PHYSICS-BASED
ANIMATION



Animated Graphics
_

o Presentations

1 Entertainment Media

o Simulations

o Computer Games




Digital Animation Approaches
S

Scripted Animation Interactive Animation

O

|Ideal for predetermined
seguences

Requires prescription of the
complete sequence

Can be designed for dramatic
effect

Requires skilled animators for
realistic effects

Animator resources / effort
must scale in proportion to
complexity

O

|deal for interactive
applications

Requires a physical model
and initial conditions

Animation cannot be
controlled directly

Realism is a by-product of
physics modelling

Computation resources must
scale in proportion to
complexity



Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games




Existing Solutions

Commercial / Closed Source :
Havoc Physics ™ th@l(
Nvidia PhysX™ Physas

Community Driven / Open Source

&

Bullet -

Open Dynamics Engine ™

OprPEN DyNAMICS ENGINE"

Farseer

& aser
farseer
physics




Physics Theory

]
- Classical Mechanics
Rigid Body Dynamics
Soft Body Dynamics

- Concepts
Linear and Angular Motion
Forces and Inertia
Collisions, Contact, Friction
Motion Constraints




Physical Models for Animation

Analytical Models Numerical Models

next

time
start ¥
Analytical time Numerical
time —— |y' > state luti > next
Solution start S Solution state
state




Physical Models for Animation

Analytical Models

O

Compute state as a
function of time

o Computationally efficient
o Very accurate (no error

accumulation)

Limited to simple _
predictable configurations
with no interaction

Requires solution for every
class of problem

Iteratively update state
over small timeframes

o Polynomial complexity
o Numerical errors creep into

simulations over time

Can handle interactive
configurations of arbitrary
complexity

Generic approach suitable
to many problems



Analytical Model Example

a=[0 -g]

R by

p=[p, p,]

; v(0)=u=u, u,]

y

> X
Vector Equations of Motion
1
p(t):ut+5at2 v(t)=u+at
at)=[0 -g]

Component Equations of Motion

p.(t)=u,t v (t)=u, a,(t)
py(t):uyt—%gt2 v, (t)=u, —gt ay(t)

Algorithm
(1) Lett:=0
(2) Set initial velocity u

(3) Compute p(t)
(4) Lett .=t + At
(5) Draw projectile
(6) Go to step (3)



Analytical Model Example

py:‘]'t':l/zt2 p(t):[px py]
_______ vl v ] 0 0.0 0.0 [0.0 0.0]
p=[p, n,] 1 3.0 3.5 [3.0 3.5]
2 6.0 6.0 [6.0 6.0]
(vO)=u=b, u) > % 3 9.0 75 [9.0 7.5]
4 12.0 8.0 [12.0 8.0]

Numerical Example
u=[3 4] ie u =3 u -4 5 15.0 7.5 [15.0 7.5]

e u, ,

a=[o -1 ie a,=0 a,=-1 6 18.0 6.0 [18.0 6.0]
At =1 7 21.0 3.5 [21.0 3.5]
p (t)=ut=3t 8 24.0 0.0 [24.0 0.0]

1 2 1 2
py(t)zuyt+§ayt :4t—§t



Numerical Animation Algorithm

start
time

start
State

next
time

\ 4

Numerical
Solution

N

next
State

Initialise
State

End of
animation?

Process User /
Agent Input

Update State

Visualise




State Initialisation

Initialise
State

What constitutes state?

For each element (body)
Position
Orientation

But also
Linear / Angular Velocity
Linear / Angular Acceleration
External Forces

(will deal with angular motion later...)



Representing Position

o Position Vectors
2D Vectors for 2D Animations

p:[px py]

3D Vectors for 3D Animations

o=[p, b, D]

-
r
1

Y
] E——
P, > X
Y
""""""" (I
1 ”’px X

________



Representing Orientation

Various representation options

Bodies rotate around axis passing through a
‘central’ point (centre of mass)

More on this later...



