PHYSICS-BASED ANIMATION

CSA2207

Colin Vella

Animated Graphics

- Presentations
- Entertainment Media
\square Simulations
- Computer Games

Digital Animation Approaches

Scripted Animation

- Ideal for predetermined sequences
\square Requires prescription of the complete sequence
- Can be designed for dramatic effect
\square Requires skilled animators for realistic effects
\square Animator resources / effort must scale in proportion to complexity

Interactive Animation

\square Ideal for interactive applications
\square Requires a physical model and initial conditions

- Animation cannot be controlled directly
\square Realism is a by-product of physics modelling
\square Computation resources must scale in proportion to complexity

Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games

Existing Solutions

\square Commercial / Closed Source
\square Havoc Physics ${ }^{\text {TM }}$
\square Nvidia PhysX ${ }^{\text {™ }}$
\square Community Driven / Open Source
\square Bullet
\square Open Dynamics Engine ${ }^{\text {TM }}$
\square Farseer

Physics Theory

\square Classical Mechanics
\square Rigid Body Dynamics
\square Soft Body Dynamics
\square Concepts
\square Linear and Angular Motion
\square Forces and Inertia
\square Collisions, Contact, Friction
\square Motion Constraints

Physical Models for Animation

Analytical Models

Physical Models for Animation

Analytical Models

- Compute state as a function of time
- Computationally efficient
\square Very accurate (no error accumulation)
- Limited to simple predictable configurations with no interaction
\square Requires solution for every class of problem

Numerical Models

- Iteratively update state over small timeframes
- Polynomial complexity
\square Numerical errors creep into simulations over time
- Can handle interactive configurations of arbitrary complexity
\square Generic approach suitable to many problems

Analytical Model Example

Vector Equations of Motion
$\mathbf{p}(t)=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2} \quad \mathbf{v}(t)=\mathbf{u}+\mathbf{a} t$
$\mathbf{a}(t)=\left[\begin{array}{ll}0 & -g\end{array}\right]$

Algorithm

(1) Let $t:=0$
(2) Set initial velocity u
(3) Compute $\mathbf{p}(t)$
(4) Let $t:=t+\Delta t$
(5) Draw projectile
(6) Go to step (3)

Component Equations of Motion

$p_{x}(t)=u_{x} t$
$v_{x}(t)=u_{x}$
$a_{x}(t)=0$
$p_{y}(t)=u_{y} t-\frac{1}{2} g t^{2}$
$v_{y}(t)=u_{y}-g t$
$a_{y}(t)=-g$

Analytical Model Example

Numerical Example

$\mathbf{u}=\left[\begin{array}{ll}3 & 4\end{array}\right]$ i.e. $u_{x}=3 \quad u_{y}=4$
$\mathbf{a}=\left[\begin{array}{ll}0 & -1\end{array}\right]$ i.e. $a_{x}=0 \quad a_{y}=-1$
$\Delta t=1$
$p_{x}(t)=u_{x} t=3 t$
$p_{y}(t)=u_{y} t+\frac{1}{2} a_{y} t^{2}=4 t-\frac{1}{2} t^{2}$

Time	$p_{x}=3 t$	$p_{y}=4 t-1 / 2 t^{2}$	$p(t)=\left[p_{x} p_{y}\right]$
0	0.0	0.0	$\left[\begin{array}{ll}0.0 & 0.0\end{array}\right]$
1	3.0	3.5	$\left[\begin{array}{ll}3.0 & 3.5\end{array}\right]$
2	6.0	6.0	$\left[\begin{array}{ll}6.0 & 6.0\end{array}\right]$
3	9.0	7.5	$\left[\begin{array}{ll}9.0 & 7.5\end{array}\right]$
4	12.0	8.0	$\left[\begin{array}{ll}12.0 & 8.0\end{array}\right]$
5	15.0	7.5	$\left[\begin{array}{ll}15.0 & 7.5\end{array}\right]$
6	18.0	6.0	$\left[\begin{array}{ll}18.0 & 6.0\end{array}\right]$
7	21.0	3.5	$\left[\begin{array}{ll}21.0 & 3.5\end{array}\right]$
8	24.0	0.0	$\left[\begin{array}{ll}24.0 & 0.0\end{array}\right]$

Numerical Animation Algorithm

State Initialisation

\square What constitutes state?
\square For each element (body)
\square Position
\square Orientation
\square But also
\square Linear / Angular Velocity

- Linear / Angular Acceleration
\square External Forces
(will deal with angular motion later...)

Representing Position

\square Position Vectors
-2D Vectors for 2D Animations

$$
\mathbf{p}=\left[\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right]
$$

- 3D Vectors for 3D Animations

Representing Orientation

\square Various representation options
\square Bodies rotate around axis passing through a 'central' point (centre of mass)
\square More on this later...

State Update

\square For each body
\square Position changes due to linear velocity
\square Orientation changes due to angular velocity
\square Linear / angular velocity changes

- due to linear / angular acceleration
- due to some event, e.g. collision
\square Linear / angular acceleration results from external forces

Representing Linear Velocity

- 2D or 3D Vectors

$$
\mathbf{v}=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]
$$

\square Velocity is rate of change of position

$$
\mathbf{v}=\frac{d \mathbf{p}}{d t} \quad \text { i.e. } \quad v_{x}=\frac{d p_{x}}{d t} \quad v_{y}=\frac{d p_{y}}{d t} \quad v_{z}=\frac{d p_{z}}{d t}
$$

\square i.e. integrating velocity over time gives position

$$
\mathbf{p}=\mathbf{s}+\int_{t} \mathbf{v} d t \quad \text { i.e. } \quad p_{x}=s_{x}+\int_{t} v_{x} d t \quad p_{y}=s_{y}+\int_{t} v_{y} d t \quad p_{z}=s_{z}+\int_{t} v_{z} d t
$$

\square and if velocity constant, then

$$
\mathbf{p}=\mathbf{s}+\mathbf{v} t \quad \text { i.e. } \quad p_{x}=s_{x}+v_{x} t \quad p_{y}=s_{y}+v_{y} t \quad p_{z}=s_{z}+v_{z} t
$$

Representing Linear Acceleration

- 2D or 3D Vectors

$$
\mathbf{a}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right]
$$

- Acceleration is rate of change of velocity

$$
\mathbf{a}=\frac{d \mathbf{v}}{d t} \quad \text { i.e. } \quad a_{x}=\frac{d v_{x}}{d t} \quad a_{y}=\frac{d v_{y}}{d t} \quad a_{z}=\frac{d v_{z}}{d t}
$$

\square i.e. integrating acceleration over time gives velocity

$$
\mathbf{v}=\mathbf{u}+\int_{t} \mathbf{a} d t \quad \text { i.e. } \quad v_{x}=u_{x}+\int_{t} a_{x} d t \quad v_{y}=u_{y}+\int_{t} a_{y} d t \quad v_{z}=u_{z}+\int_{t} a_{z} d t
$$

- and if acceleration constant, then

$$
\mathbf{v}=\mathbf{u}+\mathbf{a} t \quad \text { i.e. } \quad v_{x}=u_{x}+a_{x} t \quad v_{y}=u_{y}+a_{y} t \quad v_{z}=u_{z}+a_{z} t
$$

Numerical Integration

\square Equations $\mathbf{p}=\mathbf{s}+\mathbf{v} t$ and $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ valid only when \mathbf{v} and a constant

- If \mathbf{v} and \mathbf{a} are variable, but t sufficiently small ($t=\Delta t$), we can use these equations to calculate approximations for \mathbf{p} and \mathbf{v}
\square We can calculate new value for a and repeat previous step
\square This results in a first order approximation of the path taken by position \mathbf{p}

Numerical Integration Example

Vector Equations of Motion
$\mathbf{p}(0)=\mathbf{s}=\left[\begin{array}{ll}0 & 0\end{array}\right] \quad \mathbf{p}(t+\Delta t) \approx \mathbf{p}(t)+\mathbf{v}(t) \Delta t$
$\mathbf{v}(0)=\mathbf{u} \quad \mathbf{v}(t+\Delta t) \approx \mathbf{v}(t)+\mathbf{a}(t) \Delta t$

Algorithm

(1) Let $\mathbf{p}:=\mathbf{s}, \mathbf{v}:=\mathbf{u}, \mathbf{a}:=\left[\begin{array}{ll}0 & -g\end{array}\right]$
(2) Let $\mathbf{p}^{\prime}:=\mathbf{p}+\mathbf{v} \Delta t, \mathbf{v}^{\prime}:=\mathbf{v}+\mathbf{a} \Delta t$
(3) Let $\mathbf{p}:=\mathbf{p}^{\prime}, \mathbf{v}:=\mathbf{v}$ '
(4) Draw projectile
(5) Go to step (2)

Component Equations of Motion

$$
\begin{array}{ll}
p_{x}(0)=\mathbf{s}_{x}=0 & p_{x}(t+\Delta t) \approx p_{x}(t)+v_{x}(t) \Delta t \\
p_{y}(0)=\mathbf{s}_{y}=0 & p_{y}(t+\Delta t) \approx p_{y}(t)+v_{y}(t) \Delta t \\
v_{x}=u_{x} & \\
v_{y}(0)=u_{y} & v_{y}(t+\Delta t) \approx v_{y}(t)-g \Delta t
\end{array}
$$

Numerical Model Example

Numerical Example

$$
\begin{aligned}
& \mathbf{p}(0)=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& \mathbf{v}(0)=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \\
& \mathbf{a}=\left[\begin{array}{ll}
0 & -1
\end{array}\right] \\
& t=0,
\end{aligned}
$$

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Time } & p & v & a & p^{\prime}=p+v & v^{\prime}=v+a \\ \hline 0 & {[0} & 0\end{array}\right] \left.\left[\begin{array}{ll}3 & 4\end{array}\right]\left[\begin{array}{ll}0 & -1\end{array}\right]\left[\begin{array}{ll}3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 3\end{array}\right] \right\rvert\,$

Analytic vs Numeric Results

Angular Motion

\square We have angular equivalents of numerical equations for linear motion
$\square \varphi$ is orientation
$\square \boldsymbol{\omega}$ is angular velocity
$\square \boldsymbol{\alpha}$ is angular acceleration

Linear Equations
$\mathbf{p}(t+\Delta t) \approx \mathbf{p}(t)+\mathbf{v}(t) \Delta t$
$\mathbf{v}(t+\Delta t) \approx \mathbf{v}(t)+\mathbf{a}(t) \Delta t$

Angular Equations

$$
\begin{gathered}
\boldsymbol{\varphi}(t+\Delta t) \approx \boldsymbol{\varphi}(t)+\boldsymbol{\omega}(t) \Delta t \\
\boldsymbol{\omega}(t+\Delta t) \approx \boldsymbol{\omega}(t)+\boldsymbol{\alpha}(t) \Delta t
\end{gathered}
$$

2D Angular Motion

\square Option 1: Scalar Angles
$\square \varphi, \omega, \alpha$ expressed as scalars (in radians)
$\square \varphi$ must be reduced to range $[-\pi . . \pi]$ by adding / subtracting 2π

$$
\varphi(t+\Delta t) \approx \varphi(t)+\omega(t) \Delta t \quad \omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
$$

$$
\omega=\frac{d \varphi}{d t} \quad \alpha=\frac{d \omega}{d t}
$$

2D Angular Motion

\square Option 2: 2D Rotation Matrices

- $\boldsymbol{\Phi}$ expressed as 2D rotation matrix
\square Angle of $\boldsymbol{\Phi}$ automatically falls within $[-\pi . . \pi]$

$$
\Phi=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

- ω, α still expressed as scalars
- Must convert ω to rotation matrix to update φ

$$
\Phi(t+\Delta t) \approx \Phi(t)\left[\begin{array}{cc}
\cos \omega(t) \Delta t & -\sin \omega(t) \Delta t \\
\sin \omega(t) \Delta t & \cos \omega(t) \Delta t
\end{array}\right]
$$

\square Angular velocity still updated as scalar

$$
\omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
$$

$\square \varphi$ loses orthogonality after a while, need renormalisation

2D Angular Motion

- Option 3: Complex Angles
- φ expressed as complex number of unit length
- Angle of φ automatically falls within $[-\pi . . \pi]$

$$
\boldsymbol{\varphi}=e^{i \varphi \Delta t}=\cos \varphi \Delta t+i \sin \varphi \Delta t
$$

- ω, α still expressed as scalars
- Must convert ω to complex number to update φ

$$
\varphi(t+\Delta t) \approx \varphi(t) e^{i \omega(t) \Delta t}
$$

- Angular velocity integration still computed as scalar

$$
\omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
$$

- May need to renormalise φ after a while

$$
\varphi^{\prime}=\frac{1}{|\varphi|} \varphi
$$

Comparison of 2D Rotation Structures

	Scalar Angles	2D Rotation Matrices	Complex Angles
Pros	- Very compact representation (1 scalar element) - Very cheap computation	- Solves angle discontinuity - Can reuse for visualisation	- Solves angle discontinuity - Compact representation (2 scalar elements) - Cheap ω conversion - Cheap conversion to matrix for visualisation - Cheap renormalisation
Cons	- Must handle angle discontinuity - Very costly conversion to matrix for visualisation	- Waste storage space (4 scalar elements - Expensive computations - Costly ω conversion - Costly renormalisation	- Less compact than scalar angles - Visualisation matrix still needs to be computed, but cheap

3D Angular Motion

\square Option 1: Scaled Axis Representation
$\square \boldsymbol{\varphi}, \boldsymbol{\omega}, \boldsymbol{\alpha}$ expressed as vectors

- Length represents scale of rotation
- Direction represents axis of rotation
- Rotation convention follows right-hand rule

\square Must reduce $|\varphi|$ to range $[0 . . \pi$] by subtracting 2π
- Examples
- $\boldsymbol{\varphi}=\left[\begin{array}{ll}0 & 0 \\ \pi\end{array} \mathrm{l}\right.$] is a 90° anti-clockwise rotation around Z-axis
- $\boldsymbol{\omega}=\left[\begin{array}{lll}4 \pi & 3 \pi & 0\end{array}\right]$ is angular velocity of $5 \pi / s$ around axis $y=3 x / 4$
- $\boldsymbol{\alpha}=\left[\begin{array}{lll}2 \pi & 0 & 0\end{array}\right]$ is angular acceleration of $2 \pi / s^{2}$ around axis X-axis

$$
\boldsymbol{\varphi}(t+\Delta t) \approx \boldsymbol{\varphi}(t)+\boldsymbol{\omega}(t) \Delta t \quad \boldsymbol{\omega}(t+\Delta t) \approx \boldsymbol{\omega}(t)+\boldsymbol{\alpha}(t) \Delta t
$$

