
FLOCOS-2008

Towards verifying contract regulated
service composition

Alessio Lomuscio, Hongyang Qu, Monika Solanki

Imperial College London
London, UK

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

FLOCOS-2008

Outline

1 General background

2 A running example

3 A MAS based semantics

4 MCMAS: a Model Checker for MAS

5 Implementation

6 Experiment

7 Conclusions

Imperial College London Towards verifying contract regulated service composition

General background FLOCOS-2008

General background

Specifications for MAS very well explored. Range of logics
(epistemic, deontic, ATL, ...).
Model checking relatively much less explored.
Verification of MAS. Previously standard model checkers
employed. Computationally grounded semantics.
Applications in security protocols, fault-tolerance in
automatic vehicles, contract-regulated WS.

Imperial College London Towards verifying contract regulated service composition

General background FLOCOS-2008

CONTRACT project (ends May09)

Some tasks we took on:

Verifying compliance of contract-regulated WS.
Local and Global run-time monitoring of contract-regulated
WS.

Some tasks we did not take on:

Analysis/negotiation/... of contracts per se.
Design of a contract language.
Formalisation of a contract language.
Model checking/monitoring of particular WS languages
naively.

Imperial College London Towards verifying contract regulated service composition

General background FLOCOS-2008

A MAS angle

Contracts as a mechanism for regulating complex
interactions between web services implemented as MAS.
Interest in verifying the MAS behaviours resulting from
these interactions. Reason about whether contract
violations happen, whether recovery actions are possible,
whether recover may can enforced, and knowledge of the
agents in these contexts.
A MAS approach including temporal, epistemic, ATL, and
some basic deontic concepts.
SoA at the time included only reachability analysis via
model checking.

Imperial College London Towards verifying contract regulated service composition

General background FLOCOS-2008

Some key properties we may wish to reason
about...

what properties are brought about by a run of the system
in which no agent violates any of his contracts,
what properties hold true if some of the agents violate (part
of) their contracts,
what properties (recovery, degraded performance, ...) can
agents enforce following some violation and what
knowledge is required for this to happen.

A language supporting this sort of specs seems of potential
interest.

Imperial College London Towards verifying contract regulated service composition

A running example FLOCOS-2008

A running example

Principle
software
provider

Technical
expert

Software
provider

Client

Hardware
supplier

Insurance
company

Testing
agency

Imperial College London Towards verifying contract regulated service composition

A running example FLOCOS-2008

A motivating example from Fujitsu’s use case

Client C asks principle software provider PSP and software provider SP
to develop the software.
PSP and SP twice update each other and C about the progress of the
software development. C can request some changes in the software
before the second round of updates.
Every update is followed by a payment in part by the client C to the PSP.
Payment to SP is handled by PSP.
PSP integrates the components developed by SP and sends the
software to Testing agency T for testing.
After the software passes the test, C orders the hardware from
Hardware supplier and buys insurance from Insurance company I for
the software.
C asks PSP, SP, H and an Expert to deploy the software on the
hardware.
If the deployment succeeds, C sends the final payment to PSP and SP
for the development.
If the deployment fails, C asks PSP for compensation.

Imperial College London Towards verifying contract regulated service composition

A running example FLOCOS-2008

Some of the parties’ obligations

PSP’s obligations
1 Update SP and C twice about the progress of the software.
2 Integrate the components and send them to T for testing.
3 If components fail, integrate the revised software and send

them for testing.
4 Make payment to SP after successful deployment of

software.
C’s obligations

1 Request changes before the second round of updates.
2 Pay penalty if changes are requested after second round of

updates.
3 Make payment to the PSP after every update.

Imperial College London Towards verifying contract regulated service composition

A MAS based semantics FLOCOS-2008

Temporal Deontic Interpreted Systems

A system is composed of a set of agents A = {1, ..., n} and
an environment e.
Each agent is described by

A set of local states Li,
A set of local actions Acti,
A local protocol function P : Li → 2Acti .
An evolution function τi : Li × Act → Li.

For any agent i its local states Li are partitioned into two
subsets: green states Gi and red states Ri.
A path π = (s0, s1, . . . , sj) is a sequence of possible global
states such that (si, si+1) ∈ T for each 0 ≤ i ≤ j.

