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Animated Graphics

 Presentations

 Entertainment Media

 Simulations

 Computer Games



Digital Animation Approaches

 Ideal for predetermined 
sequences

 Requires prescription of the 
complete sequence

 Can be designed for dramatic 
effect

 Requires skilled animators for 
realistic effects

 Animator resources / effort 
must scale in proportion to 
complexity

 Ideal for interactive 
applications

 Requires a physical model 
and initial conditions

 Animation cannot be 
controlled directly

 Realism is a by-product of 
physics modelling

 Computation resources must 
scale in proportion to 
complexity

Scripted Animation Interactive Animation



Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games



Existing Solutions

 Commercial / Closed Source

Havoc Physics™

Nvidia PhysX™

 Community Driven / Open Source

 Bullet

Open Dynamics Engine™

 Farseer



Physics Theory

 Classical Mechanics

Rigid Body Dynamics

 Soft Body Dynamics

 Concepts

 Linear and Angular Motion

 Forces and Inertia

Collisions, Contact, Friction

Motion Constraints



Physical Models for Animation

Analytical Models Numerical Models
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Solution
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Physical Models for Animation

 Compute state as a 
function of time

 Computationally efficient

 Very accurate (no error 
accumulation)

 Limited to simple 
predictable configurations 
with no interaction

 Requires solution for every 
class of problem

 Iteratively update state 
over small timeframes

 Polynomial complexity

 Numerical errors creep into 
simulations over time

 Can handle interactive 
configurations of arbitrary 
complexity

 Generic approach suitable 
to many problems

Analytical Models Numerical Models



Analytical Model Example

Algorithm
(1) Let t := 0

(2) Set initial velocity u

(3) Compute p(t)

(4) Let t := t + ∆t

(5) Draw projectile

(6) Go to step (3)
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Analytical Model Example

Numerical Example

Time px=3t py=4t-½t2 p(t)=[px py]

0 0.0 0.0 [0.0  0.0]

1 3.0 3.5 [3.0  3.5]

2 6.0 6.0 [6.0  6.0]

3 9.0 7.5 [9.0  7.5]

4 12.0 8.0 [12.0  8.0]

5 15.0 7.5 [15.0  7.5]

6 18.0 6.0 [18.0  6.0]

7 21.0 3.5 [21.0  3.5]

8 24.0 0.0 [24.0  0.0]
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Numerical Animation Algorithm
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State Initialisation

 What constitutes state?

 For each element (body)

 Position

Orientation

 But also

 Linear / Angular Velocity

 Linear / Angular Acceleration

 External Forces

(will deal with angular motion later...)

Initialise 

State



Representing Position

 Position Vectors

 2D Vectors for 2D Animations

 3D Vectors for 3D Animations

 yx ppp
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Representing Orientation

 Various representation options

 Bodies rotate around axis passing through a 

‘central’ point (centre of mass)

 More on this later...



State Update

 For each body

 Position changes due to linear 

velocity

 Orientation changes due to 

angular velocity

 Linear / angular velocity changes

 due to linear / angular acceleration

 due to some event, e.g. collision

 Linear / angular acceleration 

results from external forces

Update State



Representing Linear Velocity

 2D or 3D Vectors

 Velocity is rate of change of position

 i.e. integrating velocity over time gives position

 and if velocity constant, then
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Representing Linear Acceleration

 2D or 3D Vectors

 Acceleration is rate of change of velocity

 i.e. integrating acceleration over time gives velocity

 and if acceleration constant, then
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Numerical Integration

 Equations p = s + vt and v = u + at valid only when v and a constant

 If v and a are variable, but t sufficiently small (t = ∆t), we can use 

these equations to calculate approximations for p and v

 We can calculate new value for a and repeat previous step

 This results in a first order approximation of the path taken by 

position p

 tp  tt p

  ttvt  )(p

      ttttt  vpp

      ttttt  avv



Numerical Integration Example

Algorithm
(1) Let p := s, v := u, a := [0  -g]

(2) Let p’ := p + v∆t, v’ := v + a∆t

(3) Let p := p’, v := v’