State Update

For each body

Position changes due to linear
velocity

| Orientation changes due to
angular velocity

Linear / angular velocity changes
| due to linear / angular acceleration
due to some event, e.g. collision
Linear / angular acceleration
results from external forces

Update State



Representing Linear Velocity
_

o 2D or 3D Vectors v:[v v v]
X y 4

o Velocity is rate of change of position

v:d—p ie. VX:de v :% vZ:de
dt dt ¥ dt dt

o l.e. integrating velocity over time gives position

p :s+_[vdt l.e. P, =S, +_[vxdt p, =8, +Ivydt p, =5, +Ivzdt
t t t t

o and if velocity constant, then

p=s+wt 1.e. P, =Sttt p,=s,+vit p,=s,+V;t



Representing Linear Acceleration

_
= 2D or 3D Vectors a= [ax a, az]
o Acceleration is rate of change of velocity
dv : dv, dv, dv,
a=— I.e. a, = a,=— @a,=
dt dt dt dt
o l.e. Integrating acceleration over time gives velocity
v=u+_[adt e vX=uX+Iath vy:uy+_[aydt vZ=uZ+_[aZdt
t t t t

7 and if acceleration constant, then

v=u+at 1.€. v, =u,+at v, =u +at Vv,=u,+at



Numerical Integration

Equations p =s + vtand v =u + at valid only when v and a constant

If v and a are variable, but t sufficiently small (t = At), we can use
these equations to calculate approximations for p and v

We can calculate new value for a and repeat previous step

This results in a first order approximation of the path taken by
position p




Numerical Integration Example

1
Y A
a=[0 —g]
_____________ \\*\‘:[VX Vy]
p=[p, n,]

/ v(0)=u=|u, uy]

> X

Vector Equations of Motion
p(0)=s=[0 0] p(t+At) = p(t)+ v(t)At
v(0)=u v(t+At) ~ v(t)+a(t)At

Component Equations of Motion

p,(0)=s, =0 p, (t+At)= p,(t)+v,(t)At
p,(0)=s, =0 p, (t+At)~ p, (t)+v, (t)At
VX - uX

v,(0)=u v, (t+At)~v, (t)- gAt

y

Algorithm

(1) Letp:=s,v:=u,a:=[0 -g]

(2) Let p’ .= p + VAL, v’ ;= v + aAt
(3) Letp :=p’,v:=V

(4) Draw projectile

(5) Go to step (2)



Numerical Model Example

Numerical Example
p(0)=[0 0]
v0)=[8 4]
a=[0 -1]

t=0, At=1

Time P a p'=p+v  V’=v+a
0 [[00 | [34 [[0-1] | [34] | [33]
1 | B4 | B3 |01 67 | 32
2 | 671 | 321 | [0-1 | [99 | [31]
3 | (99 | 31 | [0-1 |[12 10]| [3 0]
4 |[[1210]| [30] | [0-1] |[15 10] | [3 -1]
5 |[[1510]| [3-1] | [0-1] | [18 9] | [3 -2]
6 |[189 | 3-21 | [0-1] | 217 | [3-3]
7 |17 | B-3 | [0-1] | [24 4] | 3 -4]
8 |[244 | [3-4 | [0-1] | [27 0] | [3 -5]
9 | 270 | [3-5 | [0 -1]




Analytic vs Numeric Results
_




Angular Motion

We have angular equivalents of numerical
equations for linear motion

@ IS orientation
o Is angular velocity
o IS angular acceleration

Linear Equations Angular Equations

p(t + At) =~ p(t)+ v(t)At o(t+At) = o(t)+o(t)At

v(t+ At) = v(t)+a(t)At o(t + At) = o(t)+ ot )At



2D Angular Motion

Option 1: Scalar Angles
0, ®, o expressed as scalars (in radians)

¢ must be reduced to range [-z.. 7] by adding /
subtracting 2z

o(t+At) = p(t)+ o)At ot +At)= olt)+ alt)At




2D Angular Motion

Option 2: 2D Rotation Matrices
@ expressed as 2D rotation matrix |:COS¢ —sin ﬂ

Angle of @ automatically falls within [-z.. #] | sin @ COSgQ

w, o Still expressed as scalars
Must convert o to rotation matrix to update ¢

O(t+At) ~ (D(t){cos o(t)At  —sin a)(t)At}

sinw(t)At  cos m(t)At
Angular velocity still updated as scalar
ot +At) = o(t)+ ot )At

¢ loses orthogonality after a while, need renormalisation



2D Angular Motion

Option 3: Complex Angles
¢ expressed as complex number of unit length
Angle of ¢ automatically falls within [-7.. 7]

