
Al d M H l I b ll Si l t R l I TAlexander M. Hoole, Isabelle Simplot-Ryl, Issa Traore

Introduction
Introduction Proposed Approach Model Example WalkthroughIntroduction Proposed Approach Model Example Walkthrough

Introduction
Security vulnerabilities are
growing:growing:

Connectivity
Extensibility
C l itComplexity

We can no longer rely on Tiger
teams/penetrate & patch
Integrate security into every
phase of SDLC:

Work has begun…Work has begun…
Much remaining to be done…

How can we reduce
vulnerability defects?vulnerability defects?

FLACOS 2008, Malta, November 27-28, 2008 2

Motivation
Introduction Proposed Approach Model Example Walkthrough

Motivation
Software containing vulnerabilities

N d f i d ft i i tiNeed for improved software engineering practices
○ Safety, reliability, dependability, quality, SECURITY, …
Need methodologies and tools for:
○ Identification, monitoring, and verification of defectsde ca o , o o g, a d e ca o o de ec s
○ Repairing and removal of defects

Existing approaches do not adequately address the
issueissue

Firewalls, IDSs, IPSs, static analysis, etc

Need for a unifying framework for:y g
Specification of assertions for security requirements
System-wide monitoring framework for assertions
Assertion testing framework
Software security metricsSoftware security metrics

FLACOS 2008, Malta, November 27-28, 2008 3

Context and Research Objectives
Introduction Proposed Approach Model Example Walkthrough

Context and Research Objectives
Vulnerabilities exist at
any software layery y
Monitoring applied as
IDSs for security

Contracts

SDLC Security integration into
SDLC has begun
Analysis has begun to

Static
Analysis

CB_SAMF Analysis has begun to
identify vulnerabilities
Contracts appropriate for

Intrusion
Detection MonitoringSecurity

specification
CB_SAMF unifies
approach

Dynamic
Analysis

approach

FLACOS 2008, Malta, November 27-28, 2008 4

Proposed Approach
Introduction Proposed Approach Model Example Walkthrough

Proposed Approach
CB SAMF focuses on the last threeCB_SAMF focuses on the last three
phases of the following methodology:

Security
Requirements

Misuse
Cases

Sequence
Diagrams

System Calls

Analysis Assertions
Execute
Modified

Algorithms
AssertionsModified

Application

FLACOS 2008, Malta, November 27-28, 2008 5

Architectural Considerations
Introduction Proposed Approach Model Example Walkthrough

Architectural Considerations
Contract-Based Security AssertionContract Based Security Assertion
Monitoring Framework (CB_SAMF)
Only as secure as weakestlinkOnly as secure as weakestlink
Contracts for multiple layers
Monitoring at multiple layers
Security evaluation of systemSecurity evaluation of system

FLACOS 2008, Malta, November 27-28, 2008 6

EAGLE
Introduction Proposed Approach Model Example Walkthrough

EAGLE
Framework that includes a range of finite traces
monitoring logicsmonitoring logics
Implemented for Java
Example:Example:

“Whenever P occurs then Q must occur within 10 seconds”
max Always (Form F) = F O Always (F)y y

minEventuallyAbs (float t, Form F)= currentTime()
≤ t ((¬F) → O EventuallyAbs(t,F))

i E t ll R l (fl t t F F)minEventuallyRel (float t, Form F) =
EventuallyAbs(currentTime()+t,F)

mon M = Always (P→ EventuallyRel(10,Q))

FLACOS 2008, Malta, November 27-28, 2008 7

EAGLE
Introduction Proposed Approach Model Example Walkthrough

EAGLE
Very rich and covers a lot of other
approachesapproaches
Lacks features for security monitoring,
for example:for example:

Vulnerabilities that involve environmental
resources
Vulnerabilities that involve multiple layers
Real runtime monitoring
R ti f k f ll ti d t hReaction framework for collecting data when
vulnerabilities occur
……

FLACOS 2008, Malta, November 27-28, 2008 8

Contracts for security
Introduction Proposed Approach Model Example Walkthrough

Contracts for security
“Pre Post”

Not sufficient for security
Propositionp

Requirements – as preconditions
Guarantees – as postconditions
References – as invariants
Context – as environmental information
History – as knowledge about the past
Response – as reactive measure

FLACOS 2008, Malta, November 27-28, 2008 9

Model – extension of EAGLE
Introduction Proposed Approach Model Example Walkthrough

