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Animated Graphics

 Presentations

 Entertainment Media

 Simulations

 Computer Games



Digital Animation Approaches

 Ideal for predetermined 
sequences

 Requires prescription of the 
complete sequence

 Can be designed for dramatic 
effect

 Requires skilled animators for 
realistic effects

 Animator resources / effort 
must scale in proportion to 
complexity

 Ideal for interactive 
applications

 Requires a physical model 
and initial conditions

 Animation cannot be 
controlled directly

 Realism is a by-product of 
physics modelling

 Computation resources must 
scale in proportion to 
complexity

Scripted Animation Interactive Animation



Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games



Existing Solutions

 Commercial / Closed Source

Havoc Physics™

Nvidia PhysX™

 Community Driven / Open Source

 Bullet

Open Dynamics Engine™

 Farseer



Physics Theory

 Classical Mechanics

Rigid Body Dynamics

 Soft Body Dynamics

 Concepts

 Linear and Angular Motion

 Forces and Inertia

Collisions, Contact, Friction

Motion Constraints



Physical Models for Animation

Analytical Models Numerical Models

Analytical

Solution
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Solution
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Physical Models for Animation

 Compute state as a 
function of time

 Computationally efficient

 Very accurate (no error 
accumulation)

 Limited to simple 
predictable configurations 
with no interaction

 Requires solution for every 
class of problem

 Iteratively update state 
over small timeframes

 Polynomial complexity

 Numerical errors creep into 
simulations over time

 Can handle interactive 
configurations of arbitrary 
complexity

 Generic approach suitable 
to many problems

Analytical Models Numerical Models



Analytical Model Example

Algorithm
(1) Let t := 0

(2) Set initial velocity u

(3) Compute p(t)

(4) Let t := t + ∆t

(5) Draw projectile

(6) Go to step (3)
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Analytical Model Example

Numerical Example

Time px=3t py=4t-½t2 p(t)=[px py]

0 0.0 0.0 [0.0  0.0]

1 3.0 3.5 [3.0  3.5]

2 6.0 6.0 [6.0  6.0]

3 9.0 7.5 [9.0  7.5]

4 12.0 8.0 [12.0  8.0]

5 15.0 7.5 [15.0  7.5]

6 18.0 6.0 [18.0  6.0]

7 21.0 3.5 [21.0  3.5]

8 24.0 0.0 [24.0  0.0]
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Numerical Animation Algorithm

Initialise 

State

End of 

animation?

Process User / 

Agent Input

Update State

Visualise

End
Yes

No

Numerical
Solution

start 

time

next

statestart 

state

next

time



State Initialisation

 What constitutes state?

 For each element (body)

 Position

Orientation

 But also

 Linear / Angular Velocity

 Linear / Angular Acceleration

 External Forces

(will deal with angular motion later...)

Initialise 

State



Representing Position

 Position Vectors

 2D Vectors for 2D Animations

 3D Vectors for 3D Animations
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Representing Orientation

 Various representation options

 Bodies rotate around axis passing through a 

‘central’ point (centre of mass)

 More on this later...



State Update

 For each body

 Position changes due to linear 

velocity

 Orientation changes due to 

angular velocity

 Linear / angular velocity changes

 due to linear / angular acceleration

 due to some event, e.g. collision

 Linear / angular acceleration 

results from external forces

Update State



Representing Linear Velocity

 2D or 3D Vectors

 Velocity is rate of change of position

 i.e. integrating velocity over time gives position

 and if velocity constant, then
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Representing Linear Acceleration

 2D or 3D Vectors

 Acceleration is rate of change of velocity

 i.e. integrating acceleration over time gives velocity

 and if acceleration constant, then
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Numerical Integration

 Equations p = s + vt and v = u + at valid only when v and a constant

 If v and a are variable, but t sufficiently small (t = ∆t), we can use 

these equations to calculate approximations for p and v

 We can calculate new value for a and repeat previous step

 This results in a first order approximation of the path taken by 

position p
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Numerical Integration Example

Algorithm
(1) Let p := s, v := u, a := [0  -g]

(2) Let p’ := p + v∆t, v’ := v + a∆t

(3) Let p := p’, v := v’

(4) Draw projectile

(5) Go to step (2)

 yx ppp

 yx vvv

Vector Equations of Motion

Component Equations of Motion
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Numerical Model Example

 yx ppp

 yx vvv

   430 v

 10 a

 10 a

Numerical Example

   000 p

1,0  tt

   430  uv

Y

X

Time p v a p’=p+v v’=v+a

0 [0  0] [3  4] [0  -1] [3  4] [3  3]

1 [3  4] [3  3] [0  -1] [6 7] [3  2]

2 [6  7] [3  2] [0  -1] [9  9] [3  1]

3 [9  9] [3  1] [0  -1] [12  10] [3  0]

4 [12  10] [3  0] [0 -1] [15  10] [3  -1]

5 [15  10] [3  -1] [0 -1] [18  9] [3  -2]

6 [18  9] [3  -2] [0 -1] [21  7]  [3  -3]

7 [21  7] [3  -3] [0  -1] [24 4] [3 -4]

8 [24  4] [3  -4] [0  -1] [27  0] [3  -5]

9 [27  0] [3  -5] [0  -1]



Analytic vs Numeric Results
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Angular Motion

 We have angular equivalents of numerical 

equations for linear motion

 φ is orientation

 ω is angular velocity

 α is angular acceleration
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2D Angular Motion

 Option 1: Scalar Angles

 φ, ω, α expressed as scalars (in radians)

 φ must be reduced to range [-π.. π] by adding / 

subtracting 2π
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2D Angular Motion

 Option 2: 2D Rotation Matrices

 Φ expressed as 2D rotation matrix

 Angle of Φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to rotation matrix to update φ

 Angular velocity still updated as scalar

 φ loses orthogonality after a while, need renormalisation
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2D Angular Motion

 Option 3: Complex Angles

 φ expressed as complex number of unit length

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to complex number to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while
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Comparison of 2D Rotation Structures

Scalar Angles
2D Rotation 

Matrices
Complex Angles

Pros
• Very compact representation (1 

scalar element)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation

• Solves angle discontinuity

• Compact representation (2 

scalar elements)

• Cheap ω conversion

• Cheap conversion to matrix for 

visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to matrix 

for visualisation

• Waste storage space (4 scalar 

elements

• Expensive computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scalar 

angles

• Visualisation matrix still needs 

to be computed, but cheap



3D Angular Motion

 Option 1: Scaled Axis Representation

 φ, ω, α expressed as vectors

 Length represents scale of rotation

 Direction represents axis of rotation

 Rotation convention follows right-hand rule

 Must reduce |φ| to range [0.. π] by subtracting 2π

 Examples

 φ = [0  0  π/2 ] is a 90° anti-clockwise rotation around Z-axis

 ω = [4π 3π 0] is angular velocity of 5π/s around axis y=3x/4

 α = [2π 0 0] is angular acceleration of 2π/s2 around axis X-axis
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3D Angular Motion

 Option 2: 3D Rotation Matrices
 Φ expressed as 3D rotation matrix

 ω, α still expressed as scaled axes representations

 Must convert ω to rotation matrix to update Φ

 Angular velocity still updated as vector

 Φ loses orthogonality after a while, need renormalisation
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3D Angular Motion

 Option 3: Quaternion Angles

About Quaternions
 Like complex numbers, but in 4D

 Have rules for addition, subtraction, multiplication etc.

Quaternions for Rotation
 3D equivalent of complex angles for 2D

 Pros and cons analogous to complex numbers for 2D angular 

motion



Quaternions

 4D vectors with a special multiplicative operation

 Can be represented as a 4-element vector or a scalar / 3D vector 

pair

 Norm (Magnitude)

 Conjugate

 Multiplication

 Inverse
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Rotation Quaternions

 Unit quaternions can be used to rotate vectors

 Rotation by θ radians around unit vector n

 Can rotate vector v to new vector v’ as follows

 Equation can be abbreviated for convenience
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Quaternion-Based Orientation

 Option 3: Quaternion Angles

 φ expressed as a quaternion of unit norm

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scaled axis representations

 Must wrap ω in quaternion to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while
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Comparison of 3D Rotation Structures

Scaled Axis

Representations

3D Rotation 

Matrices

Quaternion

Angles

Pros
• Very compact representation (3 

scalar elements)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation or 

cheaply convert to 4D 

homogenous matrix

• Solves angle discontinuity

• Compact representation (4 

scalar elements)

• Cheap ω conversion

• Reasonably cheap conversion 

to matrix for visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to 

3D/4D matrix for visualisation

• Wastes storage space (9 scalar 

elements

• Expensive matrix computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scaled axis 

representation

• Visualisation matrix still needs 

to be computed, but relatively 

cheap



State Update (Take 2)

 For each body

 Get current linear and angular 

acceleration (will tackle this next...)

 Update position and orientation

 Update linear and angular velocities

 Handle collisions (will tackle this later...)

Update State
      ttttt  vpp
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User / Agent Input

 Human users / autonomous agents 

influence physical simulation

 Examples

 User / AI controlling simulated vehicle

 Natural phenomena (e.g. gravity or 

friction)

 Chain of events (e.g. collisions)

 The above result in applied forces

 Forces are source of linear and 

angular acceleration

Process User 

/ Agent Input



Force

 Has magnitude and direction (is a vector)

 Induce linear acceleration

 Induce angular acceleration (when acting off-centre)

Thrusterf

Gravityf

Rotaryf

Rotaryf

Gravityf

Frictionf
Reactionf



Effects of Force

 Force induces linear acceleration

 Greater force => greater acceleration

 Greater mass => lesser acceleration

 Acceleration parallel to force

 Application of multiple forces

 Forces can be summed up as vectors

 Can work in tandem or cancel out
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Torque

 Torque is ‘angular’ force

 Magnitude of torque vector gives scale

 Direction gives axis of rotation

 greater force => greater torque

 greater perpendicular distance => greater torque

 Scalar Form

 Vector Form
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Effects of Torque

 Torque induces angular acceleration

 Greater torque => greater acceleration

 Greater ‘mass’ => lesser acceleration

 Angular acceleration parallel to torque (for symmetric bodies)

 Rotation occurs around axis passing through centre of mass

 Scalar Torque Equation

Note: Moment of Inertia (I) is angular equivalent of mass
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Centre of Mass

 A point in (or outside) body around which mass is evenly distributed

 System of point masses mi at positions ri

 Continuous body mass m, density function ρ, volume V






i

i

i

ii

m

m r

c

 



V

d
m

r

rrrc 
1

X

Y 1m
2m

3m

1r 2r

3r

c

X

Y
m

c
V



Centre of Mass Example
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Moment of Inertia

 A measure of mass quantity and distribution around a given axis 

(usually through centre of mass)

 System of point masses mi at perp. distance ri from axis

 Solid body with density function ρ, volume V
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Moment of Inertia Example

kgm 11 
kgm 22 
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General Torque Equations

 For 2D, can use scalar forms of I, τ and α

 For 3D

 Axis of rotation varies over time

 Moment of inertia needs to be recalculated every time

 Torque must take axis into account

 Elegant Solution:

 the Inertia Tensor matrix I

 vector form of the torque equations
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Moment of Inertia Tensor

 A 3 x 3 matrix of the form

 Ixx, Iyy, Izz are principal moments of inertia around X, Y, Z axes

 Ixy, Ixz, Iyx, Iyz, Izx, Izy are products of inertia, usually zero for symmetrical 

bodies
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Inertia Tensor Example: Sphere

 Solid sphere of uniform density, mass m, radius r
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Inertia Tensor Example: Cuboid

 Solid cuboid of uniform density, mass m, dimensions w × h × d

 

 

 






























22

22

22

12
00

0
12

0

00
12

hw
m

dw
m

dh
m

I

 22

12
dh

m
I xx 

0 zyyzzxxzyxxy IIIIII

 22

12
dw

m
I yy 

 22

12
hw

m
I zz 

X

Y

Z

w

xxI

yyI

zzI

h

d



Inertia Tensor Example: Cylinder

 Solid cylinder of uniform density, mass m, height h, radius r
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State Initialisation (Take 2)

 For each body, initialise

Mass m

Moment of inertia tensor I

 Position vector p

Orientation quaternion φ

 Linear velocity vector v

 Angular velocity vector ω

Initialise 

State



User / Agent Input (Take 2)

 For each body

 Determine applied forces fi from user / 

agent input

 Accumulate force

 Determine torques τi

 Accumulate torque

Process User 

/ Agent Input
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State Update (Take 3)

 For each body

 Compute linear and angular accelerations

 Update position and orientation

 Update linear and angular velocities

Update State
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Collision Detection and Response

 Need to prevent bodies from interpenetrating

 Need to maintain realism

 Two problems:

How to detect a collision?

What to do when a collision occurs?



Collision Detection

 Bodies occupy volume in space

 Collision occurs when volumes overlap on at least one point in 
space

 Two possible approaches

 Conservative Advancement: Estimate time of collision before it occurs

 Retroactive Detection: Let bodies overlap and fix penetration afterwards



Conservative Advancement

 In current state update

 For all possible collisions, estimate time of impact Δtimpact (less than 
usual update interval Δt)

 If there is such collision

 update motion equations by Δtimpact (instead of Δt)

 handle collision (e.g. update velocities)

 resume normally

 Otherwise if no collision

 Update motion equations by Δt as usual

 Problems of this approach

 Time of impact estimation is harder than testing if bodies overlap

 Simulation comes to virtual stop when lots of bodies in contact

 More difficult to keep constant animation rate



Retroactive Collision Detection

 In current state update

 Update motion of all bodies by Δt

 For each overlapping pair of bodies

 Fix penetration (e.g. back off bodies to earlier position)

 Handle collision (e.g. update velocities)

 Problems with this approach

 Must deal with interpenetration

 Tunnelling problem (small bodies, high velocities, large Δt)

 Stacking problem (will talk about this later...)



Collision Manifolds

 Area of contact (manifold) between colliding bodies can be

 a single point

 a discreet number of points

 a continuum of points (line / area)

 a mix of the above

 Common occurrences

 corner with side (vertex – face)

 edge with edge (edge – edge)

 edge with surface (edge – face)

 Other types (rare)

 corner with corner

 corner with edge

 Lines / areas of contacts simplified to discreet points

point of contact line of contact

area of contact multiple areas of contact



Collision Detection Output

 For each discreet point of collision we need

 Point of contact

 Location where collision has occurred

Contact normal vector ň

 Direction of the collision

 Penetration distance p

 For resolving interpenetration
n̂

p



Sphere Collision Detection Example

 Sphere 1, centre at p1, radius r1

 Sphere 2, centre at p2, radius r2

 Spheres in contact / overlapping when

 If overlapping, then penetration p is

 Contact normal ň is

 Point of contact pc is (approximately)

1r

2r

1p

2p

d

2112 rrd pp

n̂

drrp  21

 12

1
ˆ ppn 

d

cp

npp ˆ
2

11 









p
rc



Collision Detection Performance

 Simplest solution: test all possible body pairs – n(n-1)/2 

combinations!

 Better approaches: partition space for better 

performance, for example:

 Regular grids

 Quadtrees (2D) / octrees (3D)

 KD-trees

 co-ordinate sorting



Regular Grids

 Test only bodies sharing same cells

 Example, test only the following

 (1) and (2)

 (3) and (4)

 (3) and (5)

 (4) and (5)

 (5) and (6) – body (5) spans 2 cells

 Note: (7), (8), (9) ignored

 Only 5 out of 36 possible combinations tested!
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Collision Response

 In a real collision

 Bodies undergo compression, followed by expansion before breaking contact, over short 

period of time

 During compression and expansion phases, repulsive forces (along contact normal) 

accelerate bodies apart

 Linear and angular velocities change gradually throughout collision

 In a simulated collision between perfectly rigid bodies

 We avoid simulating compression and expansion phases

 We model repulsive force by instantaneous change in momentum (impulse)

 Linear and angular velocities change instantly

   22221111 nnnn mm vvJvvJ 

1J
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Coefficient of Restitution

 In a frictionless rigid body collision, relative velocity of contact points

 changes only along contact normal

 is unaffected along perpendicular direction to normal (surface tangent)

 Collision modelled by restitution coefficient e with value between 0 and 1

 e = 1 => perfectly elastic collision

 e = 0 => perfectly inelastic (sticky) collision

 measured empirically e.g. wooden ball hitting concrete e ≈ 0.6 
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Collision Effects

 Relative velocity of contact points changes according to coefficient e (as per 

previous slide)

 Can compute contact point velocity from linear and angular body velocity

 Then compute relative velocity of contact points

 Several substitutions later lead to...

bodycontactbodycontact ωrvv 

bodyv

bodyω

pointv

pointrcontact1contact2 vvv r



Collision Equation

 Step 1: Computation of impulse magnitude j

 Step 2: Vector forms of impulses j1, j2

 Step 3a: New linear velocities v’1, v’2

 Step 3b: New angular velocities ω’1, ω’2
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Solving Interpenetration

 Option 1 (Simple)

 Move each body away by half penetration along contact normal

 Option 2 (Better)

 Move each body away taking mass into consideration

 Option 3 (Even Better)

 Apply ‘impulse’ equation at positional level (handles rotation)
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Collision Algorithm

 For each collision

(1) Compute collision impulse

(2) Update linear velocities

(3) Update angular velocities

(4) Solve body interpenetration

 Problems

 Solving one interpenetration may cause another

 Cannot handle stacks of bodies



The Stacking Problem

Frame 0: Initial State Frame 1: Motion Frame 1: Collision Detection Frame 1: Collision Resolution

Frame 2: Motion Frame 2: Collision Detection Frame 2: Collision Resolution Frame 3: Motion

Frame 3: Collision Detection Frame 3: Collision Resolution After several frames... Stack topples!

...



Simultaneous Collision Resolution

 All collisions considered simultaneously

 Solves (or minimises) stacking problem

 Various solutions (look up for fun...)

 Shock Propagation

 Iterative Solver

 Linear Complementary Problem Formulation



Further Topics on Physics Animation

 Simulating friction, for example:
 Static box on inclined plane

 Tyre traction

 Joints, for example:
 Ball-and-socket

 Hinges

 Motors

 Modelling Forces, for example:
 Springs

 Buoyancy



Some References

 Physics Engines

http://en.wikipedia.org/wiki/Physics_engine

 Collision Detection

http://en.wikipedia.org/wiki/Collision_detection

 Collision Response

http://en.wikipedia.org/wiki/Collision_response

 List of Inertia Tensors

http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors

 Octrees

http://en.wikipedia.org/wiki/Octree

 Open Source / Free Physics Engines

http://www.thefreecountry.com/sourcecode/physics.shtml

 Farseer Physics Engine (XNA Friendly)

http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm
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http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Collision_response
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