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Preliminaries – What is SAT?

� Propostional SATisfiability (SAT) addresses the problem of 
deciding whether a particular Boolean formula in some normal 
form has an assignment to its terms that makes the formula 
true.

� We know that SAT is NP-complete [Cook]

� In a way SAT provides a generic ‘language’ which can be used 
to express NP-complete problems in verification, scheduling, 
etc… A SATsolver is used to search for solutions to the 
problem.

� During this hour we shall be looking at a number of  
implementations of SAT solvers …



SAT Solvers Input and Output

� The input to the SAT solver is a Boolean Propositional formula in 
some normal form (ex. Conjunctive Normal Form)

� Ex.   (a V ¬c) Λ (¬a) Λ (b V c V ¬a)

� a,b and c are variables
� A literal is either a +ve or a –ve instance of a variable
� A CNF formula is a conjunction of one or more clauses, each of which is 

a disjunction of one or more literals

� The output of a SAT solver only needs to answer true (SAT) or 
false (UNSAT and therefore proved unsatisfiable)  depending on 
the satisfiability of the formula. However, if the instance is SAT, 
most solvers can also output a satisfying assignment of the 
instance.



Complete and Incomplete Algorithms

� Incomplete methods :- aim at finding solutions by 
heuristic means, without exhaustively exploring the space. 
Of course the problem is that these methods are not 
capable of detecting that no solution exists. Most 
incomplete methods are based on stochastic local (random) 
moves (ex. genetic algorithms, hill climbing techniques, 
GSAT). Clearly these SAT solvers are not very useful for 
verification.

� Complete methods :- aim at exploring the whole solution 
space, typically using some form of backtrack search. 
Resolution is one complete method. Pruning techniques are 
typically used to determine that certain regions contain no 
solution. (ex. DP, DLL, CHAFF, Stalmarck, etc) 



David Putnam resolution based SATsolver (i)

� Rule 1. Rule for the elimination of the one literal clause. 

� If F (in CNF) contains atomic formula p as a one-literal clause 
and also ¬p as a one-literal clause then F may be replaced by 
0. p Λ ¬p = false

� If an atomic formula p appears as a clause in F, then one 
many produce F’ such that F’ does not contain the clauses that 
contain p and deleting all occurrences of ¬p from the 
remaining clauses

� If an atomic formula ¬p appears then obtain F’ by striking out 
all occurrences of p from the remaining clauses of F and 
deleting all one-literal clauses ¬p.

� If F’ becomes empty after the application of these rules then 
the original formula F is SAT.  



David Putnam resolution based SATsolver (ii)

� Rule 2. Affirmative-Negative Rule.

� If an atomic formula p occurs in a 
formula F only affirmatively or only 
negatively then all clauses which contain 
p may be deleted.

� Ex. (a V ¬c) Λ (¬a) Λ (b V c V ¬a) Λ b

� Can be reduced to (a V ¬c) Λ (¬a) 



David Putnam resolution based SATsolver (iii)

� Rule 3. Rule for eliminating atomic formulas

� The following reduction is applied
� (A V p) Λ (B V ¬p) Λ R => (A V B) Λ R 
� Note that A,B and R are free of variable p

� The DP algorithm iteratively executes these three 
rules. If a contradiction results than the original 
formula is SAT. 

� Note that usually the original formula to prove is 
negated since contradictions are usually produced 
faster.  



Davis Logemann Loveland (DLL62) technique (i)

� Note that resolution based methods (ex. 
DP)  will not produce an assignment to the 
variables whenever the formula is SAT.

� DLL is a backtracking algorithm which in 
the case of SAT returns an assignment to 
the variables in the formula.

� DLL applies the same rules of DP except for 
the Rule 3.



Davis Logemann Loveland (DLL62) technique (ii)

� Rule 3 (splitting rule). 

� Let F = ( A V p) Λ (B V ¬p) Λ R

� Then F is inconsistent if and only if

� A Λ R and B Λ R are both inconsistent

� The assignment of p to either T or F, splits 
the search space.  

� This is essentially a depth first search



Davis Logemann Loveland (DLL62) technique (example)
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Stalmarck’s Method for propositional logic

� The normal form used in this method makes use only of 
implication and false.
� A V B    =   ~A � B

� A Λ B =   ~(A � ~B)

� ~~A        =   A

� ~A          =   A � False

� The formula  x ↔ (y � z) is represented by the triple (x, y, z)

� For example p � ( q � p) becomes

� (b1, q, p)

� (b2, p, b1)

� In order to prove a formula valid, first assume it to be false 
then try to derive a contradiction.



Stalmarck’s Method for propositional logic (ii)

� Simple rules. A simple rule takes a 
triggering triplet and derives new 
information about its variables. 

� For example we know that if y � z is false, 
then y must be true and z false. This 
information is valid throughout the whole 
derivation. 

� The crucial point to note here is that this 
method is performing a breadth first search
within the search space.



Stalmarck’s Method for propositional logic (example)

� Ex. P � ( q � p) 
� (b1, q, p)

� (0, p, b1) �

� (b1, q, p)[p/1, b1/0] �

� (0,q,1) (a contradictory/terminal triplet !! Halt and SAT)

� The other terminal triplets are :
� (1, 1, 0) and (0, 0, x)

� There are 6 different simple rules



Stalmarck’s Method for propositional logic (dilemma)

� Dilemma (to be or not to be) Rule.

� If one of these derivations gives a terminal triplet, then 
the result of applying the rule is the result of the other 
derivation.

� !!! Very important !!! If neither D1 nor D2 leads to a 
contradiction, then the resulting substitution is the 
intersection of S1 and S2. That is, any information 
gained both from assuming that x is true and from 
assuming that x is false must hold independent of the 
value of x.



SAT heuristics

� The main research focus on SAT branching heuristics 
is to discover conflicts as early as possible.

� A heuristic should be also cheap to evaluate. 

� Examples include (depends on SAT test samples)
� Maximum Occurrences on Minimum sized clauses 

(MOM) – try to produce large numbers of implications 
or to satisfy as many clauses as possible.

� Dynamic Largest Individual Sum (DLIS) – selects the 
literal that appears most frequently in unresolved 
clauses. 

� Variable State Independent Decaying Sum (VSIDS) –
used in the CHAFF SAT solver.



Variable State Independent Decaying Sum 
(VSIDS) - CHAFF Heuristic for decision()

1. Each variable in each polarity has a counter, initialized to 0.

2. When a clause is added to the database, the counter 
associated with each literal in the clause is incremented

3. The (unassigned) variable and polarity with the highest 
counter is chosen at each decision

4. Ties are broken randomly by default, although this is 
configurable

5. Periodically, all the counters are divided by a constant

� In CHAFF a clause learning mechanism (from conflicts) adds 
new clauses (and literals) to the clause database as the 
search progresses.  VSIDS score is a literal occurrence count 
with higher weight on the more recently added literals.



Conclusions

� The aim of this talk was to describe a 
number of SAT solvers.

� Hopefully you got a better idea of 
what SAT is all about…

� Thanks for attending this SVRG talk!