Imperial College London Towards verifying contract regulated service composition

A MAS based semantics FLOCOS-2008

Models

A model M = (S, I,T,∼1, . . . , ∼n, h) is a tuple such that:
S ⊆ L1×, . . .× Ln × Le is the set of global states for the
system,
I ⊆ S is a set of initial states for the system,
T is the temporal relation for the system: sTs′ if there exist
actions a1, . . . , an such that ai ∈ Pi(li(s)) and
τi(li(s), a1, . . . , an) = li(s′).
For each agent i ∼i is an epistemic relation defined by
(l1, . . . , ln, le) ∼i (l′1, . . . , l

′
n, l

′
e) if li = l′i.

h : P → 2S is an interpretation for the set of propositional
atoms P, including an atom vi colouring the red states of
agent i.

Imperial College London Towards verifying contract regulated service composition

A MAS based semantics FLOCOS-2008

Temporal epistemic logic with violations

Syntax

φ ::= vi|p|¬φ|φ ∧ ψ|Kiφ|EXφ|EFFφ|EφUψ|EGφ.

Satisfaction
(M, s) |= vi iff li(s) 6∈ gi(s);
(M, s) |= p iff s ∈ h(p);
(M, s) |= ¬φ iff (M, s) 6|= φ;
(M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ;
(M, s) |= EXφ iff there exists a path π starting at s such that
(M, π(1)) |= φ.
(M, s) |= EGφ iff there exists a path π starting at s such that
(M, π(k)) |= φ for all k ≥ 0;
(M, s) |= EφUψ iff there exists a path π starting at s such
that for some k ≥ 0 (M, π(k)) |= ψ and (M, π(j)) |= φ for all
0 ≤ j < k;
(M, s) |= Kiφ iff for all possible global states s′ if s ∼i s′ then
(M, s′) |= φ.

Imperial College London Towards verifying contract regulated service composition

MCMAS: a Model Checker for MAS FLOCOS-2008

Basic approach

Given a MAS and a set of contracts, model all possible
transitions (via a language), colour the correct/incorrect
states.
Use syntax above to code temporal/epistemic/violation
properties of interest.
Implement a symbolic model checker.
Test behavioural conformance of single or multiple agents
against one or more contracts.

Imperial College London Towards verifying contract regulated service composition

MCMAS: a Model Checker for MAS FLOCOS-2008

MCMAS and ISPL

MCMAS a model checker for multi-agent systems to verify
CTL, epistemic, deontic and ATL formulae. It builds upon
traditional ideas on symbolic model checking via OBDDs.

ISPL is the input language of MCMAS. An agent in ISPL is
defined as

1 A set of local states, some of which are initial states;
2 A set of local actions;
3 A local protocol specifying for each local state, a subset of

local actions that can be performed in that state;
4 An evolution function defining the transition relation among

local states.

Imperial College London Towards verifying contract regulated service composition

MCMAS: a Model Checker for MAS FLOCOS-2008

Architecture of MCMAS

GUI

FSM Generator

Semantic Checker

Encoder

Model Checking Module

ISPL+
Parser

OBDD Library

C
ounterexam

ple G
enerator

Parsers for
other languages

Imperial College London Towards verifying contract regulated service composition

MCMAS: a Model Checker for MAS FLOCOS-2008

Towards automatisation: an experiment

Natural
Language
Contracts

Contract party
C1

Contractually correct
behaviours
 in BPEL

All possible
behaviours

in BPEL

ISPL
spec

MCMAS

compiler

Results

service

Contract party
C2

service

Imperial College London Towards verifying contract regulated service composition

Implementation FLOCOS-2008

Compiler

XML parser

Internal
automaton

representation

Internal
automaton

representation

Coloured
automaton

representation

Contract
regulated
properties

ISPL code

All possible
behaviours

Contractually
correct

behaviours

Compiler

Imperial College London Towards verifying contract regulated service composition

Implementation FLOCOS-2008

Translating BPEL programs into automata

¬cond else−branch

cond if −branch

¬cond empty
condwhile−body

if

pick flow

while

onMessage
onAlarm

onMessage
onAlarm

onMessage
onAlarm

subprocess

subprocess

subprocess
main process

synchronised

syn
chr
oni
sed

Imperial College London Towards verifying contract regulated service composition

Implementation FLOCOS-2008

Colouring the state space

Full behaviours
Contractually
correct
behaviours

Violations

Violations

1 The initial state of a behaviour automaton is labelled as
green.

2 For every transition in the contract automata, we find the
same transition in the behaviour automata and label its
target state as green.

3 For all states that are not green, we label them as red.

Imperial College London Towards verifying contract regulated service composition

Implementation FLOCOS-2008

Basic properties

For each BPEL process, agent i, we define endi holding in the
end state of agent i;
We compile the following basic properties to check

E(¬viUendi) (Is there a contract compliant run for agent i?)

EFvi (Can agent i violate any of its contracts?)

Other properties may be added.

Imperial College London Towards verifying contract regulated service composition

Implementation FLOCOS-2008

Generating ISPL programs

1 Local states generation: A local state l ∈ Li is a valuation for the set of
local variables Vari:

Vari = Varp ∪ {state} or Vari = Var′
p ∪ {state}.

2 Local actions generation: Acti is obtained from the transitions of Ai.
3 Protocol generation: For any transition t whose source state is

represented by l(state), the action to which t is mapped is included in El.
4 Evolution function generation: Each transition in Ai is translated to an

evolution item:

state=s2 if state=s1 and c and Action=t; or

state=s2 if state=s1 and c and Action=t and Aj.Action=t’; or

state=s2 and v=expr if · · · ; or

state=s if (state=s1 or state=s2 or . . .) and c and Action=t and · · · ; or

state=s if c and Action=t and · · · .

Imperial College London Towards verifying contract regulated service composition

Experiment FLOCOS-2008

Modelling the example in BPEL

<pick name="Update1">
<onMessage partnerLink="PSP_C"
operation="recPSP" portType="ns1:recMsg"
variable="RecPSPIn">
<empty name="Empty1"/>

</onMessage>
<onMessage partnerLink="PSP_C_int"
operation="recPSP" portType="ns1:recMoney"
variable="SendSPIn1">
<receive name="recUpdate1"
createInstance="no" partnerLink="PSP_C1"
operation="recPSP" portType="ns1:recMsg"
variable="RecPSPIn">
</receive>

</onMessage>
<onMessage partnerLink="PSP_NoC"
operation="recNoPSP" portType="ns1:recMsg"
variable="RecPSPIn">
<exit name="Exit347"/>

</onMessage>
</pick>

Imperial College London Towards verifying contract regulated service composition

Experiment FLOCOS-2008

Modelling the example in ISPL (1)

Agent Client
Vars:

state : { Client_0, Client_1, ...};
count : 0 .. 3;
...

end Vars
Actions={Client_Upd1_0, Client_Upd1_1,...};
Protocol :

state=Client_0:{Client_Upd1_0, Client_Upd1_1,
Client_Upd1_2, Client_While1};

state=Client_1:{Client_Empty1};
...
end Protocol

Evolution :
state=Client_0 and count=count+1 if

state=Client_24 and Action=Client_Assign375;
state=Client_1 if state = Client_0 and

count<2 and Action = Client_Upd1_0 and
PSP.Action = PSP_updateClient;

...
end Evolution

end Agent

Imperial College London Towards verifying contract regulated service composition

Experiment FLOCOS-2008

Modelling the example in ISPL (2)

Evaluation
Client_green if Client.state = Client_0 or

Client.state = Client_1 or ...;
Client_end if Client.state = Client_51;
Client_red0 if Client.state = Client_11;
...

end Evaluation
Formulae
E (Client_green U Client_end);
EF Client_red0;
...

end Formulae

Imperial College London Towards verifying contract regulated service composition

Experiment FLOCOS-2008

Advanced properties

Whenever PSP is in a compliance state, he knows the contract can be
eventually fulfilled successfully.

AG(PSP_green → KPSPEF(PSP_end))

There exists a path where C is always in compliance with the contract
until he eventually receives the software.

E(C_green U receiveSoftware)

PSP knows that it is possible that PSP, SP, C, I, H, T and E are all in
compliance until the software is delivered.

KPSPE(all_green U softwareDelivered),

where all_green represents
PSP_green∧SP_green∧C_green∧T_Green∧H_green∧E_green∧ I_green.
For a certain violation va of agent a, b knows that a certain agent c may
have violated its contract with a such that a becomes unable to satisfy
its contractual obligations with b.

AG(KbE(vcUva))

There is a trace in which the client is always in contract compliant states
until the software is delivered (while the client remains compliant)
before the client enters a violation.

E(C_green UE((C_green ∧ softwareDeployed) U ¬C_green))

Imperial College London Towards verifying contract regulated service composition

Conclusions FLOCOS-2008

Conclusions

A general interest in representing/verifying MAS against
rich logics.
MCMAS, a BDD-based model checker.
Still not found an adequate contract language.
Runtime monitoring on contract-based WS, service
discovery.

Imperial College London Towards verifying contract regulated service composition

	General background
	A running example
	A MAS based semantics
	Computationally grounded models
	Temporal epistemic logic

	MCMAS: a Model Checker for MAS
	Implementation
	Experiment
	Modelling the example in BPEL
	Modelling the example in ISPL

	Conclusions