¢=¢€

IpAt

= COS @At +1SIn pAt

w, o Still expressed as scalars
Must convert w to complex number to update ¢

o(t+At)~ gt
Angular velocity integration still computed as scalar
ot +At) = o(t)+ at)At
May need to renormalise ¢ after a while 1
;

Q¢ =—0
o



Comparison of 2D Rotation Structures

Pros

Cons

Scalar Angles

Very compact representation (1
scalar element)
Very cheap computation

2D Rotation
Matrices

Solves angle discontinuity
Can reuse for visualisation

Complex Angles

Solves angle discontinuity
Compact representation (2
scalar elements)

Cheap o conversion

Cheap conversion to matrix for
visualisation

Cheap renormalisation

Must handle angle discontinuity
Very costly conversion to matrix
for visualisation

Waste storage space (4 scalar
elements

Expensive computations
Costly o conversion

Costly renormalisation

Less compact than scalar
angles

Visualisation matrix still needs
to be computed, but cheap




3D Angular Motion

Option 1: Scaled Axis Representation Y

@, o, o expressed as vectors
Length represents scale of rotation

N

Direction represents axis of rotation

Rotation convention follows right-hand rule
Must reduce || to range [0.. z] by subtracting 2z
Examples

¢ =[0 0 #/2]is a 90° anti-clockwise rotation around Z-axis

o = [4z 3z 0] is angular velocity of 5z/s around axis y=3x/4
a =[2z 0 0] is angular acceleration of 2z/s? around axis X-axis

o(t+At) = @(t)+ o(t)At ot + At) ~ oft)+ a(t At



3D Angular Motion

Option 2: 3D Rotation Matrices

@ expressed as 3D rotation matrix
n,’ +(1—nxz)c nn (-c)-ns nn,(L-c)+ns
®=R, =|nn,(1-c)+n,;s ny2+(1—ny2)c n,n,(1—c)-n,s
n,n,(l-c)-ns nn,@l-c)+ns n,’ +(1—n22)c

C=C0S¢
s=sing

o, a still expressed as scaled axes representations
Must convert o to rotation matrix to update @
Ot +At)~R_, ®(t)

o,|o|

Angular velocity still updated as vector

ot + At) = o(t)+ a(t)At

@ loses orthogonality after a while, need renormalisation



3D Angular Motion

Option 3: Quaternion Angles

About Quaternions

Like complex numbers, but in 4D
Have rules for addition, subtraction, multiplication etc.

Quaternions for Rotation

3D equivalent of complex angles for 2D

Pros and cons analogous to complex numbers for 2D angular
motion



Quaternions

4D vectors with a special multiplicative operation

Can be represented as a 4-element vector or a scalar / 3D vector
pair
q :[S V]:[S Vi Yy Vz]

Norm (Magnitude) |d]= [s v]=vs*+v.v= \/52 VAV

Conjugate g =[s v[=[s —V]=[5 Vi TV, _Vz]
Multiplication CI1CI2:[51 Vl][sz Vz]:[slsz_vl'vz S1V2"'52V1"'V1><V2]
Inverse 1 0 _[s v

q = =
al  VsZ+v-v



Rotation Quaternions

O

O

O

O

Unit quaternions can be used to rotate vectors
Rotation by 6 radians around unit vector n

A

g =1

. [ o . . 9}
g=|cos— nNsin—
2 2

Can rotate vector v to new vector v’ as follows

[s" v]=dlo vig’

Equation can be abbreviated for convenience

vV =qvq

TR A

] P



Quaternion-Based Orientation

Option 3: Quaternion Angles
@ expressed as a quaternion of unit norm
Angle of ¢ automatically falls within [-z.. 7] I:

(P:qﬁ,gp: go gp

cos— Nsin—
2 2
o, a still expressed as scaled axis representations

Must wrap @ in quaternion to update ¢ At
ot+at)~o(0)+ S0 lo(t)

Angular velocity integration still computed as scalar
ot + At) = o(t)+ ot At
May need to renormalise ¢ after a while

1
Q=0
o



Comparison of 3D Rotation Structures

Pros

Cons

Scaled Axis
Representations

Very compact representation (3
scalar elements)
Very cheap computation

3D Rotation
Matrices

Solves angle discontinuity
Can reuse for visualisation or
cheaply convert to 4D
homogenous matrix

