
Porthos: Macroprogramming Blockchain Systems
Adrian Mizzi

Department of Computer Science
University of Malta

Msida, Malta
adrian.mizzi.00@um.edu.mt

Joshua Ellul
Department of Computer Science

University of Malta
Msida, Malta

joshua.ellul@um.edu.mt

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

gordon.pace@um.edu.mt

Abstract—The rise of blockchain technology has paved the way
for an increasing number of blockchain systems, each having
different characteristics. The need for distributed applications
that span across multiple blockchain systems is increasing.
However, it is currently not possible to write a single-description
smart contract which can be compiled to span across multiple
blockchain systems.

In this paper we present PORTHOS, a macroprogram-
ming framework and domain specific language for writing
commitment-based smart contracts that span multiple blockchain
systems. The language allows programmers to write smart
contracts at a higher level of abstraction by composing together
contract blocks, without the need to specify how logic should be
split across different blockchain instances. A runtime framework,
including both on-chain and off-chain functionality, harmonises
the features of different blockchain systems as well as enables
communication across the smart contracts. A proof of concept,
built on the Ethereum and Hyperledger Fabric blockchain
systems and extendible to other systems, illustrates the technique
and framework. We also show how the PORTHOS language is
expressive enough to define a variety of applications.

Index Terms—macroprogramming, blockchain, DSL

I. INTRODUCTION

Blockchain technology, a type of Distributed Ledger Tech-
nology (DLT), has attracted widespread interest in recent years
— different blockchain systems will co-exist and will be
used for different purposes by individuals, businesses and
institutions. Today’s smart contracts are intended to execute
on a single blockchain system. We predict that the need
for multi-chain distributed applications (DApps) spanning
across multiple blockchain systems is going to increase as
blockchain technology continues to gain popularity. Interac-
tions between blockchains (interoperability) will be needed
to implement new types of applications where assets may be
exchanged between participants across different blockchain
systems. A single application may handle payments on the
Bitcoin network [1], use Ethereum [2] for public interactions
and Hyperledger Fabric [3] for specific private point-to-point
interactions. Implementing such multi-chain DApps is non-
trivial. Good knowledge of at least one smart contract lan-
guage on each of the target underlying blockchain systems
is required, together with a good understanding of features

The research work disclosed in this publication is partially funded by the
Endeavour Scholarship Scheme (Malta). Scholarships are part-financed by
the European Union - European Social Fund (ESF) - Operational Programme
II Cohesion Policy 2014-2020. ”Investing in human capital to create more
opportunities and promote the well-being of society”.

and characteristics. Further, blockchain interoperability is not
straightforward and the use of relays, notaries or atomic
swaps [4] is required.

What is currently missing and desirable, is the ability to
write a single smart contract which spans across multiple
blockchain systems. This would replace the need to write
several smart contracts (one for each blockchain system) and
the handling of the communication between them.

We propose a way of addressing this gap through the use of
macroprogramming — a technique often used in the domain
of IoT and sensor networks [5]–[9]. With macroprogramming,
the level of abstraction is increased and the network is pro-
grammed as a whole rather than each component individually.
The higher level of abstraction allows the programmer to focus
on the logic, rather than the details of communication between
components. We propose a domain specific language (DSL)
for defining commitment-based smart contracts [10]. DSLs
provide a higher level of abstraction than general purpose
programming languages and are ideal to make it possible to
write secure smart contracts in a quick and efficient way.

Using a technique of embedding a domain specific language,
we present a framework called PORTHOS1, to define and
execute multi-chain smart contracts. In our proof of concept,
we show Ethereum and Hyperledger Fabric as two diverse
and interacting blockchain systems — a technique that can be
extended to other systems. The Turing-incomplete language
allows a programmer to describe commitment-based smart
contracts that may span multiple blockchain systems. Our lan-
guage is inspired from financial contracts of Peyton Jones [11]
and the work done with Marlowe [12], but we extend this to
contracts that span across multiple chains.

The contribution of this paper is to provide a model in
which a commitment-based smart contract can be translated to
execute safely on one or more interacting blockchain systems.
Our aim is to (i) provide a mechanism to split contract logic
on different blockchain systems according to asset location (ii)
design a safe and restricted DSL for composing commitment-
based smart contracts (iii) define an extensible mechanism
to generate code in different target smart contract languages
(iv) propose a simple runtime framework to enable chain
interoperability.

1Available at https://github.com/adrianmizzi/porthos-1



II. BACKGROUND AND RELATED WORK

A smart contract is a program that runs on a blockchain
system. The contract can encode a set of rules which determine
when and under what conditions transfer of assets may occur.
Languages – The Ethereum Virtual Machine (EVM) is a

simple but powerful Turing-complete virtual machine on
which EVM byte code can be executed. Solidity [13], the
most popular language on Ethereum, is an imperative-style
language, where intermediate state is managed explicitly
by the programmer. The added expressivity increases the
risk of bugs as programs become more complex to reason
about and implement as has been shown by high profile
heists [14]. Different paradigms have emerged to address the
risks associated with unrestricted languages. Explicit state
transition languages [15]–[17], use concepts from finite state
machines and automata. Functional programming paradigms
are used in [18]–[20]. Other techniques used include the use
of DSLs [12, 21, 22] where code is generated in existing
smart contract languages.

Macroprogramming is a technique mostly used in the do-
main of sensor networks where the network is programmed
as a whole. Three main approaches exist: (i) the programmer
has a centralised view of the network and each node can be
addressed individually [7, 9] (ii) macroprograms are written
from the perspective of individual nodes and all nodes get a
copy of the same code [5, 8], and (iii) a macroprogram is
written from the network perspective and generated code is
different for individual nodes [6, 23].

Interoperability is becoming increasingly important to exe-
cute DApps across multiple blockchain systems. Buterin [4]
identifies three strategies: (i) hashed time-locks (ii) relay
chains (iii) centralised or multisig notary schemes. Hashed
time-locks are ideal for swapping assets across separate
blockchain systems [24]. Relays or notaries both rely on
the presence of a trusted entity. With relays, such as Cos-
mos and Polkadot, blocks are copied from one blockchain
system to another and the receiving blockchain has the
capability of inspecting incoming blocks to trigger actions
as needed [25]–[27]. In notary schemes, such as the Aion
Transwarp Conduit [28], a trusted entity triggers an operation
on a blockchain when an event is detected on another
blockchain.

III. THE PORTHOS FRAMEWORK

Traditionally, smart contracts are written to be executed
on a specific blockchain system. Interactions between smart
contracts located on different systems require complex mech-
anisms to be implemented. Using a macroprogramming model,
we propose to program a network of blockchain systems as a
whole, where code is automatically generated to be executed
on each blockchain system. A higher abstraction level ensures
that the programmer need only focus on the overall logic of
the smart contract using only one programming language.

We use techniques from the field of embedded languages
to define a domain specific language. We embed our language

in Haskell, a pure functional language which gives us several
useful features, such as polymorphism, higher-order functions
and a strong type system. Our model supports both the macro-
programming aspect of writing smart contracts that run across
multiple diverse blockchain systems, and also inherently the
ability to generate code for different target contract languages.

Figure 1 illustrates our framework. A macro smart contract
is written in our DSEL in a form that can be analysed,
translated and deployed to different blockchain systems. The
smart contract description first generates an internal represen-
tation of the intended contract. With additional information
about asset location mapping, the internal representation can
be transformed into chunks that need to be placed on the
individual blockchain systems according to the assets being
used. A first-stage compilation process generates code for each
of these chunks into a smart contract language supported by
the underlying blockchain system. For example, for Ethereum,
the first-stage compilation process generates Solidity and for
Hyperledger, Go Chaincode is generated. During a second
stage process, the standard compilation and deployment tools
for each of the target languages are used to deploy the
generated code to the intended blockchain systems.

The ultimate goal of PORTHOS is to allow programmers to
safely write multi-chain smart contracts that are easy to read
and hide away the complexities of blockchain interoperability.

A. Multi-chain Support

The proposed macroprogramming approach highlights two
key challenges — heterogeneity and passiveness.

1) Requirements and Extensions: PORTHOS supports
blockchains which satisfy a minimal set of requirements:

- Smart contracts must have an address and must be capable
of ‘holding’ assets transferred to them by users

- Participants must be able to interact with a blockchain
system through smart contract functions

- Asset registers must be supported and implementable to
track fungible or non-fungible assets

Blockchain systems such as Bitcoin are not supported in
PORTHOS. Bitcoin follows the unspent transaction output
(UTXO) model and a smart contract capable of holding
assets is not supported. Blockchain systems which satisfy the
requirements are supported, however different systems have
different features and a solution is needed to harmonise these
differences. To address this in PORTHOS, we use blockchain
extensions — a solution made up of on-chain and off-
chain components which addresses gaps or differences in
the required functionality. The PORTHOS abstraction model
requires a callback-on-timeout mechanism to be able to resume
execution in case an expected user interaction is not performed
in time. This feature is not natively available on Ethereum and
other target blockchain systems although third party extensions
exist with this functionality [29, 30].

2) Message Routing: Blockchain systems are unable to
communicate in the traditional way as normal systems do.
Due to the nature of being passive, a common characteristic



_______ 

_______ 

_______ 

 

Smart Contract 

written in Porthos

Static Compilation

On Chain Runtime

Off Chain Runtime

Message Routing

 Blockchain System A

Porthos On Chain Framework

_____ 

_____ 

 

 Blockchain System B

Porthos On Chain Framework

_____ 

_____ 

 

 Blockchain System C

Porthos On Chain Framework

Porthos Off Chain Framework

Blockchain B Extension 

Porthos Off Chain Framework 

Blockchain C Extension 

Porthos Off Chain Framework 

Blockchain A Extension 

_____ 

_____ 

 

Asset Location

Information
+

Fig. 1. Proposed Architecture

of current DLTs, the blockchain systems that we are inter-
ested in are unable to actively react to events from other
systems. The use of an external party is therefore needed to
provide a communication layer between blockchain systems.
The PORTHOS framework makes use of an external message
router to relay messages between one blockchain system and
another. The message router is in the spirit of a notary scheme,
where events of interest are captured and actioned upon. The
communication layer is lightweight in the sense that there is no
knowledge of the smart contract logic being executed — the
router listens for events generated by the blockchain systems
and triggers other contract functions as instructed by these
events. Messages are signed by the originating blockchain
system, and validated by the receiving blockchain system
before being processed. Duplicate messages are not processed
multiple times. This mechanism removes the dependency on
the off-chain framework, in that the routing mechanism can
be performed by any intermediary or interested party.

B. Code Cuts

Application logic is sliced into different smart contracts and
placed on an underlying blockchain system. It may be possible
to use different strategies to slice code: (i) an execution-cost
optimised strategy — executing code on some blockchain sys-
tems may be more expensive than others (ii) a location-based
strategy — contract logic is placed on the same blockchain
system according to where the asset being handled is located
(iii) a programmer tag-based strategy, where the programmer
instructs which logic should be placed on which blockchain.

In our proposal, we use a location-based placement strategy
as this avoids the added burden on the programmer for tagging
code. In the future, we envisage enhancing the strategy to
consider both execution cost and user compiler hints.

IV. PORTHOS AS A SMART CONTRACT LANGUAGE

PORTHOS is a domain specific language for composing
commitment-based smart contracts [31] — a contract is viewed
as a business exchange of commitments which are released

or cancelled depending on contract criteria. The abstraction
model includes these concepts:

• When a participant makes a commitment of an asset
towards another participant, the ownership of that asset
is transferred to a smart contract and held temporarily.

• A commitment is released when the contract transfers the
ownership of the held asset to the intended recipient.

• A commitment is said to be cancelled when the contract
returns a committed asset back to the original owner.

PORTHOS is a continuation-based language embedded in
Haskell. Basic language constructs are connected together to
form a contract. Haskell’s strong type system ensures that only
valid contracts can be constructed. Contracts are made up of
other contracts in a compositional manner.

As a simple example to introduce the language we show
how a simple savings-plan contract is implemented by com-
posing constructs together. The committed assets are released
after a specific amount of time.

savings :: Participant -> Time -> Contract
savings recipient expiryTime =

repeatCommit "save" (ETH, isCommitTo recipient)
(onTimeout expiryTime (releaseAll end))

The implementation is made up by combining three basic
constructs: repeatCommit followed by releaseAll and
finally end. Since PORTHOS is embedded in Haskell, contracts
look like Haskell programs. The construct repeatCommit

causes the progression of the contract to suspend to allow
contract participants to make commitments. A filter is used to
determine which commitments are accepted by the contract.
In this example, valid commitments are in the cryptocurrency
Ether (denoted by ETH) and must be in favour of a recipient.
The same contract can be recompiled with different parameters
(i.e. recipient) to generate different contracts. Once the timeout
period elapses, no more commitments are accepted and execu-
tion continues spontaneously — in this example, the contract
continues with releaseAll, that is, all commitments held in
the contract at that point in time are released.



Listing 1 Asset Swap
swap :: (Participant, Asset Currency) ->

(Participant, Asset Currency) -> Contract
swap (p1, a1) (p2, a2) =

onUserCommit "p1Commit"
(ETH, (isCommitTo p2 .&. isAsset a1))
doP2Commit (onTimeout 10 end)

where doP2Commit =
onUserCommit "p2Commit"
(XYZ, (isCommitTo p1 .&. isAsset a2))
(releaseAll end)
(onTimeout 20 (cancelAll end))

Listing 2 Group Pay
groupPay :: [(Participant, Asset Currency)] ->

Participant -> Contract
groupPay yy recipient =

allOf (userCommits yy) .>>>.
ifThenElse
(countC(allCommitments) .==. liftN(length yy))
(releaseAll end, cancelAll end)

where
userCommits =

map (\x -> onUserCommit (name (fst x))
(ETH, txFilter x) end (onTimeout 100 end))

txFilter (a, b) = isCommitTo recipient .&.
isCommitBy a .&. isAsset b

The language provides two distinct basic constructs for
accepting commitments. The first, repeatCommit described
earlier, accepts any number of commitments (zero or more)
in a given time-window, and the second expects one-and-
only-one commitment (onUserCommit). In the latter, when a
valid commitment is received, the contract continues execution
immediately, or if no commitment is made in time, then the
contract resumes with a time-out continuation. An atomic swap
contract (Listing 1) allows participants to swap assets safely
where assets are released once both commitments are made.

Commitments are stored in the smart contract state and can
be filtered, counted and summed to determine whether enough
assets have been committed. Specific commitments can be
cancelled or released — for example, by specific asset type or
for a quantity which is smaller than a specific amount.

One of the key benefits of embedding the DSL in Haskell,
our host language, is that a smart contract can make use of
standard Haskell combined with our contract constructs. In a
group pay contract (Listing 2), participants agree to transfer
an agreed amount to one participant. Funds are released to the
recipient once all commitments have been made. This example
shows the use of Haskell’s map and lambda expressions to
build complex contracts concisely.

V. USE CASE: PROPERTY SALE

To illustrate the effectiveness of PORTHOS as a multi-chain
smart contract language, we present a property sale agreement
where a buyer and a seller make an agreement to transfer
property in exchange for payment. As described earlier in
Section III-A, in PORTHOS, information about asset location is
kept separate from the smart contract. This means that contract
logic is clearer to the reader, and simpler to write for the
programmer. The higher level of abstraction completely omits
the details of inter-chain communication.

In our use-case, the property sale is a two-stage process.
During the first stage, a buyer and a seller engage in a
promise-of-sale agreement — the buyer confirms interest by
committing a deposit amount, and the seller promises to sell
the property to the buyer. Within a few weeks or months,
the buyer must obtain funds to be able to pay the remaining
balance. If the buyer is unable to make the payment, the
deposit amount is forfeited in favour of the seller and the
seller is freed to find a new buyer. However, before the deed
is completed, a public notary must submit approval. Should the
notary reject the deed, then the promise-of-sale is cancelled
and the buyer receives back his deposit.

We identify three participants: the buyer, the seller and the
public notary; and three types of assets: (i) a currency asset
for payments (ii) a property asset to represent the asset being
transferred from the seller to the buyer, and (iii) the public
notary’s decision of approval or rejection is also modeled as
an asset. A complete implementation of the smart contract
is shown in [32]. Asset location information is provided
during the compilation stage such that the contract logic is
placed in the generated code according to which blockchain
an asset type is located. Assets may all be located on the same
blockchain (in that case, only one smart contract is generated),
or alternatively located on different blockchains.
propSale (seller, property)

buyer deposit balance notary

The contract is instantiated by providing input values for
participants and assets traded. The generated code can then
be deployed and instantiated on the respective blockchain
systems. If the same contract is to be reused for another
property sale between other participants, then the PORTHOS
contract is re-compiled from first stage with new input values.

At runtime, the contract progresses through different states
— seller commits property, buyer pays deposit and balance,
and finally notary approves or rejects the transfer. Commit-
ments cannot be made out of sequence or at the wrong time,
and once a commitment is made, it cannot be cancelled. Time-
out continuations remind the programmer to define actions in
case a commitment is not made.

VI. EVALUATION

Expressiveness of Abstraction — We have implemented a
range of applications in this paper and in [32] including group
payments, asset swapping, property sale, crowd-funding and
voting. The model is best used for processes with a finite
number of steps. In PORTHOS, user interactions with smart
contracts are limited to commitments. Other interactions,
such as cancelling or redeeming a commitment, are currently
not possible. We believe our limitation on user interactions is
not too restrictive on the variety of smart contracts that can be
described. The language is Turing incomplete, so applications
involving loops are not describable — this is an intentional
design decision to ensure all contracts terminate.

Security Analysis — Blockchain systems have a high level
of security due to their decentralised and immutable charac-
teristics. However, these are still not completely immune to



attacks or weaknesses [33]. In addition, multi-chain applica-
tions may introduce new weaknesses:
Single Point of Failure (SPOF) – One of the strengths of

blockchain systems is that due to the decentralised nature, no
SPOF exists. However, the introduction of an intermediary
to route messages may create a SPOF. To mitigate this,
the communication layer itself must be decentralised with
multiple copies running concurrently. As this may cause
the same contract function to be triggered multiple times,
a mechanism for filtering duplicate messages must be used.

Third-Party Interference – Intermediaries route messages
between blockchain systems. It may be possible for inter-
mediaries to withhold, modify or forge messages. As long
as one honest intermediary is available to relay messages,
then messages cannot be withheld. To mitigate the risk of
modified or forged messages, all communication is signed by
the originating system. During initiation stage, cryptographic
keys are exchanged such that messages can be verified.
Distributed Transactions – Transactions spanning multiple

systems are susceptible to partial failure, causing other parts
of the same transaction to be reversed on other systems. If
the transaction is not reversed correctly, the systems may
end up with inconsistent state. Our framework does not
currently handle such errors gracefully, and this is an area to
be developed further.

Extensibility — The PORTHOS framework is extensible in
different directions. Different asset types are supported as
long as a contract interface is implemented. The model
can also be extended to support new systems by adding
code generation into the target language, and extending
the on-chain/off-chain framework. The framework currently
generates Solidity code to be executed on multiple Ethereum
instances, as well as Go Chaincode for Hyperledger Fabric.

VII. DISCUSSION AND CONCLUSIONS

In this paper we presented PORTHOS, an embedded DSL
framework for describing commitment-based smart contracts
that span across multiple blockchain systems. This is to
our knowledge the first attempt at providing a macro-level
approach for specifying multi-chain smart contracts in a sin-
gle specification. The closest work to that being presented
within this paper include: D’ARTAGNAN for programming
IoT devices at a network level [6] and for writing a single
macroprogram for blockchain connected IoT devices [23];
Marlowe for specifying financial contracts on Cardano [12].

PORTHOS is designed with safety in mind such that the
smart contract programmer is aware of timeout scenarios
and must define what happens in these situations. Although
the language cannot avoid all types of ‘bugs’, it does help
the programmer to significantly reduce easy-to-forget cases.
PORTHOS has shown that by raising the abstraction level,
it is possible to separate the complexities of placement and
communication from the contract logic such that the program-
mer needs only to focus on the contract. Through the use of
composition there is much to be gained as complex contracts
can be made up of simpler contracts.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[3] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in

Workshop on Consensus Ledgers, vol. 310, 2016.
[4] V. Buterin, “Chain interoperability,” R3 Research Paper, 2016.
[5] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged functional

programming for sensor networks,” in Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’08. New York, NY, USA: ACM, 2008, pp. 335–346.

[6] A. Mizzi, J. Ellul, and G. Pace, “D’artagnan: An embedded dsl frame-
work for distributed embedded systems,” in Proceedings of the Real
World Domain Specific Languages Workshop 2018. ACM, 2018, p. 2.

[7] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos,” in International Conference on
Distributed Computing in Sensor Systems. Springer, 2005.

[8] R. Newton, G. Morrisett, and M. Welsh, “The regiment macroprogram-
ming system,” in Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, ser. IPSN ’07, 2007.

[9] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable and
efficient programming abstractions for wireless sensor networks,” in
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. ACM, 2007.

[10] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), 2005.

[11] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” in ACM SIGPLAN
Notices, vol. 35, no. 9. ACM, 2000, pp. 280–292.

[12] P. L. Seijas and S. Thompson, “Marlowe: Financial contracts on
blockchain,” in International Symposium on Leveraging Applications of
Formal Methods. Springer, 2018, pp. 356–375.

[13] D. Harz and W. Knottenbelt, “Towards safer smart contracts: A survey of
languages and verification methods,” preprint arXiv:1809.09805, 2018.

[14] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[15] I. Sergey, A. Kumar, and A. Hobor, “Scilla: a smart contract
intermediate-level language,” arXiv preprint arXiv:1801.00687, 2018.

[16] “Bamboo,” https://github.com/pirapira/bamboo.
[17] M. Coblenz, “Obsidian: a safer blockchain programming language,” in

Proceedings of the 39th International Conference on Software Engineer-
ing Companion. IEEE Press, 2017, pp. 97–99.

[18] “Vyper.” [Online]. Available: https://vyper.readthedocs.io/en/latest/
[19] R. O’Connor, “Simplicity: A new language for blockchains.” [Online].

Available: https://blockstream.com/simplicity.pdf
[20] S. Popejoy, “The pact smart contract language (2016).” [Online].

Available: http://kadena.io/try-pact/
[21] J. Pettersson and R. Edström, “Safer smart contracts through type-driven

development,” Ph.D. dissertation, Chalmers University, Sweden, 2016.
[22] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards

automated generation of smart contracts,” 2016.
[23] A. Mizzi, J. Ellul, and G. Pace, “Macroprogramming the blockchain of

things,” in Proceedings of The 1st International Workshop on Blockchain
for the Internet of Things. IEEE, 2018, pp. 1673–1678.

[24] M. Dan and C. Arlyn, “The blocknet: Design specification,”
https://www.blocknet.co/wp-content/uploads/2018/04/whitepaper.pdf.

[25] “Btc relay,” https://github.com/ethereum/btcrelay.
[26] “Cosmos,” https://cosmos.network/docs/resources/whitepaper.html.
[27] “Polkadot,” https://polkadot.network/PolkaDotPaper.pdf.
[28] R. K. Shidokht Hejazi-Sepehr and A. Sharif, “Transwarp-conduit:

Interoperable blockchain application framework.” [Online]. Available:
https://aion.network/media/TWC Paper Final.pdf

[29] “Ethereum alarm clock,” https://www.ethereum-alarm-clock.com/.
[30] “Oraclize.” [Online]. Available: https://docs.oraclize.it/
[31] J. de Kruijff and H. Weigand, “Ontologies for commitment-based smart

contracts,” in OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”. Springer, 2017, pp. 383–398.

[32] A. Mizzi, J. Ellul, and G. Pace, “Porthos: Macroprogramming
blockchain systems,” University of Malta, Tech. Rep., 2019.

[33] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 164–186.


