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Creol

Creol: a concurrent object model
• executable oo modelling language concurrent objects

• formal semantics in rewriting logics /Maude

• strongly typed

• method invocations: synchronous or asynchronous

• targets open distributed systems

• recently: concurrent objects by (first-class) futures/promises

• dynamic reprogramming : class definitions may evolve at runtime

• the language design should support verification
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Creol

Object-orientation: remote method calls

reply

call

o1 o2

evaluate

RMI / RPC method call model
• Control threads follow call stack

• Derived from sequential setting

• Hides / ignores distribution!

• Tightly synchronized!

Creol :
• Show / exploit distribution!
• Asynchronous method calls

• more efficient in distributed environments
• triggers of concurrent activity

• Special cases:
• Synchronized communication:

the caller decides to wait for the reply
• Sequential computation:

only synchronized computation
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Creol Distributed Communication in Creol

Object Communication in Creol
• Objects communicate through method invocations only

• Methods organized in classes, seen externally via interfaces

• Different ways to invoke a method m

• Decided by caller — not at method declaration

• Asynchronous invocation: l!o.m(In)

• Passive waiting for method result: await l?

• Active waiting for method result: l?(Out)

• Guarded invocation: l!o.m(In); . . . ; await l?; l?(Out)
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Creol Basic Language Constructs

Language Constructs

Syntactic categories. Definitions.

l in Label
g in Guard
p in MtdCall
S in ComList
s in Com
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
φ in BoolExpr

g ::= wait | φ | l? | g1 ∧ g2

p ::= o.m | m
S ::= s | s; S
s ::= skip | (S) | S12S2 | S1|||S2

| x := e | x := new classname(e)
| if φ then S1 else S2 fi
| !p(e) | l!p(e) | l?(x) | p(e; x)
| await g | await l?(x) | await p(e; x)
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Creol Basic Language Constructs

Futures
• introduced in the concurrent Multilisp language [7] [2]

• originally: transparent concurrency compiler annotation
• future e:

• evaluated potentially in parallel with the rest ⇒ 2 threads
(producer and consumer)

• future variable dynamically generated

• when evaluated: future identified with value

• wait-by-necessity [3] [4]

• supported by Oz, Alice, MultiLisp, . . . (shared state concurrency),
Io, Joule, E, and most actor languages (Act1/2/3 . . . , ASP), Java
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Creol Basic Language Constructs

Async. method calls and futures
call

return

call

claim/get
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Creol Basic Language Constructs

Syntax
• o@l(~v): asynchronous method call, non-blocking

• execution:
1. create a “placeholder”/reference to the eventual result: future

reference (“label”)
2. initiate execution of method body
3. continue to execute (= non-blocking, asynchronous)

e ::= . . . | o@l(v , . . . , v) | claim@(n, o) | get@n | . . .
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Creol Basic Language Constructs

Claiming a future

///.-,()*+ claim

t2 6=v
///o/o/o/o/o/o

claim

t2=v
$$

/.-,()*+

release

��

/.-,()*+ //

/.-,()*+
get

t2=v
///.-,()*+

grab ⊥

OO
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Creol Basic Language Constructs

Futures and promises
• terminology is not so clear

• relation to handled futures

• promises [9], I-structures [1]

⇒ 2 aspects of future var:
• write = value of e “stored” to future
• read by the clients

• promises: separating the creation of future-reference from

attaching code to it1

• good for delegation

1as in for async. calls
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Creol Basic Language Constructs

Syntax (promise)
• instead of o@l(~v)

• split into
1. create a promise2

2. fulfill the promise = bind code to it.

e ::= . . . | promise T | bind o.l(~v) : T →֒ n | . . .

2or a handle to the future.
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Creol Basic Language Constructs

n′〈let x :T ′ = promise T in t〉 ν(n:T ′).(n′〈let x :T ′ = n in t〉) PROM

. . . n1〈let x :T = bind o.l(~v) : T2 →֒ n2 in t1〉
τ

−→

. . . n1〈let x :T = n2 in t1〉

‖ (n2〈let x :T2 = grab(o); M.l(o)(~v) in release(o); x〉)

BINDi
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Open semantics and observable interface behavior

Interface description: Task
• characterize possible interface behavior

• possible = adhering to the restriction of the language
• well-typed

• basis of a trace logic / interface description

• abstraction process:

• not C t
=⇒ Ć?

• rather: consider C in a context / environment

C ‖ E t
=⇒

t̄
Ć ‖ É

for some environment E

⇒ open semantics

∆ ⊢ C : Θ
t

=⇒ ∆́ ⊢ C : Θ́

• assumptions ∆ abstracts environments E
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Open semantics and observable interface behavior

One step further: legal traces
• open sesmantics

∆ ⊢ C : Θ
t

=⇒ ∆́ ⊢ C : Θ́

abstracts the environment

• existential abstraction of component, as well:

• characterization of principally possible interface behavior

C ‖ E t
=⇒

t̄
Ć ‖ É

for some component C + some environment E

⇒ legal trace

∆ ⊢ t : trace :: Θ
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Open semantics and observable interface behavior

Behavioral interface description
• type system for futures, especially resource aware (linear) type

system for promises

• standard soundness results (subject reduction, . . . )

• formulation of an open semantics plus characterization of

possible interface behavior by abstracting the environment

• soundness of the abstractions

• basis for testing Creol objects/components
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Dynamic Class Upgrades

Dynamic Classes in Creol
• Dynamic classes: modular OO upgrade

mechanism

• asynchronous upgrades propagate
through the dist. system

• Modify class definitions at runtime
• Class upgrade affects:

• All future instances of the class
and its subclasses

• All existing instances of the class
and its subclasses

D

Network

A
B

C E
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Dynamic Class Upgrades

A Dynamic Class Mechanism
General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

• Attributes may be added
(no restrictions)

• Methods may be added
(no restrictions)

• Methods may be redefined
(subtyping discipline)

• Superclasses may be added

• Formal class parameters
may not be modified

Theorem. Dynamic class extensions are type-safe in Creol’s type
system!
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Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank
Customer (1)
class BankAccount implements Account --- Version 1
begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ sum ; bal := bal−sum; acc.deposit(sum)
end
upgrade class BankAccount
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

acc.deposit(sum)
with Banker

op overdraft_open (in max : Nat) == overdraft := max
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Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank
Customer (2)
class BankAccount implements Account --- Version 2
begin var bal : Int = 0, overdraft : Nat = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker
op overdraft_open (in max : Nat) == overdraft := max

end
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Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Substitutability and subtype polymorphism
Problem:
When can some expression e1 replace some other expression e2?

classical answer: subtyping

Example 1: Assignment

x := e
Γ ⊢ e : T T ≤ Γ(x)

Γ ⊢ x := e : ok

Example 2: Method Calls

x := m(e)

Want: m(e)
Get: m’(e)

m: T1 → T2

T1 ≤T′1 ⇓ ⇑ T′2 ≤T2

(contravariance) m’: T′1 → T′2 (covariance)
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Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Behavioral subtyping
Extend subtyping to behavioral properties:

“any property proved about supertype objects
also holds for subtype objects” [Liskow & Wing 94]

Consider an assertion language on local state variables,
a programming language, and some program logic.

Assertions p1, p2, q1, q2, . . . used for pre- and postconditions

When can we replace e1 by e2?

{p1} e1 {q1} Applicability: p1 ⇒ p2 (ref. contravariance)

{p2} e2 {q2} Predictability: q2 ⇒ q1 (ref. covariance)
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Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Late Binding of Method Calls
Object-oriented programming

• incremental program development

• Substitutability is exploited to organize programs
by means of inheritance

• object substitutability:
a subclass object may be bound to a superclass variable

• method substitutability (late binding):
subclass methods may be selected instead of superclass methods

Late binding of method calls
• code bound to a call depends on the actual class of the object

• decided at runtime

• Not statically decidable
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Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Example

class C {
m() {...}
n() {...; m(); ...}

}

class D extends C {
m() {...}

}

• the binding of m() depends on the actual class of the object

• Incremental development: the class D may be added later

• late binding and incremental development pose a challenge for
program verification

(Flacos’08) Creol as formal model for distributed, concurrent objects 2008 24 / 32



Lazy behavioral subtyping Subtyping, late binding, and incremental program development

Verifying late-bound method calls
• two main approaches in the literature

• Open world [America 91, Liskow & Wing 94, Leavens & Naumann 06, . . . ]

• Behavioral subtyping: supports incremental reasoning
• Subtyping constraints: too restrictive in practice

• Closed world [Pierik & de Boer 05, . . . ]

• Complete reasoning method
• Breaks incremental reasoning

• Lazy behavioral subtyping [6]

• supports incremental reasoning
• less restrictive than behavioral subtyping
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Lazy behavioral subtyping Examples

Example: Closed World Approach
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1 ∧ p2, q1 ∨ q2 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)

Closed world approach
• Assumes all commitments of a method known at reasoning time

• Sufficiently expressive: complete reasoning system

• redo proofs if a new class is added to the program

• breaks with incremental development principle (proof reuse)
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Lazy behavioral subtyping Examples

Example: Open World Approach
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)
PO: p1 ⇒ p2, q2 ⇒ q1

Behavioral subtyping

• (p1, q1) acts as a commitment (contract) for declarations of m

• redefinitions relate to the contract, not to the call site

• incremental : Proof reuse when the program is extended

• restriction : (p1, q1) too strong requirement for redefinitions
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Lazy behavioral subtyping Examples

Example: Lazy Behavioral Subtyping
class C {
m(): (p1, q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2, q2) {...}

}
Commitment (declaration site)
PO: p ⇒ p2, q2 ⇒ q

Lazy behavioral subtyping

• POs depend on requirements , not on commitments (contracts)

• irrelevant parts of old commitments may be ignored

• more flexible than behavioral subtyping approach

• incremental: proof reuse when program is extended
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Lazy behavioral subtyping Basic idea

Lazy Behavioral Subtyping
• Distinguish method use and method declarations

• track call site requirements and declaration site commitments

• Proof reuse : Impose these requirements on method overridings
in new subclasses to ensure that old proofs remain valid

• declaration site proof obligations wrt. superclass’ requirements
• Many, but weaker POs than with behavioral subtyping

for superclass declarations

• Formalize how commitments and requirements propagate as
subclasses and proof outlines are added

• Proof environment tracks commitments and requirements
• Syntax-driven inference system for program analysis
• Independent of a particular program logic
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Conclusion

Conclusion and prospect
• testing Creol-components

• FP7 prject HATS “highly-adaptable and trusworthy software”

• software evolution
• software families
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Conclusion
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