Model extension of EAGLE
C := B (A{E}) {A{E}};
E := {CONT} | {HIST} | {RESP};
A := {R}{M};
R := {max|min} N(T1x1, ..., Tnxn) = F;{ | } (, ,) ;
M := mon N = F;
T := Form | primitive type;
B := symbol | HEX address;B : symbol | HEX address;
F := exp|true|false|¬F|F1 F2|F1 F2|F1 F2| F|

F|F1 · F2|N(F1, . . . , Fn)|xi;
CONT := env N | res N;CONT : env N | res N;
HIST := trace N | runningsum N | runningavg N;
RESP := core N | term N | kill N | log N;

FLACOS 2008, Malta, November 27-28, 2008 10

Monitors for contracts
Introduction Proposed Approach Model Example Walkthrough

Monitors for contracts
To check contracts at runtimeTo check contracts at runtime
Contracts are associated with
breakpointsp
Monitors can also evaluate context and
history

max R(string s1, string s2)
=¬Always({env_contains(s1,s2)})

E env R("PATH" " ")E = env R("PATH", ".")

Monitors can react with the defined
responseresponse

FLACOS 2008, Malta, November 27-28, 2008 11

Application of Contract
Introduction Proposed Approach Model Example Walkthrough

Application of Contract
1. Identification of Buffer overflow vulnerability at:

symbol bp vulnerabilities
2. Representation in

LTL/contract
E = logbu f f er_log
minR(int k) = Sometime(y == k)

(() ^)

symbol_bp

3. Generation of probes
4. Execution of system and

insertion of probes

monM = Always(x > 0 R(x) ^ x ≤ y)
C = symbol_bp M E

insertion of probes
GENERATE PROBES

insmod catch_buffer_probe.ko
b k i t 0 0930000breakpoint=0xe0930000
buffer_addr=0xe09305e4

FLACOS 2008, Malta, November 27-28, 2008 12

Monitor with Probe
Introduction Proposed Approach Model Example Walkthrough

char *breakpoint; /*parameter for breakpoint*/
char *buffer_addr; /*parameter for buffer*/

Monitor with Probe
1. Identification of

module_param(breakpoint, charp, 0400);
module_param(buffer_addr, charp, 0400);
…
unsigned long *bp; /*breakpoint address*/
char *bad_buffer; /*buffer*/
unsigned long addr; /*temporary holder for incoming addr*/

vulnerabilities
2. Representation in

LTL/contractunsigned long addr; / temporary holder for incoming addr /
struct kprobe kp; /*kprobe*/
…
int j_write_target(struct file *file, const char *buffer,

unsigned long count, void *data)
{

3. Generation of probes
4. Execution of system and

insertion of probes{
int len = 0;
...
len = strlen(bad_buffer);
printk("The length of the target buffer is: %d\n", len);
if (count > len) {

insertion of probes
5. Monitor execution for

violations
/* Security Violation Reaction Here */
printk("VIOLATION!!!\n");

}
jprobe_return();
/*NOTREACHED*/
return 0;return 0;
}
…

FLACOS 2008, Malta, November 27-28, 2008 13

Evaluation of Contract
Introduction Proposed Approach Model Example Walkthrough

Evaluation of Contract
1. Identification of

lnerabilities
SOP = Use-case profile + Misuse-case profile

vulnerabilities
2. Representation in

LTL/contract
3 Generation of probes

Stress system using SOP identified fault-
injection 3. Generation of probes

4. Execution of system and
insertion of probes

5. Monitor execution for

…
echo -n
"0123456789012345678901234567890123456789012
345678901234567890" > /proc/target
….

violations
6. Identification of security

operational profile
7 E ti f f lt

….

Collect and store metric data
7. Execution of fault-

injection framework
8. Application of metrics
9 Resolve any verified

Resolve verified vulnerabilities and repeat
Use metric to compare relative pre/post

9. Resolve any verified
vulnerabilities and repeat

FLACOS 2008, Malta, November 27-28, 2008 14

effect on security

ConclusionConclusion
A methodology and tool set for improving security during
de elopment and testingdevelopment and testing

A theoretical model for an assertion-based security
monitor based on contracts and probesmonitor based on contracts and probes

A low performance-cost prototype monitoring framework
that is able to detect and respond to several well known p
attacks

Potential to monitor, track, and counteract security related
ti th h ll ft l i th tassertions through all software layers in the system

Potential discovery of additional metrics to assess
security of monitored systemssecurity of monitored systems

FLACOS 2008, Malta, November 27-28, 2008 15

This work is partially supported by NSERC, MITACS, and
CPER Nord-Pas-de-Calais/FEDER Campus Intelligence Ambiante.