3D Angular Motion

- Option 2: 3D Rotation Matrices
- $\boldsymbol{\Phi}$ expressed as 3D rotation matrix

$$
\boldsymbol{\Phi}=\mathbf{R}_{\hat{n}, \varphi}=\left[\begin{array}{ccc}
n_{x}^{2}+\left(1-n_{x}^{2}\right) c & n_{x} n_{y}(1-c)-n_{z} s & n_{x} n_{z}(1-c)+n_{y} s \\
n_{x} n_{y}(1-c)+n_{z} s & n_{y}^{2}+\left(1-n_{y}^{2}\right) c & n_{y} n_{z}(1-c)-n_{x} s \\
n_{x} n_{z}(1-c)-n_{y} s & n_{y} n_{z}(1-c)+n_{x} s & n_{z}^{2}+\left(1-n_{z}^{2}\right) c
\end{array}\right] \quad \begin{gathered}
c=\cos \varphi \\
s=\sin \varphi
\end{gathered}
$$

$\square \boldsymbol{\omega}, \boldsymbol{\alpha}$ still expressed as scaled axes representations

- Must convert ω to rotation matrix to update Φ

$$
\boldsymbol{\Phi}(t+\Delta t) \approx \mathbf{R}_{\overparen{\omega},|\omega|} \boldsymbol{\Phi}(t)
$$

- Angular velocity still updated as vector

$$
\omega(t+\Delta t) \approx \omega(t)+\boldsymbol{\alpha}(t) \Delta t
$$

- $\boldsymbol{\Phi}$ loses orthogonality after a while, need renormalisation

3D Angular Motion

\square Option 3: Quaternion Angles
\square About Quaternions

- Like complex numbers, but in 4D
- Have rules for addition, subtraction, multiplication etc.
\square Quaternions for Rotation
- 3D equivalent of complex angles for 2D
- Pros and cons analogous to complex numbers for 2D angular motion

Quaternions

- 4D vectors with a special multiplicative operation
\square Can be represented as a 4-element vector or a scalar / 3D vector pair

$$
\mathbf{q}=\left[\begin{array}{ll}
s & \mathbf{v}
\end{array}\right]=\left[\begin{array}{llll}
s & v_{x} & v_{y} & v_{z}
\end{array}\right]
$$

$\square \quad$ Norm (Magnitude) $\left.\quad|\mathbf{q}|=\left\lvert\, \begin{array}{ll}s & \mathbf{v}\end{array}\right.\right]=\sqrt{s^{2}+\mathbf{v} \cdot \mathbf{v}}=\sqrt{s^{2}+v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}{ }^{2}}$

- Conjugate

$$
\mathbf{q}^{*}=\left[\begin{array}{ll}
s & \mathbf{v}
\end{array}\right]^{*}=\left[\begin{array}{ll}
s & -\mathbf{v}
\end{array}\right]=\left[\begin{array}{llll}
s & -v_{x} & -v_{y} & -v_{z}
\end{array}\right]
$$

- Multiplication
- Inverse

$$
\begin{aligned}
& \mathbf{q}_{1} \mathbf{q}_{2}=\left[\begin{array}{ll}
s_{1} & \mathbf{v}_{1}[] s_{2} \\
\mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
s_{1} s_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2} & s_{1} \mathbf{v}_{2}+s_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}
\end{array}\right] \\
& \mathbf{q}^{-1}=\frac{\mathbf{q}^{*}}{|\mathbf{q}|}=\frac{[s-\mathbf{v}}{}=\frac{[s}{\sqrt{s^{2}+\mathbf{v} \cdot \mathbf{v}}}
\end{aligned}
$$

Rotation Quaternions

\square Unit quaternions can be used to rotate vectors
\square Rotation by θ radians around unit vector \mathbf{n}

$$
\hat{\mathbf{q}}=\left[\begin{array}{ll}
\cos \frac{\theta}{2} & \hat{\mathbf{n}} \sin \frac{\theta}{2}
\end{array}\right] \quad|\hat{\mathbf{q}}|=1
$$

- Can rotate vector \mathbf{v} to new vector \mathbf{v} ' as follows

$$
\left[\begin{array}{ll}
s^{\prime} & \mathbf{v}^{\prime}
\end{array}\right]=\hat{\mathbf{q}}\left[\begin{array}{ll}
0 & \mathbf{v}
\end{array}\right] \hat{\mathbf{q}}^{*}
$$

- Equation can be abbreviated for convenience

$$
\mathbf{v}^{\prime}=\hat{\mathbf{q}} \mathbf{v} \hat{\mathbf{q}}^{*}
$$

Quaternion-Based Orientation

- Option 3: Quaternion Angles
- φ expressed as a quaternion of unit norm
- Angle of φ automatically falls within $[-\pi . . \pi]$

$$
\boldsymbol{\varphi}=\mathbf{q}_{\hat{\mathbf{n}}, \varphi}=\left[\cos \frac{\varphi}{2} \quad \hat{\mathbf{n}} \sin \frac{\varphi}{2}\right]
$$

$\square \boldsymbol{\omega}, \boldsymbol{\alpha}$ still expressed as scaled axis representations

- Must wrap ω in quaternion to update φ

$$
\varphi(t+\Delta t) \approx \varphi(t)+\frac{\Delta t}{2}\left[\begin{array}{ll}
0 & \omega
\end{array}\right] \varphi(t)
$$

