AlkylVM: A Virtual Machine for Smart Contract
Blockchain Connected Internet of Things

Joshua Ellul
Department of Computer Science
University of Malta, Malta
joshua.ellul@um.edu.mt

Abstract—Blockchain technology and the application of smart
contracts allow for automation of verifiable digital processes
between any number of parties. The Internet of Things (IoT)
has seen great potential in the past decade to revolutionise our
day-to-day lives with the aim of automating physical processes
by incorporating Internet-connected devices into commodities. By
integrating the IoT with blockchain systems and smart contracts
it is possible to provide verifiable automation of physical processes
involving different parties. The challenge lies in that due to
resource constraints, many of the computational devices used
within the IoT are not capable of directly interacting with
blockchain implementations. In this paper, we describe and give
a reference design and implementation of a split-virtual machine,
AlkylVM, which allows for resource constrained IoT devices to
interact with blockchain systems.

Index Terms—Blockchain, Internet of Things, Smart contracts,
Virtual Machines, Distributed ledgers.

I. INTRODUCTION

Smart contracts built on top of blockchain technology has
piqued the interest of various industries and stakeholders, re-
sulting in the technology being adopted due to the advantages
which it brings, by allowing for the automation of verifiable
and enforceable digital processes between the parties involved.
In the past decade, the Internet of Things (IoT) has seen a
similar surge in interest due to the automation benefits that
the IoT facilitates. By integrating the IoT with smart contracts
and blockchain technology, besides the plethora of applications
that would be possible [1], one can enable verifiable and
enforceable automation of and arbitration between physical
processes. For example, consider the use case of a landlord that
would like to: (i) automate the process of providing access to
property and other commodities; (ii) monitor tenants’ usage of
commodities and services; and (iii) automate any errands and
tasks for the upkeep of the property. It would be beneficial for
the landlord to define smart contracts with the different parties
involved to ensure that they guarantee to keep their end of the
agreement. For instance, a contract may state that if any rent
due is not paid on time, then the tenants are automatically
locked out. This requires the smart contract to interact with
the IoT devices involved (e.g. a smart lock). Furthermore,
the landlord and different tenants may, from time to time,
also want to change certain functionality — for example, the
landlord may want to implement a property-wide lock-out for a
given amount of time on all smart locks if a number of access

Gordon J. Pace
Department of Computer Science
University of Malta, Malta
gordon.pace @um.edu.mt

attempts are invalid. The solution should thus allow for the
end IoT logic to be agreed upon to be defined within the smart
contract, to reprogram without any manual intervention on the
IoT devices when the smart contract comes in to play. Such a
use case could become a reality once IoT devices are integrated
with blockchain systems and provide reprogrammability based
upon the contents of smart contracts.

In this paper, we present a general solution for the com-
bination of these two technologies, and use this property
management use case as a running example to illustrate this
solution. One of the major challenges is that many devices
used within the Internet of Things are resource constrained
and are not capable of interacting directly with blockchain
implementations (such as Ethereum). Also, given that use
cases exist where IoT devices will be required to perform
different tasks based upon the smart contracts that they will be
required to fulfil, then some form of IoT application updating
(based upon the smart contract) must be provided.

We propose a general solution to this challenge, and give a
reference design architecture and implementation of a split-
virtual machine (where the implementation of more com-
putationally expensive operations are offloaded to resource
rich devices), AlkyVM, which enables the integration of IoT
devices (both resource-constrained and resource-rich alike)
with blockchain technology. The virtual machine, AlkylVM,
proposed within this paper specifically enables the integration
of IoT devices with the Ethereum blockchain, however the
architecture and concepts can be applied on any blockchain
infrastructure which supports smart contracts. To the best of
our knowledge, this is the first approach proposed to achieve
this goal. The architecture and virtual machine naming were
inspired by the organic chemical compound structure that
makes up Ethers.

II. SYSTEM ARCHITECTURE

One of the major challenges in having IoT devices interact
with a blockchain system, is one of constrained resources on
the devices. In various other IoT contexts, one of the solutions
frequently adopted to overcome executing computationally
expensive operations is that of using a split-virtual machine
architecture [2], in which the virtual machine is split into
different components which operate on different devices. We
are proposing to use such a solution for connecting IoT devices

Ethereum Blockchain

. Contract 1 Send Alkyl
' Events Aryl Blockchain Node 1 Application
A e . 1 or Method
' ¢ : A Extract : Invocation
— 1
Vo Ethereum ’\ A”;yl) ! Alkyl
1 © (5 n) 1 Oxygen Virtual Machine
! Node 1 Packets (on device)
1 Write Blockchain '
, Y I—;l/ < Transaction @ v
: lssug IAryI Request
' Transaction ,
1 a4

Aryl Response

Fig. 1. System overview

with a blockchain. An overview of the proposed system
architecture is depicted in Figure|l} The Aryl Blockchain Node
acts as a gateway between the blockchain and the connected
IoT device/s. Each blockchain connected IoT device would
run an instance of the Alkyl Virtual Machine, which allows
for blockchain programmability of end IoT devices by com-
municating with the Aryl blockchain node. Communication
between the Aryl blockchain node and end IoT device Alkyl
virtual machines is required to be a trusted one. Following is
further internal detail of each system component.

A. Aryl Blockchain Node

The Aryl Blockchain Node connects to the Ethereum
blockchain just like any other blockchain node (and should be
considered to be part of the Ethereum blockchain just like any
other Ethereum node). The Aryl node operating on a device
that is capable of interacting with the blockchain is responsible
for monitoring smart contract transactions and events that
would require interaction with the IoT connected device/s
or infrastructure (this could be in the form of monitoring a
specific smart contract, though not limited to a single smart
contract). Upon encountering a change within the blockchain
that would require interaction with the IoT system, the Aryl
node will extract the application logic required to execute on
the end IoT device/s and transmit it to them accordingly.

The Aryl blockchain node is also responsible for listening
to the AlkylVM devices that it is servicing for any requests
in relation to the blockchain, system-wide state, or execution
of computationally expensive operations that the connected
device/s may not be able to perform. When a blockchain write
request is received from an AlkylVM being serviced (that
is a particular IoT device would like to change the state of
the blockchain), the Aryl node will translate and write the
request into the blockchain (as any other standard blockchain
node would). When a read request is required then the Aryl
blockchain node will only be required to look at the local state
of the blockchain and return the requested result to the IoT
device which made the request.

For the landlord property management use case previously
described, the Aryl blockchain node would listen to the

blockchain for any new smart contracts (i.e. agreements) which
concern the property. For example, upon a receiving new
tenant agreement, the Aryl Blockchain Node would extract any
specific IoT device code for functionality that has been agreed
upon and deliver it to the end IoT devices for installation. The
Aryl node would also listen to devices for any request that
should update either the blockchain smart contract state, or
the local IoT device system state. For example, if the agreed
functionality was to lock-out all smart locks after a number
of invalids attempts, then a smart lock that encounters such
activity would alert the Aryl node so that it can propagate the
lock-out messages throughout the property’s smart locks.

B. Alkyl Virtual Machine

The Alkyl virtual machine and run-time system will await
instructions from the Aryl blockchain node. This does not
preclude the end IoT device from performing other operations
while it is awaiting instructions. Upon receiving an applica-
tion, the AlkylVM will execute the instructions accordingly.
Whenever the executing [oT application requires to: (i) verify
or modify any state from the blockchain or IoT system-wide
state, for example to check and deduct from a tenant’s utility
account balance or to check if access to a particular area is still
granted; or (ii) to perform computation beyond its capabilities;
then a request will be made to the Aryl blockchain node. In this
regard, the Aryl blockchain node is treated as a trusted node
from the perspective of the connected AlkylVM IoT device/s.
The architecture proposed here is not only relevant for resource
constrained blockchain connected devices, however the same
abstraction could also be used within an IoT device that has
the capabilities to act as a blockchain node itself whereby the
IoT device will contain both the Aryl blockchain node and
the Alkyl virtual machine. The VM has been implemented
for MSP430 and AVR microcontrollers, and also for more
powerful Raspberry Pi and Intel Edison platforms. Internal
VM implementation details follow.

1) AlkylVM Software Stack: Alkyl applications encoded
in the Alkyl Intermediate Representation (IR) received from
the Aryl Blockchain Node are executed on the Alkyl Virtual
Machine (VM). When an application is required to make use

of any IoT device specific functionality, the application will
make calls via the VM to the run-time libraries by means of
the provided Application Programming Interface (API). The
VM and run-time libraries will run on top of the available
operating system (if one is available) or on the bare-metal,
and facilitate interaction with the device drivers or hardware
abstraction layer (HAL) where necessary. Low-level driver
and internal operating system code may initiate events that
are handled within the high-level IoT application code. For
example when a key is pressed on a key pad, the low level
drivers would raise the event to the run-time library which
would then pass on the event to the Alkyl application if it has
registered to receive such events. However, there is an endless
number of such events and thus the application code must be
aware of which events the driver code exposes via the Service
Provider Interface (SPI).

2) Intermediate Representation: It would be ideal to encode
within the same smart contract deployed on the blockchain not
only the in-blockchain smart contract logic, however also the
off-blockchain IoT device process that must be executed. This
removes the requirement of having to keep track of which oft-
blockchain processes to execute for different smart contracts
that the IoT devices will be interacting with. Therefore, it was
decided to use an EVM-like intermediate representation. This
could also be useful for an eventual language that provides for
both smart contract logic and IoT device execution within the
same smart contract sources. The Ethereum Virtual Machine
(EVM) is a stack based machine with a 256-bit word size,
that is each instruction operates on 256-bit operands and stack
items take up 256-bits. The main design decision behind this
was “to facilitate the Keccak-256 hash scheme and elliptic-
curve computations” [3|.

Most IoT devices utilise architectures that have an 8, 16
or 32-bit word size. Typical, with most IoT application code
consisting of 16 and 32-bit operations. Therefore, the 256-
bit operations from Ethereum will incur a heavy execution
overhead due to the lower bit-width operations which can be
executed on the devices. Supporting 256 bit operations will
incur an extensive computational burden, as can be seen from
the table below which provides the number of clock cycles
required to execute various 8, 16, 32 and 64 bit operations,
as well as an implementation that supports big numbers
(including 256 bits)}

Clock Cycles

Operation | T Tebit [32bit [6dbit | Big Number]
Add 9 | 16 | 28 | 72 1159
Compare 12 21 37 90 298
Multiply | 12 | 24 | 103 | 368 2666
Assignment 3 6 12 17 1077

AlkylVM IR provides 8, 16, 32 and 64-bit operations by
providing bit mode instructions that specify a code block’s
word size. Higher bit width word sizes can also be supported.
Code blocks that specify their word size must be delineated
in the code. This is to ensure ease of static analysis of the

Uhttps://github.com/nickgammon/BigNumber

IR and also to enable ahead-of-time compilation for efficient
execution on the resource constrained devices [4].

AlkylVM supports Ethereum’s: stop, arithmetic, compari-
son, bitwise logic, stack manipulation, memory, storage and
flow operations [3|] (interaction with the blockchain is provided
through the Aryl Blockchain Node). Since AlkylVM supports
a variable-sized stack width, and type conversion of stack
elements is required, then type information must be preserved
within the stack elements. This can be implemented either by
associating a type identifier byte with each element, or else
could be implemented by using a variable length encoding
similar to PreﬁxVarinﬂ or LEB128 (used to encode operands
in the Dalvik Executable Formaﬂ and WebAssembly’s binary
encodin@. The choice on which variable stack size imple-
mentation to use is left as an implementation detail as it
does not affect the VM IR specification. We have decided to
implement a variable length encoding similar to Prefix Varint
since the bit size of the type can be deduced based on the least-
significant bits of the value, rather than having to check each
byte’s least-significant bit, allowing for more optimisations.

III. PROGRAMMING MODEL

The IoT device VMs where code is expected to execute
are off-blockchain, contrary to execution of smart contract
code performed on the collective blockchain. The IoT devices
can perform actions based on operations initiated from the
blockchain and thereafter can follow up by initiating transac-
tions on the blockchain. It would be ideal to allow for the smart
contract itself to define what operations should be performed
on the IoT devices once a transaction is executed. It would not
be sufficient to have the application logic predefined within the
IoT systems and therefore the virtual machine approach being
presented herein would allow for such smart contract defined
IoT device behaviour.

Smart contracts are written as they normally would be.
Events that trigger actions on the IoT system should be
exposed in the smart contract. The Aryl blockchain node
monitors for these events and executes the respective Aryl
coordinating code (on the Aryl blockchain node itself). Going
back to the property-management use case, consider a smart
contract that allows tenants to rent property and automatically
get access to all of the premises’ entrances using a pin which
they have passed (in an encrypted manner) along with their
payment (similar to smart lock systems like slock.iﬂ). The
following Aryl blockchain node script would take care of
setting the pin on each connected IoT smart lock within the
system, valid for the specified number of minutes:

On PaymentEvent (string encryptPin, uint32_t mins) {
string pin = Decrypt (encryptPin);

for each (device in devices) {
device.SetPin(pin, block.timestamp +
}

}

(mins = 60));

3https://github.com/WebAssembly/design/issues/601
4https://source.android.com/devices/tech/dalvik/dex-format
Shttp://webassembly.org/

Ohttps://slock.it

https://github.com/nickgammon/BigNumber
https://github.com/WebAssembly/design/issues/601
https://source.android.com/devices/tech/dalvik/dex-format
http://webassembly.org/
https://slock.it

The Aryl blockchain node script is concerned with coor-
dinating of actions between the blockchain and the different
connected IoT devices. The Aryl blockchain node script cur-
rently supports commands to coordinate each connected IoT
device or named IoT devices. That being said, the focus of this
paper is on the AlkylVM, that is the virtual machine residing
on the IoT connected device.

Applications for the end IoT devices are written in Alkyl,
a C-like dialect which compiles down to the platform-
independent Alkyl IR which is then executed from within the
VM. The language requires that variables are strongly typed
(since the IR is also strongly typed). An implementation of
the end IoT device smart lock Alkyl application follows:

charx pin;
time_t expires;
uint8_t index;
bool valid;

public
this
this
this
}

void SetPin(char* pin, time_t expires) {
.pin = pin;

.expires = expires;

.valid = true;

deviceevent void KeyPressed(char key) {
if (pin[index] != key) {
valid = false;
}
index++;
if (index == 4) {
index = 0;
if (valid) {
SystemCall (Unlock) ;
} else {
SystemCall (IncorrectBeep);
valid = true;

The underlying IoT device firmware would make use of
the Alkyl run-time library to call the KeyPressed AlkylVM
application event any time a key is pressed on the device.
This particular implementation allows a user to try to enter
the correct pin any number of times, and will unlock the door
once the correct pin is entered.

The smart contract, Aryl blockchain node coordinating
application, and the end IoT Alkyl application will ultimately
be compiled and fused into a single smart contract, whereby
the smart contract logic is unaffected by the inclusion of the
Aryl and Alkyl applications, and yet the Aryl and Alkyl IR
instructions are embedded within the smart contract Ethereum
bytecode. By doing so, the involved parties can not only agree
to the smart contract logic, but also to what should be executed
on the blockchain connected IoT systems. The embedding of
the IoT system code within the smart contract coupled with the
end IoT system VMs also allows for IoT application code to
be developed for the specific smart contract without requiring
manual updating of the end IoT devices.

IV. RELATED WORK

The closest related work to enabling automated physical
processes based on blockchain smart contract content on re-

source constrained IoT devices include the following: defining
virtual resources within firmware on IoT devices which can
thereafter be instructed to download a sequence of function
invocations [S]; and using a blockchain as a means of storing
data from IoT devices and also to store configuration proper-
ties [6]. Other tools exist that allow for the orchestration of
resource constrained IoT devices such as Node-RED[| which
allows a master controller to send commands to connected
Arduino devices (amongst other devices). Such an approach
differs from ours in that Node-RED requires to send each
individual command which is there by executed immediately
on the device, whereas our approach sends the code to be
executed and the code is thereafter executed (without requiring
any further orchestration from a master controller).

V. CONCLUSIONS

In this paper we have presented AlkylVM, a split-virtual
machine architecture to enable the integration of resource
constrained (and resource rich) devices with blockchain sys-
tems, in which an implementation of the virtual machine for
the Ethereum blockchain network has been described. The
Aryl blockchain node acts as an intermediary between the
blockchain system and the end IoT devices. The programming
model presented herein provided a decomposition of each
of the components within the system. In future work we
will be looking into programming models that may be better
suited towards the requirements of such a system involving
heterogeneous distributed systems and paradigms.

By integrating IoT devices with blockchain systems, it
would be possible to automate physical processes initiated by
verifiable blockchain transactions. It would be beneficial to
also provide guarantees to parties that the end IoT devices
have executed their obligation as required. Therefore, we are
looking into means of providing such guarantees of physical
process execution back to other involved parties.
Acknowledgement: This paper has been accepted as a
short paper in Blockchains and Smart Contracts workshop
(BSC’2018).

REFERENCES

[1] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292-2303, 2016.

[2] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java™on the
bare metal of wireless sensor devices: The squawk java virtual machine,”
in Proceedings of the 2Nd International Conference on Virtual Execution
Environments, ser. VEE '06. New York, NY, USA: ACM, 2006, pp.
78-88. [Online]. Available: http://doi.acm.org/10.1145/1134760.1134773

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[4] J. Ellul and K. Martinez, “Run-time compilation of bytecode in sensor
networks,” in Sensor Technologies and Applications (SENSORCOMM),
2010 Fourth International Conference on. IEEE, 2010, pp. 133-138.

[5S] M. Samaniego and R. Deters, “Hosting virtual iot resources on edge-hosts
with blockchain,” in 2016 IEEE International Conference on Computer
and Information Technology (CIT), Dec 2016, pp. 116-119.

[6] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in 2017 19th International Conference on Advanced Commu-
nication Technology (ICACT), Feb 2017, pp. 464-467.

https://nodered.org/

http://doi.acm.org/10.1145/1134760.1134773
https://nodered.org/

	Introduction
	System Architecture
	Aryl Blockchain Node
	Alkyl Virtual Machine
	AlkylVM Software Stack
	Intermediate Representation

	Programming Model
	Related Work
	Conclusions
	References