(4) Draw projectile

(5) Go to step (2)

 yx ppp

 yx vvv

Vector Equations of Motion

Component Equations of Motion
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Numerical Model Example

 yx ppp

 yx vvv

   430 v

 10 a

 10 a

Numerical Example

   000 p

1,0  tt

   430  uv

Y

X

Time p v a p’=p+v v’=v+a

0 [0  0] [3  4] [0  -1] [3  4] [3  3]

1 [3  4] [3  3] [0  -1] [6 7] [3  2]

2 [6  7] [3  2] [0  -1] [9  9] [3  1]

3 [9  9] [3  1] [0  -1] [12  10] [3  0]

4 [12  10] [3  0] [0 -1] [15  10] [3  -1]

5 [15  10] [3  -1] [0 -1] [18  9] [3  -2]

6 [18  9] [3  -2] [0 -1] [21  7]  [3  -3]

7 [21  7] [3  -3] [0  -1] [24 4] [3 -4]

8 [24  4] [3  -4] [0  -1] [27  0] [3  -5]

9 [27  0] [3  -5] [0  -1]



Analytic vs Numeric Results
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Angular Motion

 We have angular equivalents of numerical 

equations for linear motion

 φ is orientation

 ω is angular velocity

 α is angular acceleration

      ttttt  αωω

      ttttt  ωφφ

Linear Equations Angular Equations

      ttttt  vpp

      ttttt  avv



2D Angular Motion

 Option 1: Scalar Angles

 φ, ω, α expressed as scalars (in radians)

 φ must be reduced to range [-π.. π] by adding / 

subtracting 2π

      ttαtωttω       ttωtφttφ 

Y

X


dt

d
 

dt

d
 



2D Angular Motion

 Option 2: 2D Rotation Matrices

 Φ expressed as 2D rotation matrix

 Angle of Φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to rotation matrix to update φ

 Angular velocity still updated as scalar

 φ loses orthogonality after a while, need renormalisation

      ttαtωttω 

   
   
    














ttωttω

ttωttω
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






 


φφ

φφ

cossin

sincos



2D Angular Motion

 Option 3: Complex Angles

 φ expressed as complex number of unit length

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scalars

 Must convert ω to complex number to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while

      ttαtωttω 

      ttiωettt  φφ

tφitφe tiφ   sincosφ

φ
φ

φ
1





Comparison of 2D Rotation Structures

Scalar Angles
2D Rotation 

Matrices
Complex Angles

Pros
• Very compact representation (1 

scalar element)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation

• Solves angle discontinuity

• Compact representation (2 

scalar elements)

• Cheap ω conversion

• Cheap conversion to matrix for 

visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to matrix 

for visualisation

• Waste storage space (4 scalar 

elements

• Expensive computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scalar 

angles

• Visualisation matrix still needs 

to be computed, but cheap



3D Angular Motion

 Option 1: Scaled Axis Representation

 φ, ω, α expressed as vectors

 Length represents scale of rotation

 Direction represents axis of rotation

 Rotation convention follows right-hand rule

 Must reduce |φ| to range [0.. π] by subtracting 2π

 Examples

 φ = [0  0  π/2 ] is a 90° anti-clockwise rotation around Z-axis

 ω = [4π 3π 0] is angular velocity of 5π/s around axis y=3x/4

 α = [2π 0 0] is angular acceleration of 2π/s2 around axis X-axis

      ttttt  αωω      ttttt  ωφφ

X

Y

Z

ω



3D Angular Motion

 Option 2: 3D Rotation Matrices
 Φ expressed as 3D rotation matrix

 ω, α still expressed as scaled axes representations

 Must convert ω to rotation matrix to update Φ

 Angular velocity still updated as vector

 Φ loses orthogonality after a while, need renormalisation

      ttttt  αωω

   ttt ΦRΦ
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
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3D Angular Motion

 Option 3: Quaternion Angles

About Quaternions
 Like complex numbers, but in 4D

 Have rules for addition, subtraction, multiplication etc.

Quaternions for Rotation
 3D equivalent of complex angles for 2D

 Pros and cons analogous to complex numbers for 2D angular 

motion



Quaternions

 4D vectors with a special multiplicative operation

 Can be represented as a 4-element vector or a scalar / 3D vector 

pair

 Norm (Magnitude)

 Conjugate

 Multiplication

 Inverse

   zyx vvvss  vq

  22222

zyx vvvsss  vvvq

     zyx vvvsss  vvq
**

    2112212121221121 vvvvvvvvqq  ssssss

 

vv

v

q

q
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
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Rotation Quaternions

 Unit quaternions can be used to rotate vectors

 Rotation by θ radians around unit vector n

 Can rotate vector v to new vector v’ as follows

 Equation can be abbreviated for convenience

1ˆ
2

sinˆ
2

cosˆ 







 qnq



    *ˆ0ˆ qvqv s

*ˆˆ qvqv 



Quaternion-Based Orientation

 Option 3: Quaternion Angles

 φ expressed as a quaternion of unit norm

 Angle of φ automatically falls within [-π.. π]

 ω, α still expressed as scaled axis representations

 Must wrap ω in quaternion to update φ

 Angular velocity integration still computed as scalar

 May need to renormalise φ after a while

      ttαtωttω 

       t
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ttt φωφφ 0
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
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
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

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Comparison of 3D Rotation Structures

Scaled Axis

Representations

3D Rotation 

Matrices

Quaternion

Angles

Pros
• Very compact representation (3 

scalar elements)

• Very cheap computation

• Solves angle discontinuity

• Can reuse for visualisation or 

cheaply convert to 4D 

homogenous matrix

• Solves angle discontinuity

• Compact representation (4 

scalar elements)

• Cheap ω conversion

• Reasonably cheap conversion 

to matrix for visualisation

• Cheap renormalisation

Cons
• Must handle angle discontinuity

• Very costly conversion to 

3D/4D matrix for visualisation

• Wastes storage space (9 scalar 

elements

• Expensive matrix computations

• Costly ω conversion

• Costly renormalisation

• Less compact than scaled axis 

representation

• Visualisation matrix still needs 

to be computed, but relatively 

cheap



State Update (Take 2)

 For each body

 Get current linear and angular 

acceleration (will tackle this next...)

 Update position and orientation

 Update linear and angular velocities

 Handle collisions (will tackle this later...)

Update State
      ttttt  vpp

      ttttt  avv

      ttαtωttω 

       t
t

ttt φωφφ 0
2






User / Agent Input

 Human users / autonomous agents 

influence physical simulation

 Examples

 User / AI controlling simulated vehicle

 Natural phenomena (e.g. gravity or 

friction)

 Chain of events (e.g. collisions)

 The above result in applied forces

 Forces are source of linear and 

angular acceleration

Process User 

/ Agent Input



Force

 Has magnitude and direction (is a vector)

 Induce linear acceleration

 Induce angular acceleration (when acting off-centre)

Thrusterf

Gravityf

Rotaryf

Rotaryf

Gravityf

Frictionf
Reactionf



Effects of Force

 Force induces linear acceleration

 Greater force => greater acceleration

 Greater mass => lesser acceleration

 Acceleration parallel to force

 Application of multiple forces

 Forces can be summed up as vectors

 Can work in tandem or cancel out

faaf
m

eim
1

.. 


i

iffTotal Totalf

1f

2f

3f



Torque

 Torque is ‘angular’ force

 Magnitude of torque vector gives scale

 Direction gives axis of rotation

 greater force => greater torque

 greater perpendicular distance => greater torque

 Scalar Form

 Vector Form

  fr  sin

frτ 

Note: c is centre of mass

fr



τ
c

sinr



Effects of Torque

 Torque induces angular acceleration

 Greater torque => greater acceleration

 Greater ‘mass’ => lesser acceleration

 Angular acceleration parallel to torque (for symmetric bodies)

 Rotation occurs around axis passing through centre of mass

 Scalar Torque Equation

Note: Moment of Inertia (I) is angular equivalent of mass


I

eiI
1
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Centre of Mass

 A point in (or outside) body around which mass is evenly distributed

 System of point masses mi at positions ri

 Continuous body mass m, density function ρ, volume V
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
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Centre of Mass Example

X

Y

kgm 11 
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Moment of Inertia

 A measure of mass quantity and distribution around a given axis 

(usually through centre of mass)

 System of point masses mi at perp. distance ri from axis

 Solid body with density function ρ, volume V


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Moment of Inertia Example

kgm 11 
kgm 22 

mr 4.01 

2222

22

2

11 36.04.022.01 kgmmm  rrc

m4.0c

mr 2.02 



General Torque Equations

 For 2D, can use scalar forms of I, τ and α

 For 3D

 Axis of rotation varies over time

 Moment of inertia needs to be recalculated every time

 Torque must take axis into account

 Elegant Solution:

 the Inertia Tensor matrix I

 vector form of the torque equations

τIαIατ 1..  ei

 
i

ii

i

i frττ total



Moment of Inertia Tensor

 A 3 x 3 matrix of the form

 Ixx, Iyy, Izz are principal moments of inertia around X, Y, Z axes

 Ixy, Ixz, Iyx, Iyz, Izx, Izy are products of inertia, usually zero for symmetrical 

bodies
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Inertia Tensor Example: Sphere

 Solid sphere of uniform density, mass m, radius r
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Inertia Tensor Example: Cuboid

 Solid cuboid of uniform density, mass m, dimensions w × h × d
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Inertia Tensor Example: Cylinder

 Solid cylinder of uniform density, mass m, height h, radius r
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State Initialisation (Take 2)

 For each body, initialise

Mass m

Moment of inertia tensor I

 Position vector p

Orientation quaternion φ

 Linear velocity vector v

 Angular velocity vector ω

Initialise 

State



User / Agent Input (Take 2)

 For each body

 Determine applied forces fi from user / 

agent input

 Accumulate force

 Determine torques τi

 Accumulate torque

Process User 

/ Agent Input

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State Update (Take 3)

 For each body

 Compute linear and angular accelerations

 Update position and orientation

 Update linear and angular velocities

Update State
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Collision Detection and Response

 Need to prevent bodies from interpenetrating

 Need to maintain realism

 Two problems:

How to detect a collision?

What to do when a collision occurs?



Collision Detection

 Bodies occupy volume in space

 Collision occurs when volumes overlap on at least one point in 
space

 Two possible approaches

 Conservative Advancement: Estimate time of collision before it occurs

 Retroactive Detection: Let bodies overlap and fix penetration afterwards



Conservative Advancement

 In current state update

 For all possible collisions, estimate time of impact Δtimpact (less than 
usual update interval Δt)

 If there is such collision

 update motion equations by Δtimpact (instead of Δt)

 handle collision (e.g. update velocities)

 resume normally

 Otherwise if no collision

 Update motion equations by Δt as usual

 Problems of this approach

 Time of impact estimation is harder than testing if bodies overlap

 Simulation comes to virtual stop when lots of bodies in contact

 More difficult to keep constant animation rate



Retroactive Collision Detection

 In current state update

 Update motion of all bodies by Δt

 For each overlapping pair of bodies

 Fix penetration (e.g. back off bodies to earlier position)

 Handle collision (e.g. update velocities)

 Problems with this approach

 Must deal with interpenetration

 Tunnelling problem (small bodies, high velocities, large Δt)

 Stacking problem (will talk about this later...)



Collision Manifolds

 Area of contact (manifold) between colliding bodies can be

 a single point

 a discreet number of points

 a continuum of points (line / area)

 a mix of the above

 Common occurrences

 corner with side (vertex – face)

 edge with edge (edge – edge)

 edge with surface (edge – face)

 Other types (rare)

 corner with corner

 corner with edge

 Lines / areas of contacts simplified to discreet points

point of contact line of contact

area of contact multiple areas of contact



Collision Detection Output

 For each discreet point of collision we need

 Point of contact

 Location where collision has occurred

Contact normal vector ň

 Direction of the collision

 Penetration distance p

 For resolving interpenetration
n̂

p



Sphere Collision Detection Example

 Sphere 1, centre at p1, radius r1

 Sphere 2, centre at p2, radius r2

 Spheres in contact / overlapping when

 If overlapping, then penetration p is

 Contact normal ň is

 Point of contact pc is (approximately)
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Collision Detection Performance

 Simplest solution: test all possible body pairs – n(n-1)/2 

combinations!

 Better approaches: partition space for better 

performance, for example:

 Regular grids

 Quadtrees (2D) / octrees (3D)

 KD-trees

 co-ordinate sorting



Regular Grids

 Test only bodies sharing same cells

 Example, test only the following

 (1) and (2)

 (3) and (4)

 (3) and (5)

 (4) and (5)

 (5) and (6) – body (5) spans 2 cells

 Note: (7), (8), (9) ignored

 Only 5 out of 36 possible combinations tested!
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3
4

5

6

7

8

9



Collision Response

 In a real collision

 Bodies undergo compression, followed by expansion before breaking contact, over short 

period of time

 During compression and expansion phases, repulsive forces (along contact normal) 

accelerate bodies apart

 Linear and angular velocities change gradually throughout collision

 In a simulated collision between perfectly rigid bodies

 We avoid simulating compression and expansion phases

 We model repulsive force by instantaneous change in momentum (impulse)

 Linear and angular velocities change instantly

   22221111 nnnn mm vvJvvJ 

1J
2J



Coefficient of Restitution

 In a frictionless rigid body collision, relative velocity of contact points

 changes only along contact normal

 is unaffected along perpendicular direction to normal (surface tangent)

 Collision modelled by restitution coefficient e with value between 0 and 1

 e = 1 => perfectly elastic collision

 e = 0 => perfectly inelastic (sticky) collision

 measured empirically e.g. wooden ball hitting concrete e ≈ 0.6 
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Collision Effects

 Relative velocity of contact points changes according to coefficient e (as per 

previous slide)

 Can compute contact point velocity from linear and angular body velocity

 Then compute relative velocity of contact points

 Several substitutions later lead to...

bodycontactbodycontact ωrvv 

bodyv

bodyω

pointv

pointrcontact1contact2 vvv r



Collision Equation

 Step 1: Computation of impulse magnitude j

 Step 2: Vector forms of impulses j1, j2

 Step 3a: New linear velocities v’1, v’2

 Step 3b: New angular velocities ω’1, ω’2
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Solving Interpenetration

 Option 1 (Simple)

 Move each body away by half penetration along contact normal

 Option 2 (Better)

 Move each body away taking mass into consideration

 Option 3 (Even Better)

 Apply ‘impulse’ equation at positional level (handles rotation)
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Collision Algorithm

 For each collision

(1) Compute collision impulse

(2) Update linear velocities

(3) Update angular velocities

(4) Solve body interpenetration

 Problems

 Solving one interpenetration may cause another

 Cannot handle stacks of bodies



The Stacking Problem

Frame 0: Initial State Frame 1: Motion Frame 1: Collision Detection Frame 1: Collision Resolution

Frame 2: Motion Frame 2: Collision Detection Frame 2: Collision Resolution Frame 3: Motion

Frame 3: Collision Detection Frame 3: Collision Resolution After several frames... Stack topples!

...



Simultaneous Collision Resolution

 All collisions considered simultaneously

 Solves (or minimises) stacking problem

 Various solutions (look up for fun...)

 Shock Propagation

 Iterative Solver

 Linear Complementary Problem Formulation



Further Topics on Physics Animation

 Simulating friction, for example:
 Static box on inclined plane

 Tyre traction

 Joints, for example:
 Ball-and-socket

 Hinges

 Motors

 Modelling Forces, for example:
 Springs

 Buoyancy



Some References

 Physics Engines

http://en.wikipedia.org/wiki/Physics_engine

 Collision Detection

http://en.wikipedia.org/wiki/Collision_detection

 Collision Response

http://en.wikipedia.org/wiki/Collision_response

 List of Inertia Tensors

http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors

 Octrees

http://en.wikipedia.org/wiki/Octree

 Open Source / Free Physics Engines

http://www.thefreecountry.com/sourcecode/physics.shtml

 Farseer Physics Engine (XNA Friendly)

http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm
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