- Angular velocity integration still computed as scalar

$$
\omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
$$

- May need to renormalise φ after a while

$$
\varphi^{\prime}=\frac{1}{|\varphi|} \varphi
$$

Comparison of 3D Rotation Structures

	Scaled Axis Representations	3D Rotation Matrices	Quaternion Angles
Pros	- Very compact representation (3 scalar elements) - Very cheap computation	- Solves angle discontinuity - Can reuse for visualisation or cheaply convert to 4D homogenous matrix	- Solves angle discontinuity - Compact representation (4 scalar elements) - Cheap ω conversion - Reasonably cheap conversion to matrix for visualisation - Cheap renormalisation
Cons	- Must handle angle discontinuity - Very costly conversion to 3D/4D matrix for visualisation	- Wastes storage space (9 scalar elements - Expensive matrix computations - Costly ω conversion - Costly renormalisation	- Less compact than scaled axis representation - Visualisation matrix still needs to be computed, but relatively cheap

State Update (Take 2)

\square For each body
\square Get current linear and angular acceleration (will tackle this next...)

- Update position and orientation

$$
\begin{aligned}
& \mathbf{p}(t+\Delta t) \approx \mathbf{p}(t)+\mathbf{v}(t) \Delta t \\
& \mathbf{v}(t+\Delta t) \approx \mathbf{v}(t)+\mathbf{a}(t) \Delta t
\end{aligned}
$$

- Update linear and angular velocities

$$
\begin{aligned}
& \boldsymbol{\varphi}(t+\Delta t) \approx \boldsymbol{\varphi}(t)+\frac{\Delta t}{2}\left[\begin{array}{ll}
0 & \omega
\end{array}\right] \boldsymbol{\varphi}(t) \\
& \omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
\end{aligned}
$$

- Handle collisions (will tackle this later...)

User / Agent Input

\square Human users / autonomous agents influence physical simulation

- Examples
\square User / AI controlling simulated vehicle
\square Natural phenomena (e.g. gravity or friction)
\square Chain of events (e.g. collisions)
\square The above result in applied forces
- Forces are source of linear and angular acceleration

Force

\square Has magnitude and direction (is a vector)
\square Induce linear acceleration
\square Induce angular acceleration (when acting off-centre)

Effects of Force

\square Force induces linear acceleration

- Greater force => greater acceleration
- Greater mass => lesser acceleration
- Acceleration parallel to force

$$
\mathbf{f}=m \mathbf{a} \quad \text { i.e. } \quad \mathbf{a}=\frac{1}{m} \mathbf{f}
$$

- Application of multiple forces
- Forces can be summed up as vectors
\square Can work in tandem or cancel out

$$
\mathbf{f}_{\text {Total }}=\sum_{i} \mathbf{f}_{i}
$$

Torque

\square Torque is 'angular' force
\square Magnitude of torque vector gives scale
\square Direction gives axis of rotation

- greater force => greater torque
\square greater perpendicular distance => greater torque
\square Scalar Form

$$
\tau=(r \sin \theta) f
$$

\square Vector Form

$$
\boldsymbol{\tau}=\mathbf{r} \times \mathbf{f}
$$

Note: c is centre of mass

Effects of Torque

\square Torque induces angular acceleration

- Greater torque => greater acceleration
- Greater 'mass’ => lesser acceleration
\square Angular acceleration parallel to torque (for symmetric bodies)
- Rotation occurs around axis passing through centre of mass
\square Scalar Torque Equation

$$
\tau=I \alpha \quad \text { i.e. } \quad \alpha=\frac{1}{I} \tau
$$

Note: Moment of Inertia (I) is angular equivalent of mass

Centre of Mass

\square A point in (or outside) body around which mass is evenly distributed

- System of point masses m_{i} at positions \mathbf{r}_{i}

$$
\mathbf{c}=\frac{\sum_{i} m_{i} \mathbf{r}_{i}}{\sum_{i} m_{i}}
$$

- Continuous body mass m, density function ρ, volume V

$$
\mathbf{c}=\frac{1}{m} \int_{\mathbf{r} \in V} \rho(\mathbf{r}) \mathbf{r} d \mathbf{r}
$$

Centre of Mass Example

$$
\mathbf{c}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}=\frac{1 \times 0+2 \times 0.6}{1+2}=\frac{1.2}{3}=0.4 \mathrm{~m}
$$

Moment of Inertia

- A measure of mass quantity and distribution around a given axis (usually through centre of mass)
- System of point masses m_{i} at perp. distance r_{i} from axis

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

- Solid body with density function ρ, volume V

$$
I=\int_{\mathbf{r} \in V} \rho(\mathbf{r}) \mathbf{r}^{2} d \mathbf{r}
$$

Moment of Inertia Example

$$
m_{1}=1 \mathrm{~kg}
$$

General Torque Equations

\square For 2D, can use scalar forms of I, τ and α

- For 3D
- Axis of rotation varies over time
- Moment of inertia needs to be recalculated every time
\square Torque must take axis into account
- Elegant Solution:
- the Inertia Tensor matrix I
- vector form of the torque equations

$$
\begin{gathered}
\boldsymbol{\tau}=\mathbf{I} \boldsymbol{\alpha} \quad \text { i.e. } \quad \boldsymbol{\alpha}=\mathbf{I}^{-1} \boldsymbol{\tau} \\
\boldsymbol{\tau}_{\text {total }}=\sum_{i} \boldsymbol{\tau}_{i}=\sum_{i} \mathbf{r}_{i} \times \mathbf{f}_{i}
\end{gathered}
$$

Moment of Inertia Tensor

- A 3×3 matrix of the form

$$
\mathbf{I}=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

- $I_{x x}, I_{y y}, I_{z z}$ are principal moments of inertia around $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes

$$
I_{x x}=\int_{V} \rho(\mathbf{r})\left(r_{y}^{2}+r_{z}^{2}\right) d V \quad I_{y y}=\int_{V} \rho(\mathbf{r})\left(r_{x}^{2}+r_{z}^{2}\right) d V \quad I_{z z}=\int_{V} \rho(\mathbf{r})\left(r_{x}^{2}+r_{y}^{2}\right) d V
$$

- $I_{x y}, I_{x z}, I_{y x}, I_{y z}, I_{z x}, I_{z y}$ are products of inertia, usually zero for symmetrical bodies

$$
\begin{array}{ll}
I_{x y}=I_{y x}=-\int_{V} \rho(\mathbf{r}) r_{x} r_{y} d V & I_{x z}=I_{z x}=-\int_{V} \rho(\mathbf{r}) r_{x} r_{z} d V \\
I_{y z}=I_{z y}=-\int_{V} \rho(\mathbf{r}) r_{y} r_{z} d V &
\end{array}
$$

Inertia Tensor Example: Sphere

\square Solid sphere of uniform density, mass m, radius r

$$
\begin{aligned}
& I_{x x}=I_{y y}=I_{z z}=\frac{2}{5} m r^{2} \\
& I_{x y}=I_{y x}=I_{x z}=I_{z x}=I_{y z}=I_{z y}=0 \\
& \mathbf{I}=\left[\begin{array}{ccc}
\frac{2}{5} m r^{2} & 0 & 0 \\
0 & \frac{2}{5} m r^{2} & 0 \\
0 & 0 & \frac{2}{5} m r^{2}
\end{array}\right]
\end{aligned}
$$

Inertia Tensor Example: Cuboid

\square Solid cuboid of uniform density, mass m, dimensions $w \times h \times d$

$$
\begin{aligned}
& I_{x x}=\frac{m}{12}\left(h^{2}+d^{2}\right) \quad I_{y y}=\frac{m}{12}\left(w^{2}+d^{2}\right) \\
& I_{z z}=\frac{m}{12}\left(w^{2}+h^{2}\right) \\
& I_{x y}=I_{y x}=I_{x z}=I_{z x}=I_{y z}=I_{z y}=0 \\
& \mathbf{I}=\left[\begin{array}{ccc}
\frac{m}{12}\left(h^{2}+d^{2}\right) & 0 & 0 \\
0 & \frac{m}{12}\left(w^{2}+d^{2}\right) & 0 \\
0 & 0 & \frac{m}{12}\left(w^{2}+h^{2}\right)
\end{array}\right]
\end{aligned}
$$

Inertia Tensor Example: Cylinder

\square Solid cylinder of uniform density, mass m, height h, radius r

$$
\begin{aligned}
& I_{x x}=I_{z z}=\frac{m}{12}\left(3 r^{2}+h^{2}\right) \quad I_{y y}=\frac{m r^{2}}{2} \\
& I_{x y}=I_{y x}=I_{x z}=I_{z x}=I_{y z}=I_{z y}=0 \\
& \mathbf{I}=\left[\begin{array}{ccc}
\frac{m}{12}\left(3 r^{2}+h^{2}\right) & 0 & 0 \\
0 & \frac{m r^{2}}{2} & 0 \\
0 & 0 & \frac{m}{12}\left(3 r^{2}+h^{2}\right)
\end{array}\right]
\end{aligned}
$$

State Initialisation (Take 2)

\square For each body, initialise

- Mass m
\square Moment of inertia tensor I
\square Position vector \mathbf{p}
\square Orientation quaternion φ
\square Linear velocity vector \mathbf{v}
\square Angular velocity vector ω

User / Agent Input (Take 2)

State Update (Take 3)

\square For each body
\square Compute linear and angular accelerations

$$
\mathbf{a}=\frac{1}{m} \mathbf{f}_{\text {total }} \quad \boldsymbol{\alpha}=\mathbf{I}^{-1} \boldsymbol{\tau}_{\text {total }}
$$

- Update position and orientation

$$
\begin{aligned}
& \mathbf{p}(t+\Delta t) \approx \mathbf{p}(t)+\mathbf{v}(t) \Delta t \\
& \boldsymbol{\varphi}(t+\Delta t) \approx \boldsymbol{\varphi}(t)+\frac{\Delta t}{2}\left[\begin{array}{ll}
0 & \boldsymbol{\omega}
\end{array}\right] \boldsymbol{\varphi}(t)
\end{aligned}
$$

- Update linear and angular velocities

$$
\begin{aligned}
& \mathbf{v}(t+\Delta t) \approx \mathbf{v}(t)+\mathbf{a}(t) \Delta t \\
& \omega(t+\Delta t) \approx \omega(t)+\alpha(t) \Delta t
\end{aligned}
$$

Collision Detection and Response

\square Need to prevent bodies from interpenetrating
\square Need to maintain realism
\square Two problems:

- How to detect a collision?
\square What to do when a collision occurs?

Collision Detection

\square Bodies occupy volume in space
\square Collision occurs when volumes overlap on at least one point in space

\square Two possible approaches

- Conservative Advancement: Estimate time of collision before it occurs
- Retroactive Detection: Let bodies overlap and fix penetration afterwards

Conservative Advancement

\square In current state update
\square For all possible collisions, estimate time of impact $\Delta t_{\text {impact }}$ (less than usual update interval Δt)
\square If there is such collision

- update motion equations by $\Delta t_{\text {impact }}$ (instead of Δt)
- handle collision (e.g. update velocities)
- resume normally
- Otherwise if no collision
- Update motion equations by Δt as usual
\square Problems of this approach
- Time of impact estimation is harder than testing if bodies overlap
- Simulation comes to virtual stop when lots of bodies in contact
\square More difficult to keep constant animation rate

Retroactive Collision Detection

\square In current state update

- Update motion of all bodies by Δt
- For each overlapping pair of bodies
- Fix penetration (e.g. back off bodies to earlier position)
- Handle collision (e.g. update velocities)
\square Problems with this approach
\square Must deal with interpenetration
\square Tunnelling problem (small bodies, high velocities, large Δt)
\square Stacking problem (will talk about this later...)

Collision Manifolds

\square Area of contact (manifold) between colliding bodies can be

- a single point
- a discreet number of points
- a continuum of points (line / area)
- a mix of the above
\square Common occurrences
- corner with side (vertex - face)
- edge with edge (edge - edge)
- edge with surface (edge - face)
\square Other types (rare)
- corner with corner

point of contact

area of contact

line of contact

multiple areas of contact
- corner with edge
\square Lines / areas of contacts simplified to discreet points

Collision Detection Output

\square For each discreet point of collision we need
\square Point of contact

- Location where collision has occurred
\square Contact normal vector ň
- Direction of the collision
\square Penetration distance p
- For resolving interpenetration

Sphere Collision Detection Example

\square Sphere 1, centre at \mathbf{p}_{1}, radius r_{1}

- Sphere 2, centre at \mathbf{p}_{2}, radius r_{2}
\square Spheres in contact / overlapping when

$$
\left|\mathbf{p}_{2}-\mathbf{p}_{1}\right|=d \leq r_{1}+r_{2}
$$

- If overlapping, then penetration p is

$$
p=r_{1}+r_{2}-d
$$

- Contact normal ň is

$$
\hat{\mathbf{n}}=\frac{1}{d}\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)
$$

\square Point of contact \mathbf{p}_{c} is (approximately)

$$
\mathbf{p}_{c}=\mathbf{p}_{1}+\left(r_{1}-\frac{p}{2}\right) \hat{\mathbf{n}}
$$

Collision Detection Performance

\square Simplest solution: test all possible body pairs $-n(n-1) / 2$ combinations!
\square Better approaches: partition space for better performance, for example:
\square Regular grids

- Quadtrees (2D) / octrees (3D)
- KD-trees
- co-ordinate sorting

Regular Grids

\square Test only bodies sharing same cells

- Example, test only the following
- (1) and (2)
- (3) and (4)
- (3) and (5)
- (4) and (5)
- (5) and (6) - body (5) spans 2 cells
- Note: (7), (8), (9) ignored

- Only 5 out of 36 possible combinations tested!

Collision Response

- In a real collision
- Bodies undergo compression, followed by expansion before breaking contact, over short period of time
- During compression and expansion phases, repulsive forces (along contact normal) accelerate bodies apart
- Linear and angular velocities change gradually throughout collision
- In a simulated collision between perfectly rigid bodies
- We avoid simulating compression and expansion phases
- We model repulsive force by instantaneous change in momentum (impulse)

$$
\mathbf{J}_{1}=m_{1}\left(\mathbf{v}_{n 1}^{\prime}-\mathbf{v}_{n 1}\right)=-\mathbf{J}_{2}=m_{2}\left(\mathbf{v}_{n 2}^{\prime}-\mathbf{v}_{n 2}\right)
$$

- Linear and angular velocities change instantly

Coefficient of Restitution

- In a frictionless rigid body collision, relative velocity of contact points
- changes only along contact normal
- is unaffected along perpendicular direction to normal (surface tangent)
$\square \quad$ Collision modelled by restitution coefficient e with value between 0 and 1
- $e=1=>$ perfectly elastic collision
- $e=0=>$ perfectly inelastic (sticky) collision
- measured empirically e.g. wooden ball hitting concrete $e \approx 0.6$

$$
\begin{aligned}
& e=\frac{\left|\mathbf{v}_{n}^{\prime}\right|}{\left|\mathbf{v}_{n}\right|} \\
& \mathbf{v}^{\prime}=\mathbf{v}-(\mathbf{v} \cdot \hat{\mathbf{n}}(1+e)) \hat{\mathbf{n}}
\end{aligned}
$$

Collision Effects

\square Relative velocity of contact points changes according to coefficient e (as per previous slide)
\square Can compute contact point velocity from linear and angular body velocity

$$
\mathbf{v}_{\text {contact }}=\mathbf{v}_{\text {body }}+\mathbf{r}_{\text {contact }} \times \boldsymbol{\omega}_{\text {body }}
$$

\square Then compute relative velocity of contact points

$$
\mathbf{v}_{r}=\mathbf{V}_{\text {contact } 2}-\mathbf{V}_{\text {contact } 1}
$$

- Several substitutions later lead to...

Collision Equation

- Step 1: Computation of impulse magnitude j

$$
j=\frac{-(1+e) \mathbf{v}_{r} \cdot \hat{\mathbf{n}}}{\frac{1}{m_{1}}+\frac{1}{m_{2}}+\left(I_{1}^{-1}\left(\mathbf{r}_{1} \times \hat{\mathbf{n}}\right) \times \mathbf{r}_{1}+I_{2}^{-1}\left(\mathbf{r}_{2} \times \hat{\mathbf{n}}\right) \times \mathbf{r}_{2}\right) \cdot \hat{\mathbf{n}}}
$$

\square Step 2: Vector forms of impulses $\mathbf{j}_{1}, \mathbf{j}_{2}$

$$
\mathbf{j}_{1}=j \hat{\mathbf{n}} \quad \mathbf{j}_{2}=-j \hat{\mathbf{n}}
$$

$\square \quad$ Step 3a: New linear velocities $\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime} \quad \quad \mathbf{v}_{1}^{\prime}=\mathbf{v}_{1}+\frac{1}{m_{1}} \mathbf{j}_{1} \quad \mathbf{v}_{2}^{\prime}=\mathbf{v}_{2}+\frac{1}{m_{2}} \mathbf{j}_{2}$
\square Step 3b: New angular velocities $\boldsymbol{\omega}^{\prime}{ }_{1}, \boldsymbol{\omega}^{\prime}{ }_{2}$

$$
\boldsymbol{\omega}_{1}^{\prime}=\boldsymbol{\omega}_{1}+\mathbf{I}_{1}^{-1}\left(\mathbf{r}_{1} \times \mathbf{j}_{1}\right) \quad \boldsymbol{\omega}_{2}^{\prime}=\boldsymbol{\omega}_{2}+\mathbf{I}_{2}^{-1}\left(\mathbf{r}_{2} \times \mathbf{j}_{2}\right)
$$

Solving Interpenetration

\square Option 1 (Simple)

- Move each body away by half penetration along contact normal

$$
\mathbf{p}_{1}^{\prime}=\mathbf{p}_{1}-\frac{p}{2} \hat{\mathbf{n}} \quad \mathbf{p}_{2}^{\prime}=\mathbf{p}_{2}+\frac{p}{2} \hat{\mathbf{n}}
$$

- Option 2 (Better)
\square Move each body away taking mass into consideration

$$
\mathbf{p}_{1}^{\prime}=\mathbf{p}_{1}-\frac{m_{2}}{m_{1}+m_{2}} p \hat{\mathbf{n}} \quad \mathbf{p}_{2}^{\prime}=\mathbf{p}_{2}+\frac{m_{1}}{m_{1}+m_{2}} p \hat{\mathbf{n}}
$$

\square Option 3 (Even Better)

- Apply 'impulse' equation at positional level (handles rotation)

Collision Algorithm

\square For each collision
(1) Compute collision impulse
(2) Update linear velocities
(3) Update angular velocities
(4) Solve body interpenetration
\square Problems
\square Solving one interpenetration may cause another
\square Cannot handle stacks of bodies

The Stacking Problem

Frame 0: Initial State

Simultaneous Collision Resolution

\square All collisions considered simultaneously
\square Solves (or minimises) stacking problem

- Various solutions (look up for fun...)
- Shock Propagation
- Iterative Solver
- Linear Complementary Problem Formulation

Further Topics on Physics Animation

\square Simulating friction, for example:
\square Static box on inclined plane
\square Tyre traction
\square Joints, for example:

- Ball-and-socket
- Hinges
- Motors
\square Modelling Forces, for example:
\square Springs
- Buoyancy

Some References

- Physics Engines
http://en.wikipedia.org/wiki/Physics engine
- Collision Detection
http://en.wikipedia.org/wiki/Collision detection
- Collision Response
http://en.wikipedia.org/wiki/Collision response
- List of Inertia Tensors
http://en.wikipedia.org/wiki/List of moment of inertia tensors
- Octrees
http://en.wikipedia.org/wiki/Octree
- Open Source / Free Physics Engines
http://www.thefreecountry.com/sourcecode/physics.shtml
- Farseer Physics Engine (XNA Friendly)

