
PHYSICS-BASED

ANIMATION

Colin VellaCSA2207

Animated Graphics

 Presentations

 Entertainment Media

 Simulations

 Computer Games

Digital Animation Approaches

 Ideal for predetermined
sequences

 Requires prescription of the
complete sequence

 Can be designed for dramatic
effect

 Requires skilled animators for
realistic effects

 Animator resources / effort
must scale in proportion to
complexity

 Ideal for interactive
applications

 Requires a physical model
and initial conditions

 Animation cannot be
controlled directly

 Realism is a by-product of
physics modelling

 Computation resources must
scale in proportion to
complexity

Scripted Animation Interactive Animation

Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games

Existing Solutions

 Commercial / Closed Source

Havoc Physics™

Nvidia PhysX™

 Community Driven / Open Source

 Bullet

Open Dynamics Engine™

 Farseer

Physics Theory

 Classical Mechanics

Rigid Body Dynamics

 Soft Body Dynamics

 Concepts

 Linear and Angular Motion

 Forces and Inertia

Collisions, Contact, Friction

Motion Constraints

Physical Models for Animation

Analytical Models Numerical Models

Analytical

Solution
time state

Numerical

Solution

start

time

next

statestart

state

next

time

Physical Models for Animation

 Compute state as a
function of time

 Computationally efficient

 Very accurate (no error
accumulation)

 Limited to simple
predictable configurations
with no interaction

 Requires solution for every
class of problem

 Iteratively update state
over small timeframes

 Polynomial complexity

 Numerical errors creep into
simulations over time

 Can handle interactive
configurations of arbitrary
complexity

 Generic approach suitable
to many problems

Analytical Models Numerical Models

Analytical Model Example

Algorithm
(1) Let t := 0

(2) Set initial velocity u

(3) Compute p(t)

(4) Let t := t + ∆t

(5) Draw projectile

(6) Go to step (3)

 tutp xx

 yx ppp

 2

2

1
gttutp yy

 xx utv

 gtutv yy

 yx vvv

 0tax

 gtay

 yx uu uv 0

 2

2

1
ttt aup tt auv

 g 0a

 gt 0a

Vector Equations of Motion

Component Equations of Motion

Y

X

Analytical Model Example

Numerical Example

Time px=3t py=4t-½t2 p(t)=[px py]

0 0.0 0.0 [0.0 0.0]

1 3.0 3.5 [3.0 3.5]

2 6.0 6.0 [6.0 6.0]

3 9.0 7.5 [9.0 7.5]

4 12.0 8.0 [12.0 8.0]

5 15.0 7.5 [15.0 7.5]

6 18.0 6.0 [18.0 6.0]

7 21.0 3.5 [21.0 3.5]

8 24.0 0.0 [24.0 0.0]

 yx ppp

 yx vvv

 yx uu uv 0

 g 0a

Y

X

 43..43 yx uueiu

1t

 ttutp xx 3

 22

2

1
4

2

1
tttatutp yyy

 10..10 yx aaeia

Numerical Animation Algorithm

Initialise

State

End of

animation?

Process User /

Agent Input

Update State

Visualise

End
Yes

No

Numerical
Solution

start

time

next

statestart

state

next

time

State Initialisation

 What constitutes state?

 For each element (body)

 Position

Orientation

 But also

 Linear / Angular Velocity

 Linear / Angular Acceleration

 External Forces

(will deal with angular motion later...)

Initialise

State

Representing Position

 Position Vectors

 2D Vectors for 2D Animations

 3D Vectors for 3D Animations

 yx ppp

 zyx pppp

p

Y

X
xp

yp

Y

X
xp

yp

Z

zp

p

Representing Orientation

 Various representation options

 Bodies rotate around axis passing through a

‘central’ point (centre of mass)

 More on this later...

State Update

 For each body

 Position changes due to linear

velocity

 Orientation changes due to

angular velocity

 Linear / angular velocity changes

 due to linear / angular acceleration

 due to some event, e.g. collision

 Linear / angular acceleration

results from external forces

Update State

Representing Linear Velocity

 2D or 3D Vectors

 Velocity is rate of change of position

 i.e. integrating velocity over time gives position

 and if velocity constant, then

 zyx vvvv

dt

dp
v

dt

dp
v

dt

dp
vei

dt

d z
z

y

y
x

x ..
p

v

dtvspdtvspdtvspeidt
t

zzz

t

yyy

t

xxx

t

 ..vsp

tvsptvsptvspeit zzzyyyxxx ..vsp

Representing Linear Acceleration

 2D or 3D Vectors

 Acceleration is rate of change of velocity

 i.e. integrating acceleration over time gives velocity

 and if acceleration constant, then

 zyx aaaa

dt

dv
a

dt

dv
a

dt

dv
aei

dt

d z
z

y

y
x

x ..
v

a

dtauvdtauvdtauveidt
t

zzz

t

yyy

t

xxx

t

 ..auv

tauvtauvtauveit zzzyyyxxx ..auv

Numerical Integration

 Equations p = s + vt and v = u + at valid only when v and a constant

 If v and a are variable, but t sufficiently small (t = ∆t), we can use

these equations to calculate approximations for p and v

 We can calculate new value for a and repeat previous step

 This results in a first order approximation of the path taken by

position p

 tp tt p

 ttvt)(p

 ttttt vpp

 ttttt avv

Numerical Integration Example

Algorithm
(1) Let p := s, v := u, a := [0 -g]

(2) Let p’ := p + v∆t, v’ := v + a∆t

(3) Let p := p’, v := v’

(4) Draw projectile

(5) Go to step (2)

 yx ppp

 yx vvv

Vector Equations of Motion

Component Equations of Motion

 yx uu uv 0

Y

X

 g 0a

 ttttt vpp

 ttttt avv

 000 sp

 uv 0

 00 xxp s

 00 yyp s

xx uv

 yy uv 0

 ttvtpttp xxx

 ttvtpttp yyy

 tgtvttv yy

Numerical Model Example

 yx ppp

 yx vvv

 430 v

 10 a

 10 a

Numerical Example

 000 p

1,0 tt

 430 uv

Y

X

Time p v a p’=p+v v’=v+a

0 [0 0] [3 4] [0 -1] [3 4] [3 3]

1 [3 4] [3 3] [0 -1] [6 7] [3 2]

2 [6 7] [3 2] [0 -1] [9 9] [3 1]

3 [9 9] [3 1] [0 -1] [12 10] [3 0]

4 [12 10] [3 0] [0 -1] [15 10] [3 -1]

5 [15 10] [3 -1] [0 -1] [18 9] [3 -2]

6 [18 9] [3 -2] [0 -1] [21 7] [3 -3]

7 [21 7] [3 -3] [0 -1] [24 4] [3 -4]

8 [24 4] [3 -4] [0 -1] [27 0] [3 -5]

9 [27 0] [3 -5] [0 -1]

Analytic vs Numeric Results

0

3.5

6

7.5
8

7.5

6

3.5

00

4

7

9

10 10

9

7

4

00

2

4

6

8

10

12

0 3 6 9 12 15 18 21 24 27

Y

X

Analytic Model

Numeric Model

Angular Motion

 We have angular equivalents of numerical

equations for linear motion

 φ is orientation

 ω is angular velocity

 α is angular acceleration

 ttttt αωω

 ttttt ωφφ

Linear Equations Angular Equations

 ttttt vpp

 ttttt avv

2D Angular Motion

 Option 1: Scalar Angles

 φ, ω, α expressed as scalars (in radians)

 φ must be reduced to range [-π.. π] by adding /

subtracting 2π

 ttαtωttω ttωtφttφ

Y

X

dt

d

dt

d

2D Angular Motion

 Option 2: 2D Rotation Matrices

 Φ expressed as 2D rotation matrix

 Angle of Φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to rotation matrix to update φ

 Angular velocity still updated as scalar

 φ loses orthogonality after a while, need renormalisation

 ttαtωttω

ttωttω

ttωttω
ttt

cossin

sincos

φφ

φφ

cossin

sincos

2D Angular Motion

 Option 3: Complex Angles

 φ expressed as complex number of unit length

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to complex number to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while

 ttαtωttω

 ttiωettt φφ

tφitφe tiφ sincosφ

φ
φ

φ
1

Comparison of 2D Rotation Structures

Scalar Angles
2D Rotation

Matrices
Complex Angles

Pros
• Very compact representation (1

scalar element)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation

• Solves angle discontinuity

• Compact representation (2

scalar elements)

• Cheap ω conversion

• Cheap conversion to matrix for

visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to matrix

for visualisation

• Waste storage space (4 scalar

elements

• Expensive computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scalar

angles

• Visualisation matrix still needs

to be computed, but cheap

3D Angular Motion

 Option 1: Scaled Axis Representation

 φ, ω, α expressed as vectors

 Length represents scale of rotation

 Direction represents axis of rotation

 Rotation convention follows right-hand rule

 Must reduce |φ| to range [0.. π] by subtracting 2π

 Examples

 φ = [0 0 π/2] is a 90° anti-clockwise rotation around Z-axis

 ω = [4π 3π 0] is angular velocity of 5π/s around axis y=3x/4

 α = [2π 0 0] is angular acceleration of 2π/s2 around axis X-axis

 ttttt αωω ttttt ωφφ

X

Y

Z

ω

3D Angular Motion

 Option 2: 3D Rotation Matrices
 Φ expressed as 3D rotation matrix

 ω, α still expressed as scaled axes representations

 Must convert ω to rotation matrix to update Φ

 Angular velocity still updated as vector

 Φ loses orthogonality after a while, need renormalisation

 ttttt αωω

 ttt ΦRΦ
ωω,

sin

cos

111

111

111

22

22

22

,ˆ

s

c

cnnsncnnsncnn

sncnncnnsncnn

sncnnsncnncnn

zzxzyyzx

xzyyyzyx

yzxzyxxx

nRΦ

3D Angular Motion

 Option 3: Quaternion Angles

About Quaternions
 Like complex numbers, but in 4D

 Have rules for addition, subtraction, multiplication etc.

Quaternions for Rotation
 3D equivalent of complex angles for 2D

 Pros and cons analogous to complex numbers for 2D angular

motion

Quaternions

 4D vectors with a special multiplicative operation

 Can be represented as a 4-element vector or a scalar / 3D vector

pair

 Norm (Magnitude)

 Conjugate

 Multiplication

 Inverse

 zyx vvvss vq

 22222

zyx vvvsss vvvq

 zyx vvvsss vvq
**

 2112212121221121 vvvvvvvvqq ssssss

vv

v

q

q
q

2

*
1

s

s

Rotation Quaternions

 Unit quaternions can be used to rotate vectors

 Rotation by θ radians around unit vector n

 Can rotate vector v to new vector v’ as follows

 Equation can be abbreviated for convenience

1ˆ
2

sinˆ
2

cosˆ

 qnq

 *ˆ0ˆ qvqv s

*ˆˆ qvqv

Quaternion-Based Orientation

 Option 3: Quaternion Angles

 φ expressed as a quaternion of unit norm

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scaled axis representations

 Must wrap ω in quaternion to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while

 ttαtωttω

 t
t

ttt φωφφ 0
2

2
sinˆ

2
cos,ˆ

 nqφ n

φ
φ

φ
1

Comparison of 3D Rotation Structures

Scaled Axis

Representations

3D Rotation

Matrices

Quaternion

Angles

Pros
• Very compact representation (3

scalar elements)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation or

cheaply convert to 4D

homogenous matrix

• Solves angle discontinuity

• Compact representation (4

scalar elements)

• Cheap ω conversion

• Reasonably cheap conversion

to matrix for visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to

3D/4D matrix for visualisation

• Wastes storage space (9 scalar

elements

• Expensive matrix computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scaled axis

representation

• Visualisation matrix still needs

to be computed, but relatively

cheap

State Update (Take 2)

 For each body

 Get current linear and angular

acceleration (will tackle this next...)

 Update position and orientation

 Update linear and angular velocities

 Handle collisions (will tackle this later...)

Update State
 ttttt vpp

 ttttt avv

 ttαtωttω

 t
t

ttt φωφφ 0
2

User / Agent Input

 Human users / autonomous agents

influence physical simulation

 Examples

 User / AI controlling simulated vehicle

 Natural phenomena (e.g. gravity or

friction)

 Chain of events (e.g. collisions)

 The above result in applied forces

 Forces are source of linear and

angular acceleration

Process User

/ Agent Input

Force

 Has magnitude and direction (is a vector)

 Induce linear acceleration

 Induce angular acceleration (when acting off-centre)

Thrusterf

Gravityf

Rotaryf

Rotaryf

Gravityf

Frictionf
Reactionf

Effects of Force

 Force induces linear acceleration

 Greater force => greater acceleration

 Greater mass => lesser acceleration

 Acceleration parallel to force

 Application of multiple forces

 Forces can be summed up as vectors

 Can work in tandem or cancel out

faaf
m

eim
1

..

i

iffTotal Totalf

1f

2f

3f

Torque

 Torque is ‘angular’ force

 Magnitude of torque vector gives scale

 Direction gives axis of rotation

 greater force => greater torque

 greater perpendicular distance => greater torque

 Scalar Form

 Vector Form

 fr sin

frτ

Note: c is centre of mass

fr

τ
c

sinr

Effects of Torque

 Torque induces angular acceleration

 Greater torque => greater acceleration

 Greater ‘mass’ => lesser acceleration

 Angular acceleration parallel to torque (for symmetric bodies)

 Rotation occurs around axis passing through centre of mass

 Scalar Torque Equation

Note: Moment of Inertia (I) is angular equivalent of mass

I

eiI
1

..

Centre of Mass

 A point in (or outside) body around which mass is evenly distributed

 System of point masses mi at positions ri

 Continuous body mass m, density function ρ, volume V

i

i

i

ii

m

m r

c

V

d
m

r

rrrc
1

X

Y 1m
2m

3m

1r 2r

3r

c

X

Y
m

c
V

Centre of Mass Example

X

Y

kgm 11
kgm 22

m0.01 r m6.02 r

m
mm

mm
4.0

3

2.1

21

6.0201

21

2211

rr
c

?c

Moment of Inertia

 A measure of mass quantity and distribution around a given axis

(usually through centre of mass)

 System of point masses mi at perp. distance ri from axis

 Solid body with density function ρ, volume V

i

iirmI
2

V

dI
r

rrr
2

1m

2m

3m
1r

2r

3r

axis

X

Y

V
axis

Moment of Inertia Example

kgm 11
kgm 22

mr 4.01

2222

22

2

11 36.04.022.01 kgmmm rrc

m4.0c

mr 2.02

General Torque Equations

 For 2D, can use scalar forms of I, τ and α

 For 3D

 Axis of rotation varies over time

 Moment of inertia needs to be recalculated every time

 Torque must take axis into account

 Elegant Solution:

 the Inertia Tensor matrix I

 vector form of the torque equations

τIαIατ 1.. ei

i

ii

i

i frττ total

Moment of Inertia Tensor

 A 3 x 3 matrix of the form

 Ixx, Iyy, Izz are principal moments of inertia around X, Y, Z axes

 Ixy, Ixz, Iyx, Iyz, Izx, Izy are products of inertia, usually zero for symmetrical

bodies

zzzyzx

yzyyyx

xzxyxx

III

III

III

I

 dVrrI zy

V

xx

22
 r dVrrI zx

V

yy

22
 r dVrrI yx

V

zz

22
 r

 dVrrII yx

V

yxxy r dVrrII zx

V

zxxz r

 dVrrII zy

V

zyyz r

Inertia Tensor Example: Sphere

 Solid sphere of uniform density, mass m, radius r

2

2

2

5

2
00

0
5

2
0

00
5

2

mr

mr

mr

I

2

5

2
mrIII zzyyxx

0 zyyzzxxzyxxy IIIIII

X

Y

Z

r

xxI

yyI

zzI

Inertia Tensor Example: Cuboid

 Solid cuboid of uniform density, mass m, dimensions w × h × d

22

22

22

12
00

0
12

0

00
12

hw
m

dw
m

dh
m

I

 22

12
dh

m
I xx

0 zyyzzxxzyxxy IIIIII

 22

12
dw

m
I yy

 22

12
hw

m
I zz

X

Y

Z

w

xxI

yyI

zzI

h

d

Inertia Tensor Example: Cylinder

 Solid cylinder of uniform density, mass m, height h, radius r

22

2

22

3
12

00

0
2

0

003
12

hr
m

mr

hr
m

I

 223
12

hr
m

II zzxx

0 zyyzzxxzyxxy IIIIII

X

Y

Z

xxI

yyI

zzI

2

2mr
I yy

h

r

State Initialisation (Take 2)

 For each body, initialise

Mass m

Moment of inertia tensor I

 Position vector p

Orientation quaternion φ

 Linear velocity vector v

 Angular velocity vector ω

Initialise

State

User / Agent Input (Take 2)

 For each body

 Determine applied forces fi from user /

agent input

 Accumulate force

 Determine torques τi

 Accumulate torque

Process User

/ Agent Input

i

iffTotal

iii frτ

i

iττ total

State Update (Take 3)

 For each body

 Compute linear and angular accelerations

 Update position and orientation

 Update linear and angular velocities

Update State

 ttttt vpp

 ttttt avv

 ttαtωttω

 t
t

ttt φωφφ 0
2

total

1
fa

m

total

1
τIα

Collision Detection and Response

 Need to prevent bodies from interpenetrating

 Need to maintain realism

 Two problems:

How to detect a collision?

What to do when a collision occurs?

Collision Detection

 Bodies occupy volume in space

 Collision occurs when volumes overlap on at least one point in
space

 Two possible approaches

 Conservative Advancement: Estimate time of collision before it occurs

 Retroactive Detection: Let bodies overlap and fix penetration afterwards

Conservative Advancement

 In current state update

 For all possible collisions, estimate time of impact Δtimpact (less than
usual update interval Δt)

 If there is such collision

 update motion equations by Δtimpact (instead of Δt)

 handle collision (e.g. update velocities)

 resume normally

 Otherwise if no collision

 Update motion equations by Δt as usual

 Problems of this approach

 Time of impact estimation is harder than testing if bodies overlap

 Simulation comes to virtual stop when lots of bodies in contact

 More difficult to keep constant animation rate

Retroactive Collision Detection

 In current state update

 Update motion of all bodies by Δt

 For each overlapping pair of bodies

 Fix penetration (e.g. back off bodies to earlier position)

 Handle collision (e.g. update velocities)

 Problems with this approach

 Must deal with interpenetration

 Tunnelling problem (small bodies, high velocities, large Δt)

 Stacking problem (will talk about this later...)

Collision Manifolds

 Area of contact (manifold) between colliding bodies can be

 a single point

 a discreet number of points

 a continuum of points (line / area)

 a mix of the above

 Common occurrences

 corner with side (vertex – face)

 edge with edge (edge – edge)

 edge with surface (edge – face)

 Other types (rare)

 corner with corner

 corner with edge

 Lines / areas of contacts simplified to discreet points

point of contact line of contact

area of contact multiple areas of contact

Collision Detection Output

 For each discreet point of collision we need

 Point of contact

 Location where collision has occurred

Contact normal vector ň

 Direction of the collision

 Penetration distance p

 For resolving interpenetration
n̂

p

Sphere Collision Detection Example

 Sphere 1, centre at p1, radius r1

 Sphere 2, centre at p2, radius r2

 Spheres in contact / overlapping when

 If overlapping, then penetration p is

 Contact normal ň is

 Point of contact pc is (approximately)

1r

2r

1p

2p

d

2112 rrd pp

n̂

drrp 21

 12

1
ˆ ppn

d

cp

npp ˆ
2

11

p
rc

Collision Detection Performance

 Simplest solution: test all possible body pairs – n(n-1)/2

combinations!

 Better approaches: partition space for better

performance, for example:

 Regular grids

 Quadtrees (2D) / octrees (3D)

 KD-trees

 co-ordinate sorting

Regular Grids

 Test only bodies sharing same cells

 Example, test only the following

 (1) and (2)

 (3) and (4)

 (3) and (5)

 (4) and (5)

 (5) and (6) – body (5) spans 2 cells

 Note: (7), (8), (9) ignored

 Only 5 out of 36 possible combinations tested!

1

2

3
4

5

6

7

8

9

Collision Response

 In a real collision

 Bodies undergo compression, followed by expansion before breaking contact, over short

period of time

 During compression and expansion phases, repulsive forces (along contact normal)

accelerate bodies apart

 Linear and angular velocities change gradually throughout collision

 In a simulated collision between perfectly rigid bodies

 We avoid simulating compression and expansion phases

 We model repulsive force by instantaneous change in momentum (impulse)

 Linear and angular velocities change instantly

 22221111 nnnn mm vvJvvJ

1J
2J

Coefficient of Restitution

 In a frictionless rigid body collision, relative velocity of contact points

 changes only along contact normal

 is unaffected along perpendicular direction to normal (surface tangent)

 Collision modelled by restitution coefficient e with value between 0 and 1

 e = 1 => perfectly elastic collision

 e = 0 => perfectly inelastic (sticky) collision

 measured empirically e.g. wooden ball hitting concrete e ≈ 0.6

 nnvvv

v

v

ˆ1ˆ e

e
n

n

tv

nv

nv

tv

v

v
n̂

Collision Effects

 Relative velocity of contact points changes according to coefficient e (as per

previous slide)

 Can compute contact point velocity from linear and angular body velocity

 Then compute relative velocity of contact points

 Several substitutions later lead to...

bodycontactbodycontact ωrvv

bodyv

bodyω

pointv

pointrcontact1contact2 vvv r

Collision Equation

 Step 1: Computation of impulse magnitude j

 Step 2: Vector forms of impulses j1, j2

 Step 3a: New linear velocities v’1, v’2

 Step 3b: New angular velocities ω’1, ω’2

 nrnrrnr

nv

ˆˆˆ
11

ˆ1

22

1

211

1

1

21

II

mm

e
j r

njnj ˆˆ
21 jj

2

2

221

1

11

11
jvvjvv

mm

 22

1

22211

1

111 jrIωωjrIωω

Solving Interpenetration

 Option 1 (Simple)

 Move each body away by half penetration along contact normal

 Option 2 (Better)

 Move each body away taking mass into consideration

 Option 3 (Even Better)

 Apply ‘impulse’ equation at positional level (handles rotation)

nppnpp ˆ
2

ˆ
2

2211

pp

nppnpp ˆˆ
21

1
22

21

2
11 p

mm

m
p

mm

m

Collision Algorithm

 For each collision

(1) Compute collision impulse

(2) Update linear velocities

(3) Update angular velocities

(4) Solve body interpenetration

 Problems

 Solving one interpenetration may cause another

 Cannot handle stacks of bodies

The Stacking Problem

Frame 0: Initial State Frame 1: Motion Frame 1: Collision Detection Frame 1: Collision Resolution

Frame 2: Motion Frame 2: Collision Detection Frame 2: Collision Resolution Frame 3: Motion

Frame 3: Collision Detection Frame 3: Collision Resolution After several frames... Stack topples!

...

Simultaneous Collision Resolution

 All collisions considered simultaneously

 Solves (or minimises) stacking problem

 Various solutions (look up for fun...)

 Shock Propagation

 Iterative Solver

 Linear Complementary Problem Formulation

Further Topics on Physics Animation

 Simulating friction, for example:
 Static box on inclined plane

 Tyre traction

 Joints, for example:
 Ball-and-socket

 Hinges

 Motors

 Modelling Forces, for example:
 Springs

 Buoyancy

Some References

 Physics Engines

http://en.wikipedia.org/wiki/Physics_engine

 Collision Detection

http://en.wikipedia.org/wiki/Collision_detection

 Collision Response

http://en.wikipedia.org/wiki/Collision_response

 List of Inertia Tensors

http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors

 Octrees

http://en.wikipedia.org/wiki/Octree

 Open Source / Free Physics Engines

http://www.thefreecountry.com/sourcecode/physics.shtml

 Farseer Physics Engine (XNA Friendly)

http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm

http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Collision_response
http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors
http://en.wikipedia.org/wiki/Octree
http://www.thefreecountry.com/sourcecode/physics.shtml
http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm

