
Creol as formal model for
distributed, concurrent objects

Martin Steffen

IfI UiO

Flacos, Malta

27. November 2008

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Structure
[0]

Creol
Distributed Communication in Creol
Basic Language Constructs

Open semantics and observable interface behavior

Dynamic Class Upgrades

Lazy behavioral subtyping
Subtyping, late binding, and incremental program development
Examples
Basic idea

Conclusion

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 2 / 32

Creol

Creol: a concurrent object model
• executable oo modelling language concurrent objects

• formal semantics in rewriting logics /Maude

• strongly typed

• method invocations: synchronous or asynchronous

• targets open distributed systems

• recently: concurrent objects by (first-class) futures/promises

• dynamic reprogramming : class definitions may evolve at runtime

• the language design should support verification

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 3 / 32

Creol

Object-orientation: remote method calls

reply

call

o1 o2

evaluate

RMI / RPC method call model
• Control threads follow call stack

• Derived from sequential setting

• Hides / ignores distribution!

• Tightly synchronized!

Creol :
• Show / exploit distribution!
• Asynchronous method calls

• more efficient in distributed environments
• triggers of concurrent activity

• Special cases:
• Synchronized communication:

the caller decides to wait for the reply
• Sequential computation:

only synchronized computation
(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 4 / 32

Creol Distributed Communication in Creol

Object Communication in Creol
• Objects communicate through method invocations only

• Methods organized in classes, seen externally via interfaces

• Different ways to invoke a method m

• Decided by caller — not at method declaration

• Asynchronous invocation: l!o.m(In)

• Passive waiting for method result: await l?

• Active waiting for method result: l?(Out)

• Guarded invocation: l!o.m(In); . . . ; await l?; l?(Out)

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 5 / 32

Creol Basic Language Constructs

Language Constructs

Syntactic categories. Definitions.

l in Label
g in Guard
p in MtdCall
S in ComList
s in Com
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
φ in BoolExpr

g ::= wait | φ | l? | g1 ∧ g2

p ::= o.m | m
S ::= s | s; S
s ::= skip | (S) | S12S2 | S1|||S2

| x := e | x := new classname(e)
| if φ then S1 else S2 fi
| !p(e) | l!p(e) | l?(x) | p(e; x)
| await g | await l?(x) | await p(e; x)

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 6 / 32

Creol Basic Language Constructs

Futures
• introduced in the concurrent Multilisp language [7] [2]

• originally: transparent concurrency compiler annotation
• future e:

• evaluated potentially in parallel with the rest ⇒ 2 threads
(producer and consumer)

• future variable dynamically generated

• when evaluated: future identified with value

• wait-by-necessity [3] [4]

• supported by Oz, Alice, MultiLisp, . . . (shared state concurrency),
Io, Joule, E, and most actor languages (Act1/2/3 . . . , ASP), Java

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 7 / 32

Creol Basic Language Constructs

Async. method calls and futures
call

return

call

claim/get

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 8 / 32

Creol Basic Language Constructs

Syntax
• o@l(~v): asynchronous method call, non-blocking

• execution:
1. create a “placeholder”/reference to the eventual result: future

reference (“label”)
2. initiate execution of method body
3. continue to execute (= non-blocking, asynchronous)

e ::= . . . | o@l(v , . . . , v) | claim@(n, o) | get@n | . . .

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 9 / 32

Creol Basic Language Constructs

Claiming a future

///.-,()*+ claim

t2 6=v
///o/o/o/o/o/o

claim

t2=v
$$

/.-,()*+

release

��

/.-,()*+ //

/.-,()*+
get

t2=v
///.-,()*+

grab ⊥

OO

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 10 / 32

Creol Basic Language Constructs

Futures and promises
• terminology is not so clear

• relation to handled futures

• promises [9], I-structures [1]

⇒ 2 aspects of future var:
• write = value of e “stored” to future
• read by the clients

• promises: separating the creation of future-reference from

attaching code to it1

• good for delegation

1as in for async. calls
(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 11 / 32

Creol Basic Language Constructs

Syntax (promise)
• instead of o@l(~v)

• split into
1. create a promise2

2. fulfill the promise = bind code to it.

e ::= . . . | promise T | bind o.l(~v) : T →֒ n | . . .

2or a handle to the future.
(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 12 / 32

Creol Basic Language Constructs

n′〈let x :T ′ = promise T in t〉 ν(n:T ′).(n′〈let x :T ′ = n in t〉) PROM

. . . n1〈let x :T = bind o.l(~v) : T2 →֒ n2 in t1〉
τ

−→

. . . n1〈let x :T = n2 in t1〉

‖ (n2〈let x :T2 = grab(o); M.l(o)(~v) in release(o); x〉)

BINDi

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 13 / 32

Open semantics and observable interface behavior

Interface description: Task
• characterize possible interface behavior

• possible = adhering to the restriction of the language
• well-typed

• basis of a trace logic / interface description

• abstraction process:

• not C t
=⇒ Ć?

• rather: consider C in a context / environment

C ‖ E t
=⇒

t̄
Ć ‖ É

for some environment E

⇒ open semantics

∆ ⊢ C : Θ
t

=⇒ ∆́ ⊢ C : Θ́

• assumptions ∆ abstracts environments E

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 14 / 32

Open semantics and observable interface behavior

One step further: legal traces
• open sesmantics

∆ ⊢ C : Θ
t

=⇒ ∆́ ⊢ C : Θ́

abstracts the environment

• existential abstraction of component, as well:

• characterization of principally possible interface behavior

C ‖ E t
=⇒

t̄
Ć ‖ É

for some component C + some environment E

⇒ legal trace

∆ ⊢ t : trace :: Θ

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 15 / 32

Open semantics and observable interface behavior

Behavioral interface description
• type system for futures, especially resource aware (linear) type

system for promises

• standard soundness results (subject reduction, . . .)

• formulation of an open semantics plus characterization of

possible interface behavior by abstracting the environment

• soundness of the abstractions

• basis for testing Creol objects/components

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 16 / 32

Dynamic Class Upgrades

Dynamic Classes in Creol
• Dynamic classes: modular OO upgrade

mechanism

• asynchronous upgrades propagate
through the dist. system

• Modify class definitions at runtime
• Class upgrade affects:

• All future instances of the class
and its subclasses

• All existing instances of the class
and its subclasses

D

Network

A
B

C E

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 17 / 32

Dynamic Class Upgrades

A Dynamic Class Mechanism
General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

• Attributes may be added
(no restrictions)

• Methods may be added
(no restrictions)

• Methods may be redefined
(subtyping discipline)

• Superclasses may be added

• Formal class parameters
may not be modified

Theorem. Dynamic class extensions are type-safe in Creol’s type
system!

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 18 / 32

Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank
Customer (1)
class BankAccount implements Account --- Version 1
begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ sum ; bal := bal−sum; acc.deposit(sum)
end
upgrade class BankAccount
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

acc.deposit(sum)
with Banker

op overdraft_open (in max : Nat) == overdraft := max
end (Flacos’08) Creol as formal model for distributed, concurrent objects 2008 19 / 32

Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank
Customer (2)
class BankAccount implements Account --- Version 2
begin var bal : Int = 0, overdraft : Nat = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker
op overdraft_open (in max : Nat) == overdraft := max

end

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 20 / 32

Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Substitutability and subtype polymorphism
Problem:
When can some expression e1 replace some other expression e2?

classical answer: subtyping

Example 1: Assignment

x := e
Γ ⊢ e : T T ≤ Γ(x)

Γ ⊢ x := e : ok

Example 2: Method Calls

x := m(e)

Want: m(e)
Get: m’(e)

m: T1 → T2

T1 ≤T′1 ⇓ ⇑ T′2 ≤T2

(contravariance) m’: T′1 → T′2 (covariance)

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 21 / 32

Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Behavioral subtyping
Extend subtyping to behavioral properties:

“any property proved about supertype objects
also holds for subtype objects” [Liskow & Wing 94]

Consider an assertion language on local state variables,
a programming language, and some program logic.

Assertions p1, p2, q1, q2, . . . used for pre- and postconditions

When can we replace e1 by e2?

{p1} e1 {q1} Applicability: p1 ⇒ p2 (ref. contravariance)

{p2} e2 {q2} Predictability: q2 ⇒ q1 (ref. covariance)

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 22 / 32

Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Late Binding of Method Calls
Object-oriented programming

• incremental program development

• Substitutability is exploited to organize programs
by means of inheritance

• object substitutability:
a subclass object may be bound to a superclass variable

• method substitutability (late binding):
subclass methods may be selected instead of superclass methods

Late binding of method calls
• code bound to a call depends on the actual class of the object

• decided at runtime

• Not statically decidable

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 23 / 32

Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Example

class C {
m() {...}
n() {...; m(); ...}

}

class D extends C {
m() {...}

}

• the binding of m() depends on the actual class of the object

• Incremental development: the class D may be added later

• late binding and incremental development pose a challenge for
program verification

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 24 / 32

Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Verifying late-bound method calls
• two main approaches in the literature

• Open world [America 91, Liskow & Wing 94, Leavens & Naumann 06, . . .]

• Behavioral subtyping: supports incremental reasoning
• Subtyping constraints: too restrictive in practice

• Closed world [Pierik & de Boer 05, . . .]

• Complete reasoning method
• Breaks incremental reasoning

• Lazy behavioral subtyping [6]

• supports incremental reasoning
• less restrictive than behavioral subtyping

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 25 / 32

Lazy behavioral subtyping Examples

Example: Closed World Approach
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1 ∧ p2, q1 ∨ q2 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)

Closed world approach
• Assumes all commitments of a method known at reasoning time

• Sufficiently expressive: complete reasoning system

• redo proofs if a new class is added to the program

• breaks with incremental development principle (proof reuse)

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 26 / 32

Lazy behavioral subtyping Examples

Example: Open World Approach
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)
PO: p1 ⇒ p2, q2 ⇒ q1

Behavioral subtyping

• (p1, q1) acts as a commitment (contract) for declarations of m

• redefinitions relate to the contract, not to the call site

• incremental : Proof reuse when the program is extended

• restriction : (p1, q1) too strong requirement for redefinitions

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 27 / 32

Lazy behavioral subtyping Examples

Example: Lazy Behavioral Subtyping
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)
PO: p ⇒ p2, q2 ⇒ q

Lazy behavioral subtyping

• POs depend on requirements , not on commitments (contracts)

• irrelevant parts of old commitments may be ignored

• more flexible than behavioral subtyping approach

• incremental: proof reuse when program is extended

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 28 / 32

Lazy behavioral subtyping Basic idea

Lazy Behavioral Subtyping
• Distinguish method use and method declarations

• track call site requirements and declaration site commitments

• Proof reuse : Impose these requirements on method overridings
in new subclasses to ensure that old proofs remain valid

• declaration site proof obligations wrt. superclass’ requirements
• Many, but weaker POs than with behavioral subtyping

for superclass declarations

• Formalize how commitments and requirements propagate as
subclasses and proof outlines are added

• Proof environment tracks commitments and requirements
• Syntax-driven inference system for program analysis
• Independent of a particular program logic

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 29 / 32

Conclusion

Conclusion and prospect
• testing Creol-components

• FP7 prject HATS “highly-adaptable and trusworthy software”

• software evolution
• software families

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 30 / 32

Conclusion

References I
[1] Arvind, R. S. Nikhil, and K. K. Pingali.

I-structures: Data-structures for parallel computing.
ACM Transactions on Programming Languages and Systems, 11(4):598–632, 1989.

[2] H. Baker and C. Hewitt.
The incremental garbage collection of processes.
ACM Sigplan Notices, 12:55–59, 1977.

[3] D. Caromel.
Service, asynchrony and wait-by-necessity.
Journal of Object-Oriented Programming, 2(4):12–22, Nov. 1990.

[4] D. Caromel.
Towards a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, Sept. 1993.

[5] D. Clarke, E. B. Johnsen, and O. Owe.
Concurrent objects à la carte.
In D. Dams, U. Hannemann, and M. Steffen, editors, Correctness, Concurrency, and Compositionality, 2008.

[6] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen.
Lazy behavioral subtyping.
In Proceedings of the 15th International Symposium on Formal Methods (FM’08), volume 5014 of Lecture Notes in
Computer Science, pages 52–67. Springer-Verlag, 2008.

[7] R. H. Halstead, Jr.
Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, Oct. 1985.

[8] E. B. Johnsen, O. Owe, and I. C. Yu.
Creol: A type-safe object-oriented model for distributed concurrent systems.
Theoretical Computer Science, 365(1–2):23–66, Nov. 2006.

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 31 / 32

Conclusion

References II
[9] B. Liskov and L. Shrira.

Promises: Linguistic support for efficient asynchronous procedure calls in distributed systems.
SIGPLAN Notices, 23(7):260–267, 1988.

[10] O. Owe, G. Schneider, and M. Steffen.
Components, objects, and contracts.
In Sixths International Workshop on Specification and Verification of Component-Based Systems, Sept. 3–4, 2007, Catvat,
Croatia, pages 95–98, Aug. 2007.

[11] C. Prisacariu and G. Schneider.
A formal language for electronic language.
In M. M. Bonsangue and E. B. Johnsen, editors, FMOODS ’07, volume 4468 of Lecture Notes in Computer Science, pages
174–189. Springer-Verlag, June 2007.

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 32 / 32

	Creol
	Distributed Communication in Creol
	Basic Language Constructs

	Open semantics and observable interface behavior
	Dynamic Class Upgrades
	Lazy behavioral subtyping
	Subtyping, late binding, and incremental program development
	Examples
	Basic idea

	Conclusion

