
Macroprogramming the Blockchain of Things
Adrian Mizzi

Department of Computer Science
University of Malta

Msida, Malta
adrian.mizzi.00@um.edu.mt

Joshua Ellul
Department of Computer Science

University of Malta
Msida, Malta

joshua.ellul@um.edu.mt

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

gordon.pace@um.edu.mt

Abstract—Blockchain and smart contract technology provide
a means of decentralised computational agreements that are
trusted and automated. By integrating Internet of Things (IoT)
devices with blockchain systems and smart contracts, agreements
can not only be confined to in-blockchain manipulation of state,
however can enable agreements to interact on the physical world.
This integration is non-trivial due to the limited resources on
IoT devices and the heterogeneity of such an architecture. Such
blockchain connected IoT devices typically require programming
of smart contracts, edge blockchain nodes and the IoT devices.

IoT embedded systems require expertise in low level develop-
ment. Similarly, smart contract programming requires expertise
with an extensive attention to detail, as even minor bugs can
have catastrophic consequences. In this paper, we propose a
macroprogramming approach for developing the different sys-
tem components required for blockchain connected IoT devices
including smart contracts, edge nodes and IoT devices from a
monolithic description. In this manner, one can use a higher level
of abstraction to develop an application, while still being able to
generate code automatically which can be deployed on different
nodes.

Index Terms—macroprogramming, blockchain, edge, embed-
ded systems, IoT

I. INTRODUCTION

The rise of smart contracts on blockchain or other dis-
tributed ledger technologies have brought the possibility of
regulated interaction and resource exchange between parties
without the need of a trusted entity. With smart contract
technologies such as Ethereum [1], which provide a Turing
complete programming language for the specification of ex-
ecutable contracts, one can encode any complex behaviour
between parties within the contract. A major challenge is,
however, that of reaching beyond the confines of the smart
contract itself, and interacting with real world systems. This
challenge is particularly acute in cases where external systems
are Internet of Things (IoT) devices which are often limited
in resources. One of the hurdles is the fact that programming
models (and virtual machines) developed for smart contracts
are not designed to be executed on systems with limited re-
sources. For instance, the Ethereum Virtual Machine uses 256-
bit instructions and associated stack, which cannot be easily
deployed effectively on most limited resource devices without

The research work disclosed in this publication is partially funded by the
Endeavour Scholarship Scheme (Malta). Scholarships are part-financed by
the European Union - European Social Fund (ESF) - Operational Programme
II Cohesion Policy 2014-2020. ”Investing in human capital to create more
opportunities and promote the well-being of society”.

major overheads of space and time. We have previously looked
at providing means to explicitly switch word-size in order to
have virtual machine-level code executable across blockchain
and IoT devices transparently [2].

However, this does not address the other major challenge of
developing applications at a high level of abstraction across the
two domains. Particularly due to the fact that smart contracts
regulate transfer of digital assets (and particularly frequently
used to move cryptocurrency), system correctness is critical,
as has been shown in recent cases in which the equivalent
of millions of US dollars were lost due to bugs in smart
contracts1. The need for a unified view of the system across
the different levels of abstraction and different locations of
deployment (one of possibly many IoT devices, smart contract
or an intermediate blockchain edge node) is crucial, since
programming the different layers separately and gluing things
together with custom communication is not straightforward
and may easily lead to unforeseen situations.

On IoT devices, this challenge is typically addressed
through the use of macroprogramming [4] — in which pro-
grammers can focus on the top-level, global view and goal of
the application being developed, hiding low-level details such
as deployment location, communication, etc. In this paper,
we propose to extend such an approach to reach beyond the
computation and sensor data acquisition on IoT devices, thus
enabling parts of the macroprogrammed system to be deployed
on edge devices and beyond — in our case as smart contracts
on the blockchain.

D’ARTAGNAN [5] is a macroprogramming language we
have developed aimed at enabling the programming of stream
processing systems to be deployed on heterogeneous devices,
primarily targeting low-level devices. However, nothing pre-
vents it from being extended to high-level systems. In this
paper, we discuss how D’ARTAGNAN can be extended to
push the limits of heterogeneity to edge devices and even
onto smart contracts on the blockchain. We identify a number
of challenges which need to be addressed to make such an
approach possible, namely (i) enabling the deployment of
stream processors beyond IoT devices, particularly to enable
in-blockchain computation (in the form of smart contracts),
and (ii) incorporating communication between the different

1See [3] for a list of cases, although since its publication many other high
profile, high loss cases have happened, including a recent Parity Multi-Sig
Wallet bug which resulted in a loss of over 300 million USD.



Fig. 1. Proposed Macroprogramming Blockchain of Things Architecture

levels of abstraction, invisible to the user. Solutions for
D’ARTAGNAN are proposed and a prototype enables us to
evaluate how an end-to-end solution can be programmed for
a smart building rent management use-case.

The rest of the paper is organised as follows. In Section II
we describe the architecture and workflow of our proposed
solution. Then, in Section III we present D’ARTAGNAN and
how it is extended to enable the framework proposed. We
then present a use-case to illustrate the use of D’ARTAGNAN
in such a context in Section IV, an evaluation in Section V
and conclude in Section VI.

II. PROPOSED FRAMEWORK

Blockchain connected edge IoT devices typically interact
with the blockchain by either having their own local copy
of the blockchain or using an intermediary node (such as a
cloud-based service or edge blockchain node). Writing code
for systems made up of such combinations of devices typically
involves development of: (i) a smart contract, (ii) code to be
deployed on blockchain edge nodes and (iii) code for the IoT
devices (which may itself use different technologies due to the
heterogeneity of the devices). In addition, each of these devices
has to handle communication with the others in an explicit
manner. In order to reduce the complexity required to develop
such systems, we propose the use of macroprogramming which
enables the use of a single high-level application description
(using a domain specific language approach) ranging over the
whole system. Figure 1 depicts the system architecture.

A single macroprogram is written by the system imple-
menter which is passed through transformations to generate the
smart contract, blockchain edge nodes and IoT device code.
Every participating blockchain node requires a copy of the
same blockchain data and is updated when new transactions
occur. When a smart contract is to be deployed within the

blockchain, each node will gain a copy of the smart contract.
Actions can be initiated by monitoring smart contract events of
interest within the blockchain edge node (this involves nothing
more than monitoring the local state of the blockchain).
Thereafter, the blockchain edge node can perform any required
tasks and propagate messages throughout the different system
components (be it IoT devices, other edge nodes or to the smart
contract itself). Similarly, connected IoT devices can perform
actions based upon the logic that is required of them. Such
actions may involve propagating data back to the blockchain
edge node in order to update the blockchain state.

III. D’ARTAGNAN: A MACROPROGRAMMING FRAMEWORK

D’ARTAGNAN is a framework for programming stream
processing applications using a high-level domain specific
language (DSL). The framework automatically translates a
stream processor description into target code that can be run
on a network of heterogeneous devices. The generated code is
specific to each device in the network depending on both the
intended behaviour and also the target architecture.

Designing and building such a domain-specific language
to enable programming the stream processor from a global
perspective, and developing a compiler which automatically
deploys the different parts onto different devices possibly using
different technologies would thus enable high level program-
ming of such systems. However, the need for constant updates
to the language to cater for new devices, technologies and
native capabilities of these devices can be a major challenge.
One approach which has been proposed in the literature has
been that of embedded languages [6], in which a domain-
specific language is integrated into an existing general-purpose
language as a library whose use appears like domain-specific
subprograms in the host language. Such an approach has been
advocated due to the ease of development (since the infrastruc-



ture and tools of the host language can be directly adopted) and
the fact that the host language acts as a meta-language of the
domain-specific one, and can thus be generated, manipulated
and transformed within the same programming environment.
For these reasons, embedded domain-specific languages have
been argued to be ideal for prototyping languages and for lan-
guages which may undergo frequent language-design changes.

The D’ARTAGNAN language is embedded in Haskell —
a domain specific embedded language, effectively a domain
specific library developed in a style such that the use of the
library results in parts of a system written in the host language
(Haskell in our case) to resemble programs written in a DSL
for the target domain.

In the case of D’ARTAGNAN, the library allows for stream
processors to be defined as part of (and using) Haskell pro-
grams. Haskell primitives can be used with the DSL to raise
the level of abstraction. Consider the following code snippet:
result = foldl1 combine (map (applyRate 10) eSensors)

A rate is applied to each sensor stream with map, and fold

is used to aggregate results by using a specific combine

function. For instance, in wireless sensor networks, where
power utilisation is a precious resource, information can be
aggregated before sent wirelessly to neighbouring nodes in
order to reduce the amount of data traffic.

Internally, the description of a stream processor results in
a representation which can be (i) analysed; (ii) transformed;
and (iii) interpreted in different forms. These are the three key
features of the D’ARTAGNAN framework (refer to Figure 2).

A stream processor can be analysed by traversing the
internal representation to look for relevant and interesting
information. For example, to determine how computation is
distributed across the network and whether one device is more
loaded than others. For embedded devices, an even distribution
is desirable as it typically increases the longevity of the
application on these resource constrained systems.

The internal representation can also be transformed in differ-
ent ways — for example to evenly distribute the computation
across the network (as a result of the analysis phase) or perhaps
to replace a computationally intensive mathematical function
with an approximation function. The framework also supports
compiler hints — tips supplied by the programmer to the
compiler such that generated code is optimised for the given
application environment. For example, if one of the devices
in the network has a more powerful processor, the compiler
attempts to shift computation on to this device.

The same internal representation can be interpreted in
different forms. A simulator interpretation can be used to
observe the behaviour of the stream processing application in
a simulated environment. Perhaps more importantly, another
interpretation automatically generates low-level code which
can be loaded onto target devices — the generated code can
be specific to different types of devices.

A. D’ARTAGNAN for IoT
D’ARTAGNAN was initially designed for IoT devices with

limited capabilities and resources. The computation for a

Fig. 2. The D’ARTAGNAN Framework.

stream processor would thus be spread across different devices
based on sensors they possess and computational power. The
approach is that the developer typically partially tags which
parts have to be deployed on which devices (e.g. due to the
features, or the positioning, of a device — if we require
the temperature of the kitchen, then we can only read it
from a device which has a temperature sensor and which lies
in the kitchen). The locality of the rest of the computation
can be left up to D’ARTAGNAN, or directed using code
transformation libraries which allow the developer to request
certain constraints or compilation strategies (e.g. to minimise
communication, or to put as much computation as possible on
devices connected to a permanent power source).

The IoT device spectrum is very fragmented with hundreds
of hardware platforms and several operating systems. Code
which runs on a specific device cannot be executed on another
device running the same operating system because the underly-
ing hardware differences cannot be ignored. Because of these
differences D’ARTAGNAN was designed with heterogeneous
networks in mind, where the same logic can be translated into
different target code depending on the target device.

B. Extending D’ARTAGNAN

The ability to generate code for different targets (hetero-
geneity) and the ability to transform and statically move
computation logic across the devices in a network is what
enables our prior work with D’ARTAGNAN to be extended
and applicable for applications that span across IoT devices
and smart contracts technology. Whereas the main concern
with IoT devices is the preservation of energy and load
balancing of computation, applications involved with let’s say
the Ethereum blockchain are typically concerned about gas2

utilisation. The mix of these two concerns together with the
need to have business logic visibility in smart contracts provide

2The cost of running a transaction on the Ethereum blockchain varies
according to the computational resources needed and is referred to as ‘gas’.



an interesting challenge for which we believe D’ARTAGNAN
can contribute. Our framework allows the application logic
to be placed in an optimal manner according to information
provided by the programmer (i.e. hints) and the target code
generated accordingly.

Listing 1 D’ARTAGNAN Language Extensions
transaction :: Stream Int -> Stream Bool

-> Stream Bool

native :: StreamType -> String
-> Stream a

native1 :: StreamType -> String -> Stream a
-> Stream b

In order to adapt D’ARTAGNAN to a wider range of
applications, we have extended the language with new func-
tionality (see Listing 1). To be able to implement blockchain
applications, we have added transaction for the execution
of blockchain transactions. Given a condition (in the form of a
boolean stream) and an amount, a transaction is executed on a
smart contract with the amount deducted from a balance. The
result of the transaction function shows whether the transaction
has been successful or not (in the form of a boolean stream).
As an example, consider app below, which shows the listing
of a simple app which given a sensor (e.g. luminosity sensor)
will attempt to execute a transaction worth 1 coin3 when the
luminosity is below 150. The result of transaction is then used
to turn on a light bulb.

app :: Stream Int -> Stream Bool
app input1 = transaction 1 (input1 .<. 150)

With the introduction of a wider class of devices, some
of which are not necessarily resource constrained, new func-
tionality has been introduced to reflect the new capabilities.
For instance, native functions were introduced to allow the
application to get access to new functionality which now
becomes available as a result of a wider class of devices. For
example, a native function can be used to retrieve information
from a database or a third party service. Native functions are
defined directly inside a stream processor description and are
executed directly on the devices where they will be deployed,
an approach borrowed from a similar one used in Flask [7].
To allow for a wide range of services, the content of the native
function is not evaluated by D’ARTAGNAN. This means that
errors may not be caught early and will be detected during
the compilation to target, or possibly even at runtime. This
approach is a compromise to allow for new services to be
added easily without changing the D’ARTAGNAN core.

In addition, we have extended the capability of heterogene-
ity further by adding support in D’ARTAGNAN for compiling
to Javascript for edge devices and to Solidity for deployment of
parts of the system as smart contracts. These additions further
require support for communication between the different types
of devices e.g. through a serial port between an IoT device and

3We use coin to mean the quantity or cost associated with the transaction.

a blockchain edge node, wireless communication between IoT
devices running different operating systems, etc.

As mentioned at the beginning of this section and depicted
in Figure 2, the D’ARTAGNAN framework allows transforma-
tions which also include placement of logic on specific targets.
To illustrate the effect of this, we will use Listing 2 which
extends our previous example app with two sensors.

Listing 2 app2
app2 :: Stream Int -> Stream Int -> Stream Bool
app2 x y = transaction 1 (sAvg (x, y) .<. 150)

>> generateCode (app2 (inputI 1) (inputI 2))

The application app2 is made up of six steps:
1) Read Sensor 1
2) Read Sensor 2
3) Add the values from the previous two steps
4) Divide by 2 the result from the previous steps
5) If the result is less than 150, execute a transaction
6) Transaction to deduct an amount from a balance
The code for reading a sensor is naturally bound to the

device where the sensor is located — Steps 1 and 2 are placed
on Devices 1 and 2 respectively. Step 6, which is used to
deduct coin from a balance, is also location-bound and has to
be placed in a smart contract. There is more flexibility in the
placement of the remaining three steps and what goes where
may depend on the application needs and the layout of the
devices. We highlight 3 possible placement options with the
respective advantages/disadvantages:

• Placement Option 1 – IoT-focus: Where possible, code
is placed on IoT devices to provide in-network processing
and filtering. In the example above, the code for steps
3, 4 and 5 is placed on Device 1, such that the device
determines whether to trigger a transaction or not. This
approach requires less communication in the form of
radio messages, and gas is only used when the condition
is met. However, trust level is low as application logic is
off-chain. [low comms, low gas, low trust]

• Placement Option 2 – Edge-focus: In this placement
option, code is placed on the edge node where possible.
Every time the sensors are polled, the readings are passed
from the IoT devices to the edge node (2 wireless
messages). The edge node then determines whether a
transaction should be executed. The number of radio
messages increase as a result, but this approach allows the
edge node to do more complex computation that may not
be possible or accessible on resource constrained devices
(e.g. record the information in a database or convert using
a rate-conversion service). [high comms, low gas, low
trust]

• Placement Option 3 – Blockchain-focus: The applica-
tion logic (steps 3, 4 and 5) is placed in the smart contract
for transparency. This setup also utilises two radio mes-
sages every time the sensors are polled. The information
is recorded in the smart contract, but a transaction is only



performed when the condition is satisfied. [high comms,
high gas, high trust]

Different applications may have different requirements.
The D’ARTAGNAN framework allows the programmer to
use placement directives to influence how business logic is
placed across the network (see Listing 3), including the smart
contract, as shown in the different placement options above.
The different types of communication needed (IoT to IoT, IoT
to Edge, Edge to Blockchain) to connect the logic in a coherent
manner is handled under the bonnet.

Listing 3 Different placement directives
app2 :: DeviceNum -> Stream Int -> Stream Int

-> Stream Bool
app2 placement input1 input2 = onDevice(placement,

transaction 1 (sAvg input1 input2 .<. 150))

>> app2 IOT (inputI 1) (inputI 2)

In the future, we intend to add compiler directives (such as
‘low-communication’,‘low-gas’ or ‘high-trust’) and placement
algorithms such that the programmer does not need to explic-
itly indicate where application logic should be placed, but is
handled by the framework.

IV. USE CASE: END-TO-END SMART RENT MANAGEMENT

To illustrate the use of D’ARTAGNAN, we present an
application for smart rent management. Short-term rental sites
typically allow home-owners to rent out their property using
a fixed day-rate model. Determining the optimal rate is one
of the biggest challenges to maximise on profits. A high day-
rate may mean less nights are booked, whereas a low day-
rate could possibly lead to financial losses, or small margins
if tenants are high consumers of commodities. A potentially
good solution may be a fixed low daily rate, which attracts
low-budget travellers and increases nights booked, combined
with a variable pay-per-use rate for commodities — electricity
and water consumption is charged at a pre-agreed rate and the
use of appliances, such as a washing machine, dish-washer
and air conditioning units, attract an additional charge.

To illustrate the basic concepts of the D’ARTAGNAN frame-
work we use a simple application (see Listing 4) which
shows a simple smart-rent application that calculates electricity
consumption cost. The same description (in our case the code
describing the stream processor) can be used to generate
different target code depending on utility rates and the devices
the application will run on. The generality of this approach
allows the same application to be used at different premises
and where different rates may apply, and is by far easier to
manage than an equivalent version written directly in low-level
code.

A specific instance of this application is created with real
sensors passed as input parameters such as:
>> generateCode (rate (inputI 1))

Behind the scenes, D’ARTAGNAN creates low-level C code
that will run on device 1 for sensing the electricity consump-
tion, generates code that will run on the blockchain edge

Listing 4 A simple smart-rent application
consumption :: Int -> Stream Int -> Stream Bool
consumption eRate usage =

transaction (liftS eRate .*. usage) true

rate :: Stream Int -> Stream Bool
rate input = consumption 10 input

node and Solidity for the smart contract. The complexity of
communication between the IoT device, the edge node and the
smart contract, and the placement of in-network computation
is determined and handled by D’ARTAGNAN– thereby hiding
away all the complexity of communication and placement from
the programmer.

V. EVALUATION

To assess the performance of D’ARTAGNAN, we compare
code generated automatically against an equivalent version
which is manually coded. We use the application defined in
Listing 3, which behaves like a thermostat using two temper-
ature sensors — an amount is deducted from a balance stored
in a smart contract to switch on heating/cooling. We compared
the code generated for each of the three placement options (1)
IoT-focus; (2) Edge-focus; and (3) Blockchain-focus. Our aim
is to answer two questions: (i) how the lines of code compare
between hand-coded and automatically generated versions;
(ii) how consumption is affected by the different placement
options — gas for smart contracts; and radio messages and
clock cycles for IoT devices, which is indicative of power
consumption (we do not measure Edge devices as these are
typically computers connected to a permanent power supply
and computation is not restricted by battery-power or gas).

IoT Edge Blockchain

Placement Option 1: IoT-focus
Manually-Coded 150 25 35
Auto-Generated 200 25 35

Placement Option 2: Edge-focus
Manually-Coded 143 44 35
Auto-Generated 191 65 35

Placement Option 3: Blockchain-focus
Manually-Coded 143 25 48
Auto-Generated 191 25 60

TABLE I
LINES OF CODE COMPARISON

One line of D’ARTAGNAN code (specifically app2) gener-
ates between 200–250 lines of code (depending on placement)
— C for IoT devices, Javascript for the edge node and Solidity
for the smart contract. Table I, as well as a visual inspection of
the generated code, confirms that the automatically generated
version is more verbose than a hand-coded one. However,
for IoT devices, our evaluation in [5] had shown that basic
GCC compiler optimisations almost completely eliminate any
inefficiencies introduced by the automatic generation for IoT
devices — so this should result in minimal overhead. On
the other hand, Solidity does almost no optimisation on the
generated code which leads to higher gas consumption.



Placement Blockchain IoT Devices
Focus Gas Radio Messages Clock Cycles

IoT 1.114M 150 21,869K
Edge 1.114M 200 21,813K
Blockchain 1.240M 200 21,813K

TABLE II
CONSUMPTION COMPARISON FOR DIFFERENT PLACEMENT OPTIONS

To calculate consumption (Table II), the experiment was
designed with 100 iterations of the application for which
50% trigger a smart contract transaction. For situations where
high trust is needed (more transparency via smart contract),
a Blockchain-focus placement moves more code to the smart
contract (see Section III-B) and therefore more gas is con-
sumed — partly due to more code being executed, as well as
some code being executed even when the transaction condition
is not triggered. Therefore, higher trust results in higher
consumption for both gas and energy.

On the other hand, for lower trust scenarios where applica-
tion logic can be placed off-chain, deciding between IoT-focus
or Edge-focus depends on the combined energy utilisation
of both radio messages and clock cycles. As expected, as
application logic is placed away from IoT devices, more radio
messages (50) and less clock cycles (roughly 56K) occur. One
radio message consumes as much energy as 3 million instruc-
tions [8]. In this example, an IoT-focus placement has lower
consumption since application logic is simple. In the case of
computationally intensive tasks (requiring millions of clock
cycles per iteration), an Edge-focus placement will have an
overall lower consumption than an IoT-focus — the complex
computation moved away from the IoT devices makes up for
the extra radio messages. In the future, optimal placement of
application logic across both IoT and Edge devices (for low-
trust scenarios) will be introduced by taking into consideration
both radio messages and computation complexity.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a macroprogramming
approach to describe blockchain connected IoT devices and
their interaction with smart contracts. This is to our best
knowledge the first approach to attempt to provide a single
macroprogramming description for such blockchain connected
IoT devices. The closest work to that being presented within
this paper include: our other work on allowing for IoT device
behaviour to be manipulated based upon the contents of smart
contracts by making use of a virtual machine that allows
for switching from expensive 256-bit operations to lower bit
operations [2]; and work that enables programmability of
blockchain connected edge nodes using a control systems
approach [9]. Other related work includes: IoT devices making
use of the blockchain as a means of storing data [10]; defining
virtual resources within IoT device firmware that can be
instructed to execute a sequence of function invocations [11];
and making use of the blockchain to store IoT firmware [12].

Several macroprogramming solutions for wireless sensor
networks have been proposed over the past decade. Reg-
iment [4], Wavescript [13] and Flask [7] are closest to

D’ARTAGNAN in that they use a functional programming
approach. Our native functions are inspired from Flask’s quasi-
quoting, and Flask, like D’ARTAGNAN, is a DSL embedded
in Haskell. Both Flask and Regiment are different from
D’ARTAGNAN and Wavescript in that a macroprogram is
written from the perspective of an individual node, rather than
the network as a whole. In Wavescript, generated code is
the same for all the devices and suitable for homogeneous
networks. In contrast, in D’ARTAGNAN, code is generated
specifically for the target devices according to behaviour and
architecture. This capability is what enables us to generate
code for the blockchain and blockchain edge nodes, in addition
to the IoT devices.

Macroprogramming has long been proposed as a solution to
programming heterogeneous systems. However, as the degree
of heterogeneity increases, being restricted to the least com-
mon subset of the devices in the programming language can be
too limiting. In our extension of D’ARTAGNAN, the adoption
of native code allows access to device-specific capabilities.
However, our current restriction to stream processing systems
can be a handicap in some scenarios, and we are considering
means of providing other combinators allowing for a wider
range of applications for which D’ARTAGNAN can be consid-
ered a suitable language.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[2] J. Ellul and G. J. Pace, “Alkylvm: A virtual machine for smart contract
blockchain connected internet of things,” in New Technologies, Mobility
and Security (NTMS), 2018 9th IFIP International Conference on.
IEEE, 2018, pp. 1–4.

[3] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in POST, ser. Lecture Notes in Computer Science,
vol. 10204. Springer, 2017, pp. 164–186.

[4] R. Newton, G. Morrisett, and M. Welsh, “The regiment macroprogram-
ming system,” in 2007 6th International Symposium on Information
Processing in Sensor Networks, April 2007, pp. 489–498.

[5] A. Mizzi, J. Ellul, and G. Pace, “D’artagnan: An embedded dsl frame-
work for distributed embedded systems,” in Proceedings of the Real
World Domain Specific Languages Workshop 2018. ACM, 2018, p. 2.

[6] C. Elliott, S. Finne, and O. De Moor, “Compiling embedded languages,”
Journal of functional programming, vol. 13, no. 03, pp. 455–481, 2003.

[7] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged functional
programming for sensor networks,” in ACM Sigplan Notices, vol. 43.
ACM, 2008, pp. 335–346.

[8] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[9] A. Stanciu, “Blockchain based distributed control system for edge
computing,” in 2017 21st International Conference on Control Systems
and Computer Science (CSCS), May 2017, pp. 667–671.

[10] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in 2017 19th International Conference on Advanced Commu-
nication Technology (ICACT), Feb 2017, pp. 464–467.

[11] M. Samaniego and R. Deters, “Hosting virtual iot resources on edge-
hosts with blockchain,” in 2016 IEEE International Conference on
Computer and Information Technology (CIT), Dec 2016, pp. 116–119.

[12] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey, “Towards better availability and accountability
for iot updates by means of a blockchain,” in IEEE Security & Privacy
on the Blockchain (IEEE S&B 2017), 2017.

[13] R. R. Newton, L. D. Girod, M. B. Craig, S. R. Madden, and J. G.
Morrisett, “Design and evaluation of a compiler for embedded stream
programs,” in Proceedings of the 2008 ACM SIGPLAN-SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems, ser.
LCTES ’08. New York, NY, USA: ACM, 2008, pp. 131–140.