Quaternion
Angles

Solves angle discontinuity
Compact representation (4
scalar elements)

Cheap o conversion
Reasonably cheap conversion
to matrix for visualisation
Cheap renormalisation

Must handle angle discontinuity
Very costly conversion to
3D/4AD matrix for visualisation

Wastes storage space (9 scalar
elements

Expensive matrix computations
Costly  conversion

Costly renormalisation

Less compact than scaled axis
representation

Visualisation matrix still needs
to be computed, but relatively
cheap




State Update (Take 2)

For each body

Get current linear and angular
acceleration (will tackle this next...)

l Update position and orientation
Update State p(t +At)~ p(t)+ v(t)At

| v(t+ At) = v(t)+a(t)At

Update linear and angular velocities
At
ot +At)~ (p(t)+?[0 olp(t)
o(t + At) = o(t)+ ot )At

Handle collisions (will tackle this later...)



User / Agent Input

|

Process User
/ Agent Input

Human users / autonomous agents
Influence physical simulation

Examples

User / Al controlling simulated vehicle

Natural phenomena (e.g. gravity or
friction)

Chain of events (e.g. collisions)
The above result in applied forces

Forces are source of linear and
angular acceleration



Force

Has magnitude and direction (is a vector)
Induce linear acceleration
Induce angular acceleration (when acting off-centre)

Thruster

Reaction

Friction

f

Gravity



Effects of Force

Force induces linear acceleration
Greater force => greater acceleration
Greater mass => lesser acceleration
Acceleration parallel to force

f=ma Ile. azif
m

Application of multiple forces
Forces can be summed up as vectors
Can work in tandem or cancel out

fl

f3 fTotaI = Zfl

-f

Total



Torque

Torque is ‘angular’ force
Magnitude of torque vector gives scale
Direction gives axis of rotation
greater force => greater torque
greater perpendicular distance => greater torque

Scalar Form
r=(rsin@)f
Vector Form

T=rxf

Note: ¢ is centre of mass



Effects of Torque

Torque induces angular acceleration
Greater torque => greater acceleration
Greater ‘mass’ => lesser acceleration

Angular acceleration parallel to torque (for symmetric bodies)
Rotation occurs around axis passing through centre of mass

Scalar Torque Equation
1

r=la 1l.e. azTr

Note: Moment of Inertia (I) is angular equivalent of mass



Centre of Mass

A point in (or outside) body around which mass is evenly distributed

System of point masses m; at positions r;

Zi:miri
2.m,

V
W7
2
i X

C=

Continuous body mass m, density function p, volume V

c :% jp(r)rdr

rev




Centre of Mass Example

C:ny1+mgé:1x0+2x06:l2::

0.4m

m, +m, 1+2 3



Moment of Inertia

A measure of mass quantity and distribution around a given axis
(usually through centre of mass)

System of point masses m; at perp. distance r; from axis

5 e
| = § :min

Solid body with density function p, volume V Y

| = jp(r)rzdr

reV




Moment of Inertia Example
_

m, =1kg m, =2kg

‘ L =0.4m r,=0.2m .
c=0.4m

c=mr’+m,r,” =1x0.2% + 2x0.4% = 0.36kgm’



General Torque Equations

For 2D, can use scalar forms of I, z and «
For 3D

Axis of rotation varies over time

Moment of inertia needs to be recalculated every time
Torque must take axis into account

Elegant Solution:

the Inertia Tensor matrix |
vector form of the torque equations

t=lo ie a=I1"1

Tiotal — ZTi = Zri Tt



Moment of Inertia Tensor
1

o A3 x 3 matrix of the form | | |
XX Xy XZ

yX Yy yz

L0, 1,

o Ly 1y, 1, are principal moments of inertia around X, Y, Z axes

|, = _fp(r)(ryz + rzz)dV l,, = jp(l‘)(l’xz + rf)dv |, = jp(r)(rxz + ryz)dv

0 Ly b Iy Ly 1 1, @re products of inertia, usually zero for symmetrical

bodies

Ly =1, ==[ p(rkr,dv |, =l =—[ p(r),r,dv
V \%

1, =1, =—[p(ry,radv




Inertia Tensor Example: Sphere

n Solid sphere of uniform density, mass m, radius r

7 :Emrz
5
xzzlzleyz:I
0 0
gmr2 0
5
0 gmr

Y

N

e |
|- W
r
/\
P
v
-
- \
//’ S J N I
1
1
7 A
S -
IZZ




Inertia Tensor Example: Cuboid

o Solid cuboid of uniform density, mass m, dimensions w x h x d

o= P 4d?) 1y = (4 a?) Y
m ’_fj:lyy
IZZZE(W2+h2) W

A
v

E
—_
-
N

_|_

o
N

N—

(@)

(@)

R \

>
X




Inertia Tensor Example: Cylinder
_

o Solid cylinder of uniform density, mass m, height h, radius r

M ., ., mr
— - — | =
| =1 12(3r +h?) =" Y
ey
Iy =l,=l,=1,=1,=1,=0 o
D
_ - h :'I,V -
—(3r2+h?) 0 0 7 X
5 :/ XX
1= 0 = 0 ZZ/’;(\/
0 0 —2(3r2+h2)




State Initialisation (Take 2)

For each body, initialise
Mass m
Moment of inertia tensor |
Position vector p
Orientation quaternion ¢
Linear velocity vector v
Angular velocity vector ®

Initialise
State



User / Agent Input (Take 2)

o For each body

Determine applied forces f; from user /
agent input

Process User Accumulate force fTota| = Zfi
/ Agent Input i

Determine torques T; T, =1 xf,

Accumulate torque Tiotal — ZTi
i



State Update (Take 3)

Update State

For each body

Compute linear and angular accelerations

1 -1
a:Eftotal a=1"1

total

Update position and orientation
p(t+At) = p(t)+ v(t)At

olt+a0)~0t)+ 20wl

Update linear and angular velocities
v(t+At) = v(t)+al(t)At
w(t +At) = olt)+ alt )At



Collision Detection and Response

Need to prevent bodies from interpenetrating
Need to maintain realism

Two problems:
How to detect a collision?
What to do when a collision occurs?



Collision Detection

Bodies occupy volume in space

Collision occurs when volumes overlap on at least one point in
space

Two possible approaches
Conservative Advancement: Estimate time of collision before it occurs
Retroactive Detection: Let bodies overlap and fix penetration afterwards



Conservative Advancement

In current state update

For all possible collisions, estimate time of impact At; ... (less than
usual update interval At)

If there is such collision
update motion equations by At;, ... (instead of At)
handle collision (e.g. update velocities)
resume normally

Otherwise if no collision
Update motion equations by At as usual

Problems of this approach
Time of impact estimation is harder than testing if bodies overlap
Simulation comes to virtual stop when lots of bodies in contact
More difficult to keep constant animation rate



Retroactive Collision Detection

In current state update

Update motion of all bodies by At

For each overlapping pair of bodies
Fix penetration (e.g. back off bodies to earlier position)
Handle collision (e.g. update velocities)

Problems with this approach
Must deal with interpenetration
Tunnelling problem (small bodies, high velocities, large At)
Stacking problem (will talk about this later...)



Collision Manifolds

Area of contact (manifold) between colliding bodies can be
a single point
a discreet number of points
a continuum of points (line / area)
a mix of the above ——

Common occurrences
corner with side (vertex — face)

edge with surface (edge — face)

edge with edge (edge — edge) L

Other types (rare)

corner with corner area of contact
corner with edge

Lines / areas of contacts simplified to discreet points



Collision Detection Output

For each discreet point of collision we need

Point of contact
Location where collision has occurred

Contact normal vector n
Direction of the collision

Penetration distance p
For resolving interpenetration




Sphere Collision Detection Example
—

o Sphere 1, centre at p,, radius r,
o Sphere 2, centre at p,, radius r,
o Spheres in contact / overlapping when

‘pz_pl‘:d sh+n

o If overlapping, then penetration p is

p=r+r,—d

7 Contact normal 1 is

. 1
n :a(pZ_pl)

o Point of contact p, is (approximately)

P. =P, +(r1 _gjﬁ




Collision Detection Performance

Simplest solution: test all possible body pairs — n(n-1)/2
combinations!

Better approaches: partition space for better
performance, for example:

Regular grids

Quadtrees (2D) / octrees (3D)
KD-trees

co-ordinate sorting



Regular Grids

Test only bodies sharing same cells

Example, test only the following @ |
Qand( Y @ -------- .

