessarily
break through the event-horizon of the blockchain and interact with the outside
world — much of which is centralised out of physical or regulatory necessity.
For instance, if one needs to access the temperature at a particular location at a
particular time, one must interact with the real world and trust that the correct
information has been provided.

Blockchain systems have traditionally addressed these issues through the use
of oracles — channels providing information from the outside world into the
blockchain. However, the nature of public blockchains allows only for a one way
flow of information (from external entities into the blockchain) and any attempt
to do this in the opposite direction (i.e. invoke an external entity from within
the blockchain) causes problems due to the nature of consensus of such systems.
The only alternative solutions available require trusted entities to perform such
invocations, which simply delegates the problem one step away.

Blockchain systems require that the decentralised logic encoded within them
reaches a deterministic state. It is often said that every node must execute the
exact same logic in order to achieve consensus — and for this reason, it is the

2 J. Ellul and G. J. Pace

Node
Node

Node
Node

Node
Node

Node
Node

Node
Node

Node
Node

Trusted Party
Input

Trusted Party
Call

Trusted Party
Call with

Signed Responses

Network Network Network

Fig. 1. Left: traditional trusted party input; middle: active calls requiring each node
to undertake the external call that must return the same input; right: external calls
enabled with verifiable signed responses.

general consensus in the community that Blockchain and DLT systems can-
not make calls to external systems/oracles [14, 3, 12, 16, 1, 5, 9, 15, 7, 2, 8, 17, 6,
10]. However, we believe that the general consensus on this matter is not well-
founded and is preconceived. Perhaps based upon the often cited statement that
deterministic computation is required [13] — yet whilst this statement is true, it
is important to highlight that it is the state that computation reaches that must
be deterministic, and the computation performed can reach such a deterministic
state in different ways.

In this paper, we present initial work on a technique that allows for the
interaction with external parties directly in a feasible manner. Figure 1 provides
an overview of an oracle input transaction/call flow for: (i) traditional oracle
input (on the left); (ii) (inefficient) external calls requiring responses to always
be the same — which does not scale up (in the middle); and (iii) the solution
proposed herein which makes use of verifiable external calls (on the right).

We have implemented a prototype demonstrating the technique described in
Section 2 and further present initial gas performance evaluation in Section 3.
Initial thoughts, motivation and related work have been discussed in [4].

2 Design and Implementation

2.1 Verifiable External Calls

The solution proposed herein is to make use of verifiable external calls — i.e. a
request (call) made to an external system that returns back a signed response
which: (i) can be verified to truly be a response from the external party in ques-
tion; (ii) which does not require any further communication (with the external

Title Suppressed Due to Excessive Length 3

party or other). This can be achieved in the same way how we provide such
assurances in traditional applications and how trusted oracle input is verified,
by checking whether the response was indeed digitally signed [11] by the exter-
nal party. Knowledge of the trusted party’s public key is required to be known
(in the same way that oracle input requires knowledge of the trusted party’s
address) or can be retrieved from a trusted entity.

To allow for processes to make direct use of external services (in a feasible
and efficient manner), which do not require explicit integration from the exter-
nal parties themselves (with the specific platform), we propose to make use of
verifiable external calls which provide a guarantee with respect to the veracity
of the origin of the response both at the time of processing as well as for any
point in future for which such verification may be required.

A verifiable external call is defined as the following tuple — a request, a
public key and a signed response structured as follows:

⟨request, public_key, signed(response)⟩

The request should point to the external system/service endpoint which is
to be called (though this is an implementation design decision), and may also
comprise of other input data. The public_key may be hard-coded into the ap-
plication logic (e.g. into the smart contract), or it could even be retrieved by
a trusted certificate provider. In either case it would need to be recorded by
the time when the external call is executed — it will be used to verify the re-
sponse originated from the respective external party. The signed(response) is the
response that has been signed using the external party’s private key (which is
associated with public_key.

Indeed, this does require that the trusted data sources provide an end-point
that responds back with a signed response which would likely require changes to
existing data sources to implement signed responses — however, recent proposals
indicate that such a standard may eventually be adopted3, which if adopted
would enable for this approach to integrate with all data sources (that are keeping
up with standards).

Furthermore, to avoid old signed responses from being repeated, an incre-
mental number, timestamp, block number or another challenge-response could
be made use of which would ensure old responses cannot be repeated — however
this is left as an implementation detail. Whilst, the challenge data sent to the
external party will be part of the request, the verifiable external call’s definition
may be extended to include the challenge-response. For example, the request can
be augmented by a request number to a fresh nonce ν, which is expected to be
included unchanged in the response4:

⟨request ⊕ {nonce 7→ ν}, public_key, signed(response ⊕ {nonce 7→ ν})⟩

3 https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.
html

4 We use ⊕ to represent function overloading.

4 J. Ellul and G. J. Pace

Transaction Data

External Call

Third Party Public Key

External Call Response

Initiator

Finalising
Node

External
PartyThird Party Signature

External Call

Third Party Public Key

External Call Response

Third Party Signature

External Call Uri

External Party Public Key

External Call Response

External Party Signature

Transaction

1

2 3
4

Fig. 2. Transaction finalisation process.

2.2 Transactions

When a transaction is initiated (be it by a user, another system, or the system
itself if such a DLT allows this) and accepted for execution, the node which
is processing the transaction will establish all external calls which need to be
performed, execute them and record the responses received back from the trusted
external parties along with associated digital signatures. Indeed, at this point
the finalising node must ensure that the response is from the trusted party
by verifying the response and signature against the trusted party’s public key.
Furthermore, if a unique number, date/time, or challenge-response mechanism
was used to ensure old data is not repeated, then this would also be validated
at this point. A depiction of how a transaction is initiated and attributed with
the various data associated with external calls is depicted in Figure 2.

For responses that are not verified, associated transactions may be deemed
to have failed, or depending upon reparation logic, the transaction may still be
valid. This is a design decision that each platform would need to consider. The
same goes for external calls for which no response is received.

To reiterate, to ensure that a finalising node does not repeat old responses
from external parties, the response and signature could be accompanied with the
date and time the response was generated and/or a unique response identifier
associated with the response (and potentially request as well). One challenge is
to ensure that participating nodes indeed execute such external calls rather than
simply record failure, which we will delve into in a future paper (since it merits
its own paper). However, verifiable external calls could also be undertaken by the
transaction initiator (i.e. the party submitting the transaction provides this in-
formation as part of the transaction submission process) — however indeed this
depends upon the architectural design of the blockchain, smart contract and
wallet/dApp software submitting the transaction. By performing the verifiable

Title Suppressed Due to Excessive Length 5

external call at transaction submission time (on the initiator), the aforemen-
tioned problem pertaining to nodes potentially reporting back failed external
calls would be eliminated.

2.3 Implementation Details

The Go Ethereum (geth)5 node implementation (version 1.16.5) was modified to
include support for the verifiable external call mechanism described above. The
following salient modifications were implemented. A prototype of the approach
has been implemented and available from https://github.com/joshuaellul/
excalls.

EXCALL Transaction A new type of transaction, an EXCALL transaction
(in excall_tx.go), was added (on top of the existing Legacy and Access List
transactions) to facilitate storing the additional data associated with external
calls (described in Section 2.1) in an EXCALL tuple — containing the external
call response, signature, and the external party’s known public key.

EXCALL instruction A new EXCALL virtual machine opcode which instructs the
virtual machine to execute the external call was added. Rather than modify the
whole programming tool-chain (including the Solidity programming language
and Solidity compiler) to support the proposed EXCALL instruction, for the pur-
pose of this prototype it was emulated by replacing PUSH32 instructions (used for
string assignments) whose associated data starts with “http” into EXCALL ones.6

A miner executes the emulated EXCALL instruction only when finalising a
block, and will undertake an external call to the URL specified as a parameter to
the instruction (pushed on the stack via the aforementioned PUSH32 instruction).
Upon receiving a response and a valid digital signature for the respective public
key, the relevant data will be appended to an EXCALL transaction.

Following this, the transaction is stored in the block with the EXCALL trans-
action data filled in (as depicted in Figure 2). This then allows for other nodes
to verify the external call based upon the stored data (without having to initiate
an external call itself).

3 Evaluation

A gambling dApp is used to serve the purpose of a required use-case to evaluate
gas performance of the proposed approach against a traditional approach. The
evaluation discussed below would also apply to other smart contract use-cases

5 https://github.com/ethereum/go-ethereum
6 Indeed, this means that in the prototype it is not possible to make use of a PUSH32

instruction for data that starts with the string “http”, however this does not impact
the prototype’s purpose to evaluate the proposed technique.

6 J. Ellul and G. J. Pace

that have similar protocol requirements where a party must first initiate a trans-
action to a smart contract prior to external oracle data being made available on
the blockchain (which typically is due to not wanting to reveal that data prior
to the initiating transaction).

The use-case requires that these steps are followed to complete a betting
transaction: (i) a user initiates interaction with the smart contract by placing
a bet; (ii) data from the oracle is retrieved and fed into the smart contract to
determine whether the user won. The use-case has been implemented in Solidity
and available from https://github.com/joshuaellul/excalls for: (i) a stan-
dard Ethereum network that makes use of an external oracle to feed in data;
and (ii) a modified Ethereum implementation which supports external calls to
directly fetch the oracle input.

Comparing gas costs associated with the two approaches, the standard ap-
proach requires 67,599 and 48,222 gas units to execute beginBetOracle and
continueBetOracle respectively. The total gas cost for the standard approach,
standardgas , amounts to 115,821. Whilst, the total gas computed for the external
call approach, computed_excallgas , is 89,071 — however, this does not include
additional gas associated with actually undertaking the external call.

A gas cost associated with an external call would need to be decided upon for
the respective blockchain system. It is not the scope of this work to decide upon
an exact value, yet we can make an estimate by breaking down the external call
process into: (i) the actual external call undertaken only on the node adding the
associated block; and (ii) verifying the external call response which takes place
on every node. Based on this the total gas consumption for the approach can be
defined as:

total_excallgas = computed_excallgas + excallgas + verify_siggas

where excallgas is the gas associated with making an external call; and
verify_siggas is the gas associated with verifying an external call’s response
(i.e. verifying an ECDSA signature).

The cost to verify an ECDSA signature (verify_siggas) was evaluated to be
3,903 gas7. Therefore, the total gas required for the external call approach is:

total_excallgas = 89, 071 + excallgas + 3, 903

If the gas costs of an external call approach is equal to or less than a tra-
ditional approach, then the external call approach will not be introducing any
negative consequences with respect to gas. Therefore, we can identify an upper-
bound limit for excallgas to be:

standardgas − (computed_excallgas + verify_siggas)

7 Code from https://solidity-by-example.org/signature/ to verify an ECDSA sig-
nature was executed in order to retrieve gas costs. The cost of the verification only
was calculated by first executing a function call and then adding in a call to verify
a signature, and the difference between the two was used to calculate the signature
verification gas cost.

Title Suppressed Due to Excessive Length 7

This results in 22,847 gas — which given that the costs of excallgas are only
incurred on the node that is adding a block, this amount should be more than
justifiable. Based on this, we claim that the external call approach proposed
herein should consume equivalent or less gas to that required for the standard
approach. However, we leave a full investigation to define appropriate gas costs
for such an operation for future work — which may include evaluating differing
gas costs according to HTTP Request and Response payload sizes.

4 Conclusions

It is a widely accepted belief that blockchain systems cannot execute calls to ex-
ternal systems due to the requirement for computation to reach a deterministic
state. It is often said that blockchain-based computation needs to be determin-
istic [13], however it is important to highlight that determinism of output can
be achieved in different ways. Contrary to the general consensus, in this paper,
we have demonstrated a method for Blockchain and DLT systems that allows
for direct external calls to be initiated from the Blockchain/DLT itself. We have
implemented a prototype and undertaken initial evaluation of gas overheads of
a typical dApp requiring external oracle input.

This is only initial work in this direction for which we believe will pave
the way for extensive future work in the following directions: (i) investigating
novel consensus protocols that better support external calls; (ii) language design
for smart contract external calls; (iii) development of novel blockchains that
support external calls; (iv) development of novel dApps supported through active
external calls; (v) miner/validator incentive mechanisms for external calls; (vi)
further performance and evaluation of active external call techniques.

A prototype demonstrating verifiable external calls has been implemented
and available from https://github.com/joshuaellul/excalls.

References

1. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: Astraea: A
decentralized blockchain oracle. In: 2018 IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). pp. 1145–1152. IEEE (2018)

2. Caldarelli, G.: Real-world blockchain applications under the lens of the oracle prob-
lem. a systematic literature review. In: 2020 IEEE International Conference on
Technology Management, Operations and Decisions (ICTMOD). pp. 1–6 (2020).
https://doi.org/10.1109/ICTMOD49425.2020.9380598

3. Ellis, S., Juels, A., Nazarov, S.: Chainlink: A decentralized oracle network.(2017).
White paper (2017)

4. Ellul, J., Pace, G.J.: Towards external calls for blockchain and distributed ledger
technology. arXiv preprint arXiv:2105.10399 (2021)

5. Gatteschi, V., Lamberti, F., Demartini, C., Pranteda, C., Santamaría, V.: To
blockchain or not to blockchain: That is the question. IT Professional 20(2), 62–74
(2018). https://doi.org/10.1109/MITP.2018.021921652

8 J. Ellul and G. J. Pace

6. Lin, S.Y., Zhang, L., Li, J., Ji, L.l., Sun, Y.: A survey of application research based
on blockchain smart contract. Wireless Networks 28(2), 635–690 (2022)

7. Liu, X., Muhammad, K., Lloret, J., Chen, Y.W., Yuan, S.M.: Elas-
tic and cost-effective data carrier architecture for smart contract in
blockchain. Future Generation Computer Systems 100, 590–599 (2019).
https://doi.org/https://doi.org/10.1016/j.future.2019.05.042, https://www.
sciencedirect.com/science/article/pii/S0167739X18328334

8. Marchesi, L., Marchesi, M., Tonelli, R.: Abcde—agile block chain
dapp engineering. Blockchain: Research and Applications 1(1), 100002
(2020). https://doi.org/https://doi.org/10.1016/j.bcra.2020.100002, https:
//www.sciencedirect.com/science/article/pii/S2096720920300026

9. Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to
design blockchain applications. In: Proceedings of the 14th Central and Eastern
European Software Engineering Conference Russia. pp. 1–8 (2018)

10. Mekouar, L., Iraqi, Y., Damaj, I., Naous, T.: A survey on blockchain-based rec-
ommender systems: Integration architecture and taxonomy. Computer Communi-
cations 187, 1–19 (2022)

11. Merkle, R.C.: A certified digital signature. In: Conference on the Theory and Ap-
plication of Cryptology. pp. 218–238. Springer (1989)

12. Rimba, P., Tran, A.B., Weber, I., Staples, M., Ponomarev, A., Xu, X.: Com-
paring blockchain and cloud services for business process execution. In: 2017
IEEE International Conference on Software Architecture, ICSA 2017, Gothen-
burg, Sweden, April 3-7, 2017. pp. 257–260. IEEE Computer Society (2017).
https://doi.org/10.1109/ICSA.2017.44, https://doi.org/10.1109/ICSA.2017.44

13. Sankar, L.S., Sindhu, M., Sethumadhavan, M.: Survey of consensus protocols on
blockchain applications. In: 2017 4th International Conference on Advanced Com-
puting and Communication Systems (ICACCS). pp. 1–5. IEEE (2017)

14. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling,
J.: Untrusted business process monitoring and execution using blockchain. In:
Rosa, M.L., Loos, P., Pastor, O. (eds.) Business Process Management - 14th
International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-
22, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9850, pp. 329–
347. Springer (2016). https://doi.org/10.1007/978-3-319-45348-4_19, https://
doi.org/10.1007/978-3-319-45348-4_19

15. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for
blockchain-based applications. In: Proceedings of the 23rd European Conference
on Pattern Languages of Programs, EuroPLoP 2018, Irsee, Germany, July 04-
08, 2018. pp. 3:1–3:20. ACM (2018). https://doi.org/10.1145/3282308.3282312,
https://doi.org/10.1145/3282308.3282312

16. Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba,
P.: A taxonomy of blockchain-based systems for architecture design. In: 2017
IEEE International Conference on Software Architecture, ICSA 2017, Gothen-
burg, Sweden, April 3-7, 2017. pp. 243–252. IEEE Computer Society (2017).
https://doi.org/10.1109/ICSA.2017.33, https://doi.org/10.1109/ICSA.2017.33

17. Zhao, Y., Kang, X., Li, T., Chu, C.K., Wang, H.: Towards trustworthy defi oracles:
Past, present and future. IEEE Access (2022)

