INTEGRATING CONTRACT-BASED
SECURITY MONITORS IN THE
SOFTWARE DEVELOPMENT LIFE

CYCLE

Alexander M. Hoole, Isabelle Simplot-Ryl, Issa Traore

Introduction Proposed Approach

Introduction

1. Feasibility
Study
m I
@
Implementation
(5)
Testing
(6)
Deployment

U]
Malintenance

Security Requirements, I Risk
Use Cases, Analysis, Static Analysis

Misuse Cases, Security
Attack Trees Review

Security Activities

Example Walkthrough

Security vulnerabilities are
growing:

Connectivity

Extensibility

Complexity
We can no longer rely on Tiger
teams/penetrate & patch

Integrate security into every
phase of SDLC:

Work has begun...

Much remaining to be done...

How can we reduce
vulnerability defects?

Introduction Proposed Approach Example Walkthrough

Motivation

Software containing vulnerabilities
Need for improved software engineering practices

o Safety, reliability, dependability, quality, SECURITY, ...
Need methodologies and tools for:

o ldentification, monitoring, and verification of defects
o Repairing and removal of defects

Existing approaches do not adequately address the
iIssue

Firewalls, IDSs, IPSs, static analysis, etc

Need for a unifying framework for:
Specification of assertions for security requirements

System-wide monitoring framework for assertions
Assertion testing framework
Software security metrics

Introduction Proposed Approach Model Example Walkthrough

Context and Research Objectives

Vulnerabilities exist at
any software layer

Contracts Monitoring applied as
IDSs for security

Static . Security integration into

Analysis SDLC has begun

Analysis has begun to
Security In. . identify vulnerabilities

Contracts appropriate for
Dinariic specification

Analysis CB_SAMF unifies
approach

Introduction Proposed Approach Model Example Walkthrough

Proposed Approach

CB_SAMF focuses on the last three
phases of the following methodology:

Security Sequence
Requirements Diagrams
Analysis

Algorithms

Introduction Proposed Approach Model Example Walkthrough

Architectural Considerations

Contract-Based Security Assertion
Monitoring Framework (CB_SAMF)

Only as secure as weakestlink APPLICATIONS
Contracts for multiple layers

Monitoring at multiple layers

Security evaluation of system

LIBRARIES

SYSTEM CALL API
Kernel-5 pace
Manitaring
Component

MONOLITHIC KERNEL

MODULE_0 =~ MODULE_1 MODULE_N

WIRELESS NETWORK WIRED NETWORK

Introduction Proposed Approach Example Walkthrough

EAGLE

Framework that includes a range of finite traces
monitoring logics
Implemented for Java

Example:
“Whenever P occurs then Q must occur within 10 seconds”

max Always (Form F) = F A O Always (F)

minkEventuallyAbs (float t, Form F)= currentTime()
<t A ((-F) - O EventuallyAbs(t,F))

minkEventuallyRel (float t, Form F) =
EventuallyAbs (currentTime () +t, F)

mon M = Always (P- EventuallyRel (10,0Q)4

Introduction Proposed Approach Example Walkthrough

EAGLE

Very rich and covers a lot of other
approaches

Lacks features for security monitoring,
for example:

Vulnerabillities that involve environmental

resources
Vulnerabilities that involve multiple layers
Real runtime monitoring

Reaction framework for collecting data when
vulnerabilities occur

Introduction Proposed Approach Model Example Walkthrough

Contracts for security

“Pre =Post”
Not sufficient for security

Proposition
Requirements — as preconditions
Guarantees — as postconditions
References — as invariants
Context — as environmental information
History — as knowledge about the past
Response — as reactive measure

Introduction Proposed Approach Model Example Walkthrough

Model — extension of EAGLE

B (A{E}) {A{E}};
{CONT} | {HIST} | {RESPY;
{RHM};
= {max|min} N(T1x1, ..., Thxn) = F
=mon N = F;
T := Form | primitive type;
B := symbol | HEX address;

F := expltrue|false|"F|F1 A F2|F1 v F2|F1 = F2|OF|
©F|F1 - F2IN(F1, . . ., Fn)|xi;

CONT :=env N | res N;

HIST :=trace N | runningsum N | runningavg N;
RESP :=core N | term N | kill N | log N;

C:
=
A:
R:
\Y/

Introduction Proposed Approach Model Example Walkthrough

Monitors for contracts

To check contracts at runtime

Contracts are associated with
breakpoints

Monitors can also evaluate context and
history

max R(string sl, string s2)
=-Always ({env contains (sl,s2) })
env R ("PATH", ".")

Monitors can react with the defined
response

Introduction Proposed Approach Model Example Walkthrough

Application of Contract

Buffer overflow vulnerability at: |dentification of
symbol_bp vulnerabilities

E = logbu ffer_log Representation in

minR(int k) = Sometime(y == k) LTL/contract
monM = Always(x > 0 2 R(x) * x <) :
C = symbol_bp M E Generation of probes

Execution of system and

insertion of probes
GENERATE PROBES

insmod catch_buffer _probe.ko
breakpoint=0xe0930000
buffer _addr=0xe09305e4

Introduction Proposed Approach Model

Monitor with Probe

char *breakpoint; /*parameter for breakpoint*/
char *buffer_addr; /*parameter for buffer*/
module_param(breakpoint, charp, 0400);
module_param(buffer_addr, charp, 0400);

unsigned long *bp; /*breakpoint address*/

char *bad_buffer; /*buffer*/

unsigned long addr; /*temporary holder for incoming addr*/
struct kprobe kp; /*kprobe*/

int j_write_target(struct file *file, const char *buffer,
unsigned long count, void *data)

{

int len = 0;

len = strlen(bad_buffer);
printk("The length of the target buffer is: %d\n", len);
if (count > len) {
[* Security Violation Reaction Here */
printk("VIOLATION!!\n");

}

jprobe_return();

NOTREACHED/

return O;

}

Example Walkthrough

|dentification of
vulnerabilities

Representation in
LTL/contract

Generation of probes

Execution of system and
insertion of probes

Monitor execution for
violations

Introduction Proposed Approach Model Example Walkthrough

Evaluation of Contract

|dentification of
vulnerabilities

Representation in
Stress system using SOP identified fault- LTL/contract

injection Generation of probes

echo -n Execution of system and
"0123456789012345678901234567890123456789012 insertion of probes

345678901234567890" > /proc/target . .
I\/_Ionlt_or execution for
violations

|dentification of security
operational profile

Execution of fault-

injection framework

Resolve verified vulnerabilities and repeat Application of ' metrics
Use metric to compare relative pre/post Resolve any ehtod

effect on securit el
. vulnerabilities and repeat

SOP = Use-case profile + Misuse-case profile

Collect and store metric data

Conclusion

A methodology and tool set for improving security during
development and testing

A theoretical model for an assertion-based security
monitor based on contracts and probes

A low performance-cost prototype monitoring framework
that is able to detect and respond to several well known
attacks

Potential to monitor, track, and counteract security related
assertions through all software layers in the system

Potential discovery of additional metrics to assess
security of monitored systems

QUESTIONS?

This work is partially supported by NSERC, MITACS, and
CPER Nord-Pas-de-Calais/FEDER Campus Intelligence Ambiante.