@

(3) and (4) | i
(3) and (5) @ .............

(4) and (5) | o |

______________________________________________________

(5) and (6) — body (5) spans 2 cells | | | @

Note: (7), (8), (9) ignored

Only 5 out of 36 possible combinations tested!



Collision Response

In a real collision

Bodies undergo compression, followed by expansion before breaking contact, over short
period of time

During compression and expansion phases, repulsive forces (along contact normal)
accelerate bodies apart

Linear and angular velocities change gradually throughout collision

In a simulated collision between perfectly rigid bodies
We avoid simulating compression and expansion phases
We model repulsive force by instantaneous change in momentum (impulse)

_ 4 _ _ /
‘]1 - ml(Vn1 B an)_ _‘Jz - mz(Vnz B Vn2)
Linear and angular velocities change instantly



Coefficient of Restitution

In a frictionless rigid body collision, relative velocity of contact points

changes only along contact normal
Is unaffected along perpendicular direction to normal (surface tangent)

Collision modelled by restitution coefficient e with value between 0 and 1
e = 1 => perfectly elastic collision
e = 0 => perfectly inelastic (sticky) collision
measured empirically e.g. wooden ball hitting concrete e = 0.6

Vi

<
5 ~
A\ 4

.
v A

Y, ////i////////////



Collision Effects

Relative velocity of contact points changes according to coefficient e (as per
previous slide)

Can compute contact point velocity from linear and angular body velocity

Vcontact — Vbody+ rcontac:t X O‘)body

Then compute relative velocity of contact points

V. .
Vcontactl POl

V, =V

contact2

Several substitutions later lead to...



Collision Equation

Step 1. Computation of impulse magnitude j

- ~(L+e)v, N
J B 1 1 —1 A A
= (17 (< A)xr + 1,7 (r, xA)xr, |-A
mm
Step 2: Vector forms of impulses j;, j, )= jn ), = —jn
Step 3a: New linear velocities v’;, v/, V=V, + Hjl V, =V, + m—JZ
1 2

Step 3b: New angular velocities o, ®’

O =0, + |1_1(r1 le) 0, =, + |2_1(r2 ij)



Solving Interpenetration

Option 1 (Simple)
Move each body away by half penetration along contact normal

p1=p1—§ﬁ p;=p2+§ﬁ

Option 2 (Better)
Move each body away taking mass into consideration
m, . m, .

pN P, =p,+ pn
m1+m2 m1+m2

pizpl_

Option 3 (Even Better)
Apply ‘impulse’ equation at positional level (handles rotation)



Collision Algorithm

For each collision

(1) Compute collision impulse
(2) Update linear velocities

(3) Update angular velocities
(4) Solve body interpenetration

Problems
Solving one interpenetration may cause another
Cannot handle stacks of bodies



The Stacking Problem

Frame O: Initial State

Frame 1: Motion

Frame 1: Collision Detection

Frame 1: Collision Resolution

Frame 2: Motion

Frame 2: Collision Detection

Frame 2: Collision Resolution

Frame 3: Motion

Frame 3: Collision Detection

Frame 3: Collision Resolution

After several frames...

Stack topples!




Simultaneous Collision Resolution

_
o All collisions considered simultaneously

o Solves (or minimises) stacking problem

o Various solutions (look up for fun...)
Shock Propagation
lterative Solver
Linear Complementary Problem Formulation



Further Topics on Physics Animation

Simulating friction, for example:
Static box on inclined plane
Tyre traction

Joints, for example:
Ball-and-socket
Hinges
Motors

Modelling Forces, for example:
Springs
Buoyancy



Some References
I e

o Physics Engines
http://en.wikipedia.org/wiki/Physics engine

o Collision Detection
http://en.wikipedia.org/wiki/Collision _detection

o Collision Response
http://en.wikipedia.org/wiki/Collision response

o List of Inertia Tensors
http://en.wikipedia.org/wiki/List of moment of inertia tensors

o Octrees
http://en.wikipedia.org/wiki/Octree

o Open Source / Free Physics Engines
http://www.thefreecountry.com/sourcecode/physics.shtmi

o Farseer Physics Engine (XNA Friendly)
http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm



http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Collision_response
http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors
http://en.wikipedia.org/wiki/Octree
http://www.thefreecountry.com/sourcecode/physics.shtml
http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm

