
Sandro Spina

A brief overview of SAT Solvers

Sandro Spina

Preliminaries – What is SAT?

� Propostional SATisfiability (SAT) addresses the problem of
deciding whether a particular Boolean formula in some normal
form has an assignment to its terms that makes the formula
true.

� We know that SAT is NP-complete [Cook]

� In a way SAT provides a generic ‘language’ which can be used
to express NP-complete problems in verification, scheduling,
etc… A SATsolver is used to search for solutions to the
problem.

� During this hour we shall be looking at a number of
implementations of SAT solvers …

SAT Solvers Input and Output

� The input to the SAT solver is a Boolean Propositional formula in
some normal form (ex. Conjunctive Normal Form)

� Ex. (a V ¬c) Λ (¬a) Λ (b V c V ¬a)

� a,b and c are variables
� A literal is either a +ve or a –ve instance of a variable
� A CNF formula is a conjunction of one or more clauses, each of which is

a disjunction of one or more literals

� The output of a SAT solver only needs to answer true (SAT) or
false (UNSAT and therefore proved unsatisfiable) depending on
the satisfiability of the formula. However, if the instance is SAT,
most solvers can also output a satisfying assignment of the
instance.

Complete and Incomplete Algorithms

� Incomplete methods :- aim at finding solutions by
heuristic means, without exhaustively exploring the space.
Of course the problem is that these methods are not
capable of detecting that no solution exists. Most
incomplete methods are based on stochastic local (random)
moves (ex. genetic algorithms, hill climbing techniques,
GSAT). Clearly these SAT solvers are not very useful for
verification.

� Complete methods :- aim at exploring the whole solution
space, typically using some form of backtrack search.
Resolution is one complete method. Pruning techniques are
typically used to determine that certain regions contain no
solution. (ex. DP, DLL, CHAFF, Stalmarck, etc)

David Putnam resolution based SATsolver (i)

� Rule 1. Rule for the elimination of the one literal clause.

� If F (in CNF) contains atomic formula p as a one-literal clause
and also ¬p as a one-literal clause then F may be replaced by
0. p Λ ¬p = false

� If an atomic formula p appears as a clause in F, then one
many produce F’ such that F’ does not contain the clauses that
contain p and deleting all occurrences of ¬p from the
remaining clauses

� If an atomic formula ¬p appears then obtain F’ by striking out
all occurrences of p from the remaining clauses of F and
deleting all one-literal clauses ¬p.

� If F’ becomes empty after the application of these rules then
the original formula F is SAT.

David Putnam resolution based SATsolver (ii)

� Rule 2. Affirmative-Negative Rule.

� If an atomic formula p occurs in a
formula F only affirmatively or only
negatively then all clauses which contain
p may be deleted.

� Ex. (a V ¬c) Λ (¬a) Λ (b V c V ¬a) Λ b

� Can be reduced to (a V ¬c) Λ (¬a)

David Putnam resolution based SATsolver (iii)

� Rule 3. Rule for eliminating atomic formulas

� The following reduction is applied
� (A V p) Λ (B V ¬p) Λ R => (A V B) Λ R
� Note that A,B and R are free of variable p

� The DP algorithm iteratively executes these three
rules. If a contradiction results than the original
formula is SAT.

� Note that usually the original formula to prove is
negated since contradictions are usually produced
faster.

Davis Logemann Loveland (DLL62) technique (i)

� Note that resolution based methods (ex.
DP) will not produce an assignment to the
variables whenever the formula is SAT.

� DLL is a backtracking algorithm which in
the case of SAT returns an assignment to
the variables in the formula.

� DLL applies the same rules of DP except for
the Rule 3.

Davis Logemann Loveland (DLL62) technique (ii)

� Rule 3 (splitting rule).

� Let F = (A V p) Λ (B V ¬p) Λ R

� Then F is inconsistent if and only if

� A Λ R and B Λ R are both inconsistent

� The assignment of p to either T or F, splits
the search space.

� This is essentially a depth first search

Davis Logemann Loveland (DLL62) technique (example)

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a

Basic DLL Procedure - DFS

a
0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

⇐ Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0 ⇐ Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 ⇐ Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

⇐ Backtrack

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1 ⇐ Forced Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

⇐ Backtrack

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

1 ⇐ Forced Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=0

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c

0

1

⇐ Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0

1

⇐ Backtrack

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c

0 1

1

⇐ Forced Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

⇐ Backtrack

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1 ⇐ Forced Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0 ⇐ Decision

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0

⇐ Backtrack

Basic DLL Procedure - DFS

a

0
(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0 1

a=1

b=1

c=1
(a’ + b’ + c)

⇐ Forced Decision

Basic DLL Procedure - DFS

a

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

0

Basic DLL Procedure - DFS

a

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

0

Stalmarck’s Method for propositional logic

� The normal form used in this method makes use only of
implication and false.
� A V B = ~A � B

� A Λ B = ~(A � ~B)

� ~~A = A

� ~A = A � False

� The formula x ↔ (y � z) is represented by the triple (x, y, z)

� For example p � (q � p) becomes

� (b1, q, p)

� (b2, p, b1)

� In order to prove a formula valid, first assume it to be false
then try to derive a contradiction.

Stalmarck’s Method for propositional logic (ii)

� Simple rules. A simple rule takes a
triggering triplet and derives new
information about its variables.

� For example we know that if y � z is false,
then y must be true and z false. This
information is valid throughout the whole
derivation.

� The crucial point to note here is that this
method is performing a breadth first search
within the search space.

Stalmarck’s Method for propositional logic (example)

� Ex. P � (q � p)
� (b1, q, p)

� (0, p, b1) �

� (b1, q, p)[p/1, b1/0] �

� (0,q,1) (a contradictory/terminal triplet !! Halt and SAT)

� The other terminal triplets are :
� (1, 1, 0) and (0, 0, x)

� There are 6 different simple rules

Stalmarck’s Method for propositional logic (dilemma)

� Dilemma (to be or not to be) Rule.

� If one of these derivations gives a terminal triplet, then
the result of applying the rule is the result of the other
derivation.

� !!! Very important !!! If neither D1 nor D2 leads to a
contradiction, then the resulting substitution is the
intersection of S1 and S2. That is, any information
gained both from assuming that x is true and from
assuming that x is false must hold independent of the
value of x.

SAT heuristics

� The main research focus on SAT branching heuristics
is to discover conflicts as early as possible.

� A heuristic should be also cheap to evaluate.

� Examples include (depends on SAT test samples)
� Maximum Occurrences on Minimum sized clauses

(MOM) – try to produce large numbers of implications
or to satisfy as many clauses as possible.

� Dynamic Largest Individual Sum (DLIS) – selects the
literal that appears most frequently in unresolved
clauses.

� Variable State Independent Decaying Sum (VSIDS) –
used in the CHAFF SAT solver.

Variable State Independent Decaying Sum
(VSIDS) - CHAFF Heuristic for decision()

1. Each variable in each polarity has a counter, initialized to 0.

2. When a clause is added to the database, the counter
associated with each literal in the clause is incremented

3. The (unassigned) variable and polarity with the highest
counter is chosen at each decision

4. Ties are broken randomly by default, although this is
configurable

5. Periodically, all the counters are divided by a constant

� In CHAFF a clause learning mechanism (from conflicts) adds
new clauses (and literals) to the clause database as the
search progresses. VSIDS score is a literal occurrence count
with higher weight on the more recently added literals.

Conclusions

� The aim of this talk was to describe a
number of SAT solvers.

� Hopefully you got a better idea of
what SAT is all about…

� Thanks for attending this SVRG talk!

