Permission to Speak: An Access Control Logic

Nikhil Dinesh Aravind Joshi Insup Lee Oleg Sokolsky

Department of Computer and Information Science University of Pennsylvania

> FLACOS 2008 November 27-28, 2008

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Outline

- Inference component
- 4 Policies and conformance

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Background

Goal: analysis of regulated operations

- Bloodbanks (in the US, subject to FDA regulations)
- Medical records (in the US, subject to HIPAA)

Regulatory documents

- Natural language
 - Explicit references to connect sentences
 - Lots of exceptions
- Translate to logic one sentence at a time
 - Provide traceability
 - Reduce complexity
- This talk: access control

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

(日)

The problem

The problem of access control:

Should a request be granted?

Questions to answer:

- which policies need to be consulted in granting access?
- which policies are violated and who is to blame?

Access control vs. conformance

Policy-based regulation

- A policy specifies what actions are permitted to happen and what are required to happen
- A policy is issued by an authority
 - A large system may have multiple sources of authority
- Possible actions include
 - Performing access
 - Delegating or authorizing access
 - Delegating the right to authorize access

Access control is a special case of conformance checking

Deontic policies

Need a framework to combine

- Permission and obligation: deontic modalities
- Saying": policy/credential introduction

Challenges

- Representation and authorization
- Positive and negative permissions
- Nested deontic modalities

э

Representation in access control

The saying modality

A says φ in the laws I(A): says_{$I(A)}<math>\varphi$ </sub>

Representation

- B speaks using the authority of A
 - Allows us to handle authorization and delegation
 - B should be able to make only authorized statements
 - Clear interplay with the notion of permission
- Many formalizations in access control literature
 - Hand-off axiom
 - Many pitfalls to avoid
 - No explicit representation of permissions

Representation: our approach

Axiom of representation

If A says that B is allowed to say φ , then if B says φ , A says φ

$$(\operatorname{says}_{I(A)}(\mathcal{P}_{B}\operatorname{says}_{I(B)}\varphi) \wedge \operatorname{says}_{I(B)}\varphi) \Rightarrow \operatorname{says}_{I(A)}\varphi$$

Advantages

- Decidable logic with complete semantics
- Hand-off and "speaking for" are obtained as a consequence
 - "speaking for" is representation on all formulas

э

Positive and negative permissions

A hospital H allows a patient A to access her records

$$\varphi = \operatorname{says}_{I(H)} \mathcal{P}_{A}(\operatorname{access}(A, A))$$

Suppose the patient listens to music. Is that permitted?

Permission as provability

- Positive permission:
 - Is $\varphi \Rightarrow \operatorname{says}_{I(H)}(\neg \mathcal{O}_A \neg \operatorname{music})$ provable?
- Negative permission:
 - Is $\varphi \Rightarrow \operatorname{says}_{I(H)} \mathcal{O}_A \neg \operatorname{music}$ not provable?

э

Nested deontic modalities

Parents (A) should not let their children (B) play by the road

Possible interpretations:

- Positive permission: A should not give permission to play
 - Too weak?
- Negative permission: A should tell B not to play
 - Arguably, adequate
- A should physically prevent B from playing
 - Too restrictive?

In the regulated setting

If B plays by the road, who is to blame: A or B?

э

(日)

Nested deontic modalities: our approach

Saying is crucial for the analysis

A hospital (H) permits patients (A) to permit their family (B) to access their information

- H says that A is permitted to say that B is permitted to access
 - says_{l(H)} \mathcal{P}_A says_{l(A)} \mathcal{P}_B access(A, B)
- Now, when A gives permission

• says_{l(A)} \mathcal{P}_B access(A, B)

• We should be able to infer that H permits access to B

• says_{I(H)} \mathcal{P}_B access(A, B)

• In other words, A represents H on access(A, B).

э

System architecture

Utterances and conformance

- Evaluation of policies yields a set of utterances
- Access control: is a request permitted by utterances?
- Conformance: do actions satisfy obligations in utterances?

э

Logic of saying and obligation

Syntax of L

$$\varphi ::= \alpha | \varphi \land \varphi | \neg \varphi | \operatorname{says}_{Id} \psi | \operatorname{says}_{I(y)} \psi$$

$$\psi ::= \varphi | \psi \land \psi | \neg \psi | \mathcal{O}_{V} \varphi$$

- Atomic predicates: $\alpha = p(y_1, \ldots, y_j)$
 - Predicates are applied to objects or variables: $y_i \in X \cup O$
 - E.g. access(A, B) access of A's medical records by B
- Saying is parameterized on a set of laws
- Syntax enforces alternation between saying and obligation

イロト 不良 とくほ とくほう 二日

Axiomatization

A1 All substitution instances of propositional tautologies. A2 $\mathcal{Q}(\varphi \Rightarrow \psi) \Rightarrow (\mathcal{Q}(\varphi) \Rightarrow \mathcal{Q}(\psi))$ (for all modalities \mathcal{Q}) A3 says_{Id} $\varphi \Rightarrow$ says_{Id} $'\varphi$ (for all $Id \subseteq Id'$) A4 $\mathcal{O}_{A}\varphi \Rightarrow \mathcal{P}_{A}\varphi$ (for all $A \in O$) A5 says_{*Id_A*(\mathcal{P}_B says_{*Id_B* φ) \Rightarrow (says_{*Id_B* φ \Rightarrow says_{*Id_A* φ) (for all}}}} $\{A, B\} \subseteq O, Id_A \subseteq I(A), and Id_B \subseteq I(B)$ A6 says_{*Id_A*(\mathcal{P}_B says_{*Id_A* φ) \Rightarrow says_{*Id_A* φ (for all {A, B} $\subseteq O$, and}}} $Id_A \subset I(A)$ **R1** From $\vdash \varphi \Rightarrow \psi$ and $\vdash \varphi$, infer $\vdash \psi$ **R2** From $\vdash \varphi$, infer $\vdash \mathcal{Q}(\varphi)$ (for all modalities \mathcal{Q})

イロト 不良 とくほ とくほう 二日

Decidability

Provability is decidable for the propositional case

For all $\varphi \in L$, $\vdash \varphi$ is decidable

Complexity

- Satisfiability checking is NEXPTIME-complete
- A variant of axioms A5, A6 allows PSPACE satisfiability
 - A strictly larger set of formulas is provable
 - Open guestion: is it adequate in access control applications?

3

Policies

Logic programming framework

A policy is a collection of statements

 $(\textit{id}) \varphi \mapsto \psi$

- Each statement has a unique id
- Preconditions $\varphi \in L_{\varphi}$
 - Obligations must be in the scope of saying
- True preconditions must have true postconditions
 - Postconditions may make more preconditions true

3

States and assignments

State

- Objects known to the system
- Interpretation of predicates w.r.t. objects
- Example:
 - Objects: A, B, C, d
 - Predicates: patient(A), patient(B), relative(A, C), access(B, C), test(B, d)

Evaluation of ground formulas

- Policies are evaluated in a given state
- Assignments map variables in the formula to objects

э

• The first step in checking conformance is to determine what has been said.

Utterance is a nugget of saying

 $\textit{v}(\mathrm{says}_{\{\textit{id}\}}\psi, \textit{S})$

- Policy contains (*id*) $\varphi \mapsto \psi$
- S is a state, v is an assignment

Utterance pairs (U, U')

- Utterance set U corresponds to true preconditions
- Utterance set U' corresponds to non-false preconditions

とうまた。 とののまた。 しょうのの million m

(日)

Computing utterances (I)

Evaluation of preconditions

- Evaluation is up to an utterance pair: $tv_{(U,U')}(\varphi, S, v)$
- Interesting case: the saying modality

$$\mathbf{tv}_{(U,U')}(\operatorname{says}_{Id}\psi, S, v) = \begin{cases} \top \text{ if } U \vdash v(\operatorname{says}_{Id}\psi, S) \\ \bot \text{ if } U' \nvDash v(\operatorname{says}_{Id}\psi, S) \\ ? \text{ otherwise} \end{cases}$$

Consistent utterance pair $U \subseteq U'$

For all policy statements (*id*) $\varphi \mapsto \psi$

- If $\textit{v}(\operatorname{says}_{\{\textit{id}\}}\psi, \textit{S}) \in \textit{U}, \textit{tv}_{(\textit{U},\textit{U}')}(\varphi, \textit{S}, \textit{v}) = \top$
- If $v(says_{\{id\}}\psi, S) \notin U'$, $tv_{(U,U')}(\varphi, S, v) = \bot$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Computing utterances (II)

Fixed point computation

- Initialization: $U = \emptyset$, U' = utterances for all postconditions
- Computation step:
 - Compute **tv**(U, U') for all preconditions
 - Add utterances whose preconditions evaluate to ⊤ to U
 - Remove utterances whose preconditions evaluate to \perp from U^\prime
- Stop when fixed point is reached

Correctness

- The partially ordered set of consistent utterances has a least fixed point
- Computation is monotonic

Conformance

Conformance is satisfaction of obligations

• A conforms to the laws Id:

If
$$S \models_{(U,U')} \operatorname{says}_{Id} \mathcal{O}_A \varphi$$
, then $S \models_{(U,U')} \varphi$

Access control is permission by the laws of the owner

• A can perform an action p controlled by B

 $S \models_{(U,U')} says_{I(B)} \mathcal{P}_A p$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(日)

Conformance with nested deontic modalities

Example

- Owners of parking lots must forbid parking by lot entrance
- Our interpretation:
 - Owners of parking lots must introduce rules that forbid parking near lot entrance
 - (P) owner(x) \land driver(y) $\mapsto \mathcal{O}_x$ says_{l(x)} $\mathcal{O}_y \neg pk(y, x)$

Conformance

- If an owner A does not introduce any rules and pk(B, A)
 - *B* conforms to (*P*) but *A* does not conform to (*P*)
- If A introduces driver $(y) \mapsto \mathcal{O}_y \neg pk(y, A)$
 - A conforms to (P) but B does not conform to (P)

A more elaborate example

Health Insurance Portability and Accountability Act (HIPAA)

- Regulates the uses and disclosures of health information
- Hospitals have local policies, must be HIPAA compliant
- Users give written consent, also part of the regulation
- 1 An individual has a right to access her PHI, except for:
 - i Psychotherapy notes;
 - ii PHI compiled for a legal proceeding; or

What is a right?

. . .

э

Formalization

Our interpretation

- 1 An individual is permitted to require the hospital to permit to access her PHI, except for:
 - i Psychotherapy notes;
 - ii PHI compiled for a legal proceeding; or

• Let $\varphi(x, y, z) = \operatorname{ind}(x) \wedge \operatorname{says}_{I(HIPAA)}\operatorname{ce}(y) \wedge \operatorname{info}(z, x, y)$ (1) $\varphi(x, y, z) \wedge \neg \operatorname{says}_{\{i, ii\}}\operatorname{list}(z) \mapsto \mathcal{P}_x \operatorname{says}_{I(x)} \mathcal{O}_y \operatorname{says}_{I(y)} \mathcal{P}_x \operatorname{access}(x, z)$

PRECISE

э

A D > A P > A D > A D >

Hospital and user policies

Conformant policies

- A permissive hospital: $\top \mapsto \mathcal{P}_A \operatorname{access}(A, r)$
- A hospital who only wants to give access when HIPAA requires it:
 - ⊤ → P_{HIPAA}says_{I(HIPAA})O_Hsays_{I(H)}P_Aaccess(A, r)
 H permits HIPAA to require it to permit A to access.

HIPAA consent forms

- $\top \mapsto \mathcal{O}_H \operatorname{says}_{I(H)} \mathcal{P}_A \operatorname{access}(A, r)$
- Registrars care only about obligations imposed by the hospital

Happy end: $says_{I(H)} \mathcal{P}_A access(A, r)$ is derived

Conclusions

- Logic to represent regulatory documents
 - permission, obligation, cross-referencing
 - multiple sources of authority
- Aimed at checking conformance
 - conformance is decidable and reasonably efficient in practice
- Cross-references can be compiled away for acyclic regulation
 - lose traceability (counterexample generation)
- Designed with NLP in mind
 - Parser is work in progress

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □