PHYSICS-BASED ANIMATION

CSA2207

Colin Vella

Animated Graphics

Presentations

Entertainment Media

Simulations

Computer Games

Digital Animation Approaches

Scripted Animation

- Ideal for predetermined sequences
- Requires prescription of the complete sequence
- Can be designed for dramatic effect
- Requires skilled animators for realistic effects
- Animator resources / effort must scale in proportion to complexity

Interactive Animation

- Ideal for interactive applications
- Requires a physical model and initial conditions
- Animation cannot be controlled directly
- Realism is a by-product of physics modelling
- Computation resources must scale in proportion to complexity

Interactive Animation Applications

Engineering Design

Virtual Reality

Training Simulators

Computer Games

Existing Solutions

- Commercial / Closed Source
 - Havoc Physics[™]
 - Nvidia PhysX[™]

- Community Driven / Open Source
 - Bullet
 - Open Dynamics Engine[™]
 - Farseer

Physics Theory

- Classical Mechanics
 Rigid Body Dynamics
 Soft Body Dynamics
- Concepts
 - Linear and Angular Motion
 - Forces and Inertia
 - Collisions, Contact, Friction
 - Motion Constraints

Physical Models for Animation

Analytical Models

Numerical Models

Physical Models for Animation

Analytical Models

- Compute state as a function of time
- Computationally efficient
- Very accurate (no error accumulation)
- Limited to simple predictable configurations with no interaction
- Requires solution for every class of problem

Numerical Models

- Iteratively update state over small timeframes
- Polynomial complexity
- Numerical errors creep into simulations over time
- Can handle interactive configurations of arbitrary complexity
- Generic approach suitable to many problems

Analytical Model Example

Vector Equations of Motion

$$\mathbf{p}(t) = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2 \qquad \mathbf{v}(t) = \mathbf{u} + \mathbf{a}t$$
$$\mathbf{a}(t) = \begin{bmatrix} 0 & -g \end{bmatrix}$$

Algorithm

- (1) Let t := 0
- (2) Set initial velocity u
- (3) Compute **p**(*t*)
- (4) Let $t := t + \Delta t$
- (5) Draw projectile
- (6) Go to step (3)

Component Equations of Motion

 $p_{x}(t) = u_{x}t \qquad v_{x}(t) = u_{x} \qquad a_{x}(t) = 0$ $p_{y}(t) = u_{y}t - \frac{1}{2}gt^{2} \qquad v_{y}(t) = u_{y} - gt \qquad a_{y}(t) = -g$

Analytical Model Example

Numerical Example $\mathbf{u} = \begin{bmatrix} 3 & 4 \end{bmatrix}$ *i.e.* $u_x = 3$ $u_y = 4$ $\mathbf{a} = \begin{bmatrix} 0 & -1 \end{bmatrix}$ *i.e.* $a_x = 0$ $a_y = -1$ $\Delta t = 1$ $p_x(t) = u_x t = 3t$ $p_y(t) = u_y t + \frac{1}{2}a_y t^2 = 4t - \frac{1}{2}t^2$

Time	$p_x=3t$	$p_{y} = 4t - \frac{1}{2}t^{2}$	$p(t)=[p_x p_y]$
0	0.0	0.0	[0.0 0.0]
1	3.0	3.5	[3.0 3.5]
2	6.0	6.0	[6.0 6.0]
3	9.0	7.5	[9.0 7.5]
4	12.0	8.0	[12.0 8.0]
5	15.0	7.5	[15.0 7.5]
6	18.0	6.0	[18.0 6.0]
7	21.0	3.5	[21.0 3.5]
8	24.0	0.0	[24.0 0.0]

Numerical Animation Algorithm

State Initialisation

- What constitutes state?
- For each element (body)
 - Position
 - Orientation
- But also
 - Linear / Angular Velocity
 - Linear / Angular Acceleration
 - External Forces

(will deal with angular motion later...)

Initialise State

Representing Position

Representing Orientation

- Various representation options
- Bodies rotate around axis passing through a 'central' point (centre of mass)
- More on this later...

State Update

For each body

- Position changes due to linear velocity
- Orientation changes due to angular velocity
- Linear / angular velocity changes
 - due to linear / angular acceleration
 - due to some event, e.g. collision

Linear / angular acceleration results from external forces

Representing Linear Velocity

2D or 3D Vectors

$$\mathbf{v} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}$$

Velocity is rate of change of position

$$\mathbf{v} = \frac{d\mathbf{p}}{dt}$$
 i.e. $v_x = \frac{dp_x}{dt}$ $v_y = \frac{dp_y}{dt}$ $v_z = \frac{dp_z}{dt}$

i.e. integrating velocity over time gives position

$$\mathbf{p} = \mathbf{s} + \int_{t} \mathbf{v} dt \qquad i.e. \qquad p_{x} = s_{x} + \int_{t} v_{x} dt \qquad p_{y} = s_{y} + \int_{t} v_{y} dt \qquad p_{z} = s_{z} + \int_{t} v_{z} dt$$

and if velocity constant, then

$$\mathbf{p} = \mathbf{s} + \mathbf{v}t$$
 i.e. $p_x = s_x + v_x t$ $p_y = s_y + v_y t$ $p_z = s_z + v_z t$

Representing Linear Acceleration

2D or 3D Vectors

$$\mathbf{a} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}$$

Acceleration is rate of change of velocity

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$
 i.e. $a_x = \frac{dv_x}{dt}$ $a_y = \frac{dv_y}{dt}$ $a_z = \frac{dv_z}{dt}$

i.e. integrating acceleration over time gives velocity

$$\mathbf{v} = \mathbf{u} + \int_{t} \mathbf{a} dt$$
 i.e. $v_x = u_x + \int_{t} a_x dt$ $v_y = u_y + \int_{t} a_y dt$ $v_z = u_z + \int_{t} a_z dt$

and if acceleration constant, then

$$\mathbf{v} = \mathbf{u} + \mathbf{a}t$$
 i.e. $v_x = u_x + a_x t$ $v_y = u_y + a_y t$ $v_z = u_z + a_z t$

Numerical Integration

- Equations $\mathbf{p} = \mathbf{s} + \mathbf{v}t$ and $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ valid only when \mathbf{v} and \mathbf{a} constant
- □ If **v** and **a** are variable, but *t* sufficiently small ($t = \Delta t$), we can use these equations to calculate approximations for **p** and **v**
- We can calculate new value for a and repeat previous step
- This results in a *first order approximation* of the path taken by position p

Numerical Integration Example

Vector Equations of Motion

 $\mathbf{p}(0) = \mathbf{s} = \begin{bmatrix} 0 & 0 \end{bmatrix}$ $\mathbf{p}(t + \Delta t) \approx \mathbf{p}(t) + \mathbf{v}(t)\Delta t$ $\mathbf{v}(0) = \mathbf{u}$ $\mathbf{v}(t + \Delta t) \approx \mathbf{v}(t) + \mathbf{a}(t)\Delta t$

Component Equations of Motion

 $v_{v}(0) = u_{v}$

$$p_{x}(0) = \mathbf{s}_{x} = 0 \qquad p_{x}(t + \Delta t) \approx p_{x}(t) + v_{x}(t)\Delta t$$

$$p_{y}(0) = \mathbf{s}_{y} = 0 \qquad p_{y}(t + \Delta t) \approx p_{y}(t) + v_{y}(t)\Delta t$$

$$v_{x} = u_{x}$$

$$v_{y}(0) = u_{y} \qquad v_{y}(t + \Delta t) \approx v_{y}(t) - g\Delta t$$

Algorithm

(1) Let **p** := **s**, **v** := **u**, **a** := [0 -g]

- (2) Let $p' := p + v \Delta t$, $v' := v + a \Delta t$
- (3) Let **p** := **p**', **v** := **v**'
- (4) Draw projectile
- (5) Go to step (2)

Numerical Model Example

Numerical Example

 $p(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$ $v(0) = \begin{bmatrix} 3 & 4 \end{bmatrix}$ $a = \begin{bmatrix} 0 & -1 \end{bmatrix}$ $t = 0, \quad \Delta t = 1$

Time	р	V	a	p'=p+v	v'=v+a
0	[0 0]	[3 4]	[0 -1]	[3 4]	[3 3]
1	[3 4]	[3 3]	[0 -1]	[6 7]	[3 2]
2	[6 7]	[3 2]	[0 -1]	[9 9]	[3 1]
3	[9 9]	[3 1]	[0 -1]	[12 10]	[3 0]
4	[12 10]	[3 0]	[0 -1]	[15 10]	[3 -1]
5	[15 10]	[3 -1]	[0 -1]	[18 9]	[3 -2]
6	[18 9]	[3 -2]	[0 -1]	[21 7]	[3 -3]
7	[21 7]	[3 -3]	[0 -1]	[24 4]	[3 -4]
8	[24 4]	[3 -4]	[0 -1]	[27 0]	[3 -5]
9	[27 0]	[3 -5]	[0 -1]		

Analytic vs Numeric Results

- We have angular equivalents of numerical equations for linear motion
 - $\Box \phi$ is orientation
 - $\square \omega$ is angular velocity
 - $\square \alpha$ is angular acceleration

Linear Equations

 $\mathbf{p}(t + \Delta t) \approx \mathbf{p}(t) + \mathbf{v}(t) \Delta t$

 $\mathbf{v}(t + \Delta t) \approx \mathbf{v}(t) + \mathbf{a}(t)\Delta t$

Angular Equations

 $\varphi(t + \Delta t) \approx \varphi(t) + \omega(t) \Delta t$

 $\boldsymbol{\omega}(t + \Delta t) \approx \boldsymbol{\omega}(t) + \boldsymbol{\alpha}(t) \Delta t$

Option 1: Scalar Angles

- $\square \varphi, \omega, \alpha$ expressed as scalars (in radians)
- φ must be reduced to range [- π .. π] by adding / subtracting 2π

$$\varphi(t + \Delta t) \approx \varphi(t) + \omega(t)\Delta t \qquad \omega(t + \Delta t) \approx \omega(t) + \alpha(t)\Delta t$$

Option 2: 2D Rotation Matrices

- Φ expressed as 2D rotation matrix
- Angle of $\boldsymbol{\Phi}$ automatically falls within $[-\pi .. \pi]$

 $\Phi = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$

- ω , α still expressed as scalars
- Must convert ω to rotation matrix to update φ

$$\Phi(t + \Delta t) \approx \Phi(t) \begin{bmatrix} \cos \omega(t) \Delta t & -\sin \omega(t) \Delta t \\ \sin \omega(t) \Delta t & \cos \omega(t) \Delta t \end{bmatrix}$$

Angular velocity still updated as scalar

$$\omega(t + \Delta t) \approx \omega(t) + \alpha(t)\Delta t$$

 ϕ loses orthogonality after a while, need renormalisation

- Option 3: Complex Angles
 - φ expressed as complex number of unit length
 - Angle of φ automatically falls within $[-\pi ... \pi]$

$$\mathbf{\phi} = e^{i\varphi\Delta t} = \cos\varphi\Delta t + i\sin\varphi\Delta t$$

- ω , α still expressed as scalars
- Must convert ω to complex number to update φ

$$\boldsymbol{\varphi}(t + \Delta t) \approx \boldsymbol{\varphi}(t) e^{i\omega(t)\Delta t}$$

Angular velocity integration still computed as scalar

$$\omega(t + \Delta t) \approx \omega(t) + \alpha(t) \Delta t$$

• May need to renormalise φ after a while

$$\boldsymbol{\varphi}' = \frac{1}{|\boldsymbol{\varphi}|} \, \boldsymbol{\varphi}$$

Comparison of 2D Rotation Structures

	Scalar Angles	2D Rotation Matrices	Complex Angles
Pros	 Very compact representation (1 scalar element) Very cheap computation 	 Solves angle discontinuity Can reuse for visualisation 	 Solves angle discontinuity Compact representation (2 scalar elements) Cheap ω conversion Cheap conversion to matrix for visualisation Cheap renormalisation
Cons	 Must handle angle discontinuity Very costly conversion to matrix for visualisation 	 Waste storage space (4 scalar elements Expensive computations Costly ω conversion Costly renormalisation 	 Less compact than scalar angles Visualisation matrix still needs to be computed, but cheap

Option 1: Scaled Axis Representation

- $\square \phi, \omega, \alpha$ expressed as vectors
 - Length represents scale of rotation
 - Direction represents axis of rotation
 - Rotation convention follows right-hand rule
- Must reduce $|\varphi|$ to range $[0.. \pi]$ by subtracting 2π
- Examples
 - $\varphi = [0 \ 0 \ \pi/2]$ is a 90° anti-clockwise rotation around Z-axis

ω

Z

- $\omega = [4\pi \ 3\pi \ 0]$ is angular velocity of $5\pi/s$ around axis y=3x/4
- $\alpha = [2\pi \ 0 \ 0]$ is angular acceleration of $2\pi/s^2$ around axis X-axis

$$\varphi(t + \Delta t) \approx \varphi(t) + \omega(t)\Delta t$$
 $\omega(t + \Delta t) \approx \omega(t) + \alpha(t)\Delta t$

Option 2: 3D Rotation Matrices

• $\boldsymbol{\Phi}$ expressed as 3D rotation matrix

$$\mathbf{\Phi} = \mathbf{R}_{\hat{\mathbf{n}},\varphi} = \begin{bmatrix} n_x^2 + (1 - n_x^2)c & n_x n_y (1 - c) - n_z s & n_x n_z (1 - c) + n_y s \\ n_x n_y (1 - c) + n_z s & n_y^2 + (1 - n_y^2)c & n_y n_z (1 - c) - n_x s \\ n_x n_z (1 - c) - n_y s & n_y n_z (1 - c) + n_x s & n_z^2 + (1 - n_z^2)c \end{bmatrix} \quad c = \cos\varphi$$

$$s = \sin\varphi$$

- \square ω , α still expressed as scaled axes representations
- Must convert ω to rotation matrix to update Φ
- Angular velocity still updated as vector

$$\boldsymbol{\omega}(t + \Delta t) \approx \boldsymbol{\omega}(t) + \boldsymbol{\alpha}(t) \Delta t$$

 $\Phi(t + \Delta t) \approx \mathbf{R}_{\bar{\omega}, |\omega|} \Phi(t)$

 $\square \Phi$ loses orthogonality after a while, need renormalisation

- Option 3: Quaternion Angles
 - About Quaternions
 - Like complex numbers, but in 4D
 - Have rules for addition, subtraction, multiplication etc.
 - Quaternions for Rotation
 - 3D equivalent of complex angles for 2D
 - Pros and cons analogous to complex numbers for 2D angular motion

Quaternions

Inverse

- 4D vectors with a special multiplicative operation
- Can be represented as a 4-element vector or a scalar / 3D vector pair

$$\mathbf{q} = \begin{bmatrix} s & \mathbf{v} \end{bmatrix} = \begin{bmatrix} s & v_x & v_y & v_z \end{bmatrix}$$

• Norm (Magnitude)
$$|\mathbf{q}| = [[s \ v]] = \sqrt{s^2 + v \cdot v} = \sqrt{s^2 + v_x^2 + v_y^2 + v_z^2}$$

• Conjugate
$$\mathbf{q}^* = \begin{bmatrix} s & \mathbf{v} \end{bmatrix}^* = \begin{bmatrix} s & -\mathbf{v}_x & -\mathbf{v}_y & -\mathbf{v}_z \end{bmatrix}$$

 $\square \text{ Multiplication} \qquad \mathbf{q}_1 \mathbf{q}_2 = \begin{bmatrix} s_1 & \mathbf{v}_1 \end{bmatrix} \begin{bmatrix} s_2 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} s_1 s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2 & s_1 \mathbf{v}_2 + s_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2 \end{bmatrix}$

$$\mathbf{q}^{-1} = \frac{\mathbf{q}^*}{|\mathbf{q}|} = \frac{\begin{bmatrix} s & -\mathbf{v} \end{bmatrix}}{\sqrt{s^2 + \mathbf{v} \cdot \mathbf{v}}}$$

Rotation Quaternions

- Unit quaternions can be used to rotate vectors
- **Rotation** by θ radians around unit vector **n**

$$\hat{\mathbf{q}} = \begin{bmatrix} \cos\frac{\theta}{2} & \hat{\mathbf{n}}\sin\frac{\theta}{2} \end{bmatrix} \qquad |\hat{\mathbf{q}}| = 1$$

Can rotate vector v to new vector v' as follows

$$\begin{bmatrix} s' & \mathbf{v}' \end{bmatrix} = \hat{\mathbf{q}} \begin{bmatrix} 0 & \mathbf{v} \end{bmatrix} \hat{\mathbf{q}}^*$$

Equation can be abbreviated for convenience

$$v' = \hat{q} v \hat{q}^*$$

Quaternion-Based Orientation

- Option 3: Quaternion Angles
 - \bullet ϕ expressed as a quaternion of unit norm
 - Angle of φ automatically falls within $[-\pi .. \pi]$

$$\mathbf{\phi} = \mathbf{q}_{\hat{\mathbf{n}},\varphi} = \begin{bmatrix} \cos \frac{\varphi}{2} & \hat{\mathbf{n}} \sin \frac{\varphi}{2} \end{bmatrix}$$

- \circ ω , α still expressed as scaled axis representations
- **•** Must wrap ω in quaternion to update φ

$$\varphi(t + \Delta t) \approx \varphi(t) + \frac{\Delta t}{2} \begin{bmatrix} 0 & \omega \end{bmatrix} \varphi(t)$$

Angular velocity integration still computed as scalar

$$\omega(t + \Delta t) \approx \omega(t) + \alpha(t) \Delta t$$

• May need to renormalise φ after a while

$$\boldsymbol{\varphi}' = \frac{1}{|\boldsymbol{\varphi}|} \boldsymbol{\varphi}$$

Comparison of 3D Rotation Structures

	Scaled Axis Representations	3D Rotation Matrices	Quaternion Angles
Pros	 Very compact representation (3 scalar elements) Very cheap computation 	 Solves angle discontinuity Can reuse for visualisation or cheaply convert to 4D homogenous matrix 	 Solves angle discontinuity Compact representation (4 scalar elements) Cheap ω conversion Reasonably cheap conversion to matrix for visualisation Cheap renormalisation
Cons	 Must handle angle discontinuity Very costly conversion to 3D/4D matrix for visualisation 	 Wastes storage space (9 scalar elements Expensive matrix computations Costly ω conversion Costly renormalisation 	 Less compact than scaled axis representation Visualisation matrix still needs to be computed, but relatively cheap

State Update (Take 2)

For each body

 Get current linear and angular acceleration (will tackle this next...)

• Update position and orientation $\mathbf{p}(t + \Delta t) \approx \mathbf{p}(t) + \mathbf{v}(t)\Delta t$ $\mathbf{v}(t + \Delta t) \approx \mathbf{v}(t) + \mathbf{a}(t)\Delta t$

• Update linear and angular velocities $\varphi(t + \Delta t) \approx \varphi(t) + \frac{\Delta t}{2} \begin{bmatrix} 0 & \omega \end{bmatrix} \varphi(t)$ $\omega(t + \Delta t) \approx \omega(t) + \alpha(t) \Delta t$

Handle collisions (will tackle this later...)

User / Agent Input

Process User / Agent Input

- Human users / autonomous agents influence physical simulation
- Examples
 - User / AI controlling simulated vehicle
 - Natural phenomena (e.g. gravity or friction)
 - Chain of events (e.g. collisions)
- □ The above result in applied forces
- Forces are source of linear and angular acceleration

- Has magnitude and direction (is a vector)
- Induce linear acceleration
- Induce angular acceleration (when acting off-centre)

Effects of Force

Force induces linear acceleration

- Greater force => greater acceleration
- Greater mass => lesser acceleration
- Acceleration parallel to force

$$\mathbf{f} = m\mathbf{a}$$
 i.e. $\mathbf{a} = \frac{1}{m}\mathbf{f}$

- Application of multiple forces
 - Forces can be summed up as vectors
 - Can work in tandem or cancel out

Torque is 'angular' force

- Magnitude of torque vector gives scale
- Direction gives axis of rotation
- greater force => greater torque
- greater perpendicular distance => greater torque
- Scalar Form

 $\tau = (r\sin\theta)f$

Vector Form

$$\tau = \mathbf{r} \times \mathbf{f}$$

Note: $\ensuremath{\mathbf{c}}$ is centre of mass

Effects of Torque

Torque induces angular acceleration

- Greater torque => greater acceleration
- Greater 'mass' => lesser acceleration
- Angular acceleration parallel to torque (for symmetric bodies)
- Rotation occurs around axis passing through centre of mass

Scalar Torque Equation

$$\tau = I\alpha$$
 i.e. $\alpha = \frac{1}{I}\tau$

Note: Moment of Inertia (*I*) is angular equivalent of mass

Centre of Mass

□ A point in (or outside) body around which mass is evenly distributed

System of point masses m_i at positions \mathbf{r}_i

$$\mathbf{c} = \frac{\sum_{i} m_i \mathbf{r}_i}{\sum_{i} m_i}$$

Continuous body mass m, density function ρ , volume V

$$\mathbf{c} = \frac{1}{m} \int_{\mathbf{r} \in V} \rho(\mathbf{r}) \mathbf{r} d\mathbf{r}$$

Centre of Mass Example

$$\mathbf{c} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} = \frac{1 \times 0 + 2 \times 0.6}{1 + 2} = \frac{1.2}{3} = 0.4m$$

Moment of Inertia

 A measure of mass quantity and distribution around a given axis (usually through centre of mass)

System of point masses m_i at perp. distance r_i from axis

$$I = \sum_{i} m_{i} r_{i}^{2}$$

Solid body with density function ρ , volume V

$$I = \int_{\mathbf{r} \in V} \rho(\mathbf{r}) \mathbf{r}^2 d\mathbf{r}$$

Moment of Inertia Example

$$m_1 = 1kg$$

$$r_1 = 0.4m$$

$$r_2 = 0.2m$$

$$c = 0.4m$$

$$\mathbf{c} = m_1 \mathbf{r}_1^2 + m_2 \mathbf{r}_2^2 = 1 \times 0.2^2 + 2 \times 0.4^2 = 0.36 kgm^2$$

General Torque Equations

- \square For 2D, can use scalar forms of I, τ and α
- For 3D
 - Axis of rotation varies over time
 - Moment of inertia needs to be recalculated every time
 - Torque must take axis into account
 - Elegant Solution:
 - the Inertia Tensor matrix I
 - vector form of the torque equations

$$\boldsymbol{\tau} = \mathbf{I}\boldsymbol{\alpha}$$
 i.e. $\boldsymbol{\alpha} = \mathbf{I}^{-1}\boldsymbol{\tau}$

$$\mathbf{\tau}_{\text{total}} = \sum_{i} \mathbf{\tau}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{f}_{i}$$

Moment of Inertia Tensor

A 3 x 3 matrix of the form

$$\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

 \Box I_{xx} , I_{yy} , I_{zz} are principal moments of inertia around X, Y, Z axes

$$I_{xx} = \int_{V} \rho(\mathbf{r}) (r_{y}^{2} + r_{z}^{2}) dV \qquad I_{yy} = \int_{V} \rho(\mathbf{r}) (r_{x}^{2} + r_{z}^{2}) dV \qquad I_{zz} = \int_{V} \rho(\mathbf{r}) (r_{x}^{2} + r_{y}^{2}) dV$$

 \Box I_{xy} , I_{xz} , I_{yx} , I_{yz} , I_{zx} , I_{zy} are *products of inertia*, usually zero for symmetrical bodies

$$I_{xy} = I_{yx} = -\int_{V} \rho(\mathbf{r}) r_x r_y dV \qquad \qquad I_{xz} = I_{zx} = -\int_{V} \rho(\mathbf{r}) r_x r_z dV$$

$$I_{yz} = I_{zy} = -\int_{V} \rho(\mathbf{r}) r_{y} r_{z} dV$$

Inertia Tensor Example: Sphere

 \Box Solid sphere of uniform density, mass *m*, radius *r*

Inertia Tensor Example: Cuboid

□ Solid cuboid of uniform density, mass *m*, dimensions $w \times h \times d$

$$I_{xx} = \frac{m}{12}(h^{2} + d^{2}) \qquad I_{yy} = \frac{m}{12}(w^{2} + d^{2}) \qquad Y$$

$$I_{zz} = \frac{m}{12}(w^{2} + h^{2})$$

$$I_{xy} = I_{yx} = I_{xz} = I_{yz} = I_{zy} = 0$$

$$I = \begin{bmatrix} \frac{m}{12}(h^{2} + d^{2}) & 0 & 0 \\ 0 & \frac{m}{12}(w^{2} + d^{2}) & 0 \\ 0 & 0 & \frac{m}{12}(w^{2} + h^{2}) \end{bmatrix}$$

Inertia Tensor Example: Cylinder

Solid cylinder of uniform density, mass m, height h, radius r

$$I_{xx} = I_{zz} = \frac{m}{12} (3r^{2} + h^{2}) \qquad I_{yy} = \frac{mr^{2}}{2} \qquad Y$$

$$I_{xy} = I_{yx} = I_{xz} = I_{zx} = I_{yz} = I_{zy} = 0$$

$$I = \begin{bmatrix} \frac{m}{12} (3r^{2} + h^{2}) & 0 & 0 \\ 0 & \frac{mr^{2}}{2} & 0 \\ 0 & 0 & \frac{m}{12} (3r^{2} + h^{2}) \end{bmatrix}$$

State Initialisation (Take 2)

For each body, initialise

- Mass m
- Moment of inertia tensor I
- Position vector p
- \square Orientation quaternion φ
- Linear velocity vector v
- Angular velocity vector $\boldsymbol{\omega}$

User / Agent Input (Take 2)

- For each body
 - Determine applied forces f_i from user / agent input

Accumulate torque

 $\mathbf{\tau}_{\text{total}} = \sum_{i} \mathbf{\tau}_{i}$

State Update (Take 3)

Update State

For each body

Compute linear and angular accelerations

$$\mathbf{a} = \frac{1}{m} \mathbf{f}_{\text{total}}$$
 $\boldsymbol{\alpha} = \mathbf{I}^{-1} \boldsymbol{\tau}_{\text{total}}$

• Update position and orientation $\mathbf{p}(t + \Delta t) \approx \mathbf{p}(t) + \mathbf{v}(t)\Delta t$ $\mathbf{\phi}(t + \Delta t) \approx \mathbf{\phi}(t) + \frac{\Delta t}{2} \begin{bmatrix} 0 & \mathbf{\omega} \end{bmatrix} \mathbf{\phi}(t)$

• Update linear and angular velocities $\mathbf{v}(t + \Delta t) \approx \mathbf{v}(t) + \mathbf{a}(t)\Delta t$

$$\omega(t + \Delta t) \approx \omega(t) + \alpha(t)\Delta t$$

Collision Detection and Response

Need to prevent bodies from interpenetrating
 Need to maintain realism

Two problems:

How to detect a collision?

What to do when a collision occurs?

Collision Detection

- Bodies occupy volume in space
- Collision occurs when volumes overlap on at least one point in space

- Two possible approaches
 - Conservative Advancement: Estimate time of collision before it occurs
 - Retroactive Detection: Let bodies overlap and fix penetration afterwards

Conservative Advancement

In current state update

- For all possible collisions, estimate time of impact Δt_{impact} (less than usual update interval Δt)
- If there is such collision
 - update motion equations by Δt_{impact} (instead of Δt)
 - handle collision (e.g. update velocities)
 - resume normally
- Otherwise if no collision
 - Update motion equations by Δt as usual

Problems of this approach

- Time of impact estimation is harder than testing if bodies overlap
- Simulation comes to virtual stop when lots of bodies in contact
- More difficult to keep constant animation rate

Retroactive Collision Detection

In current state update

- Update motion of all bodies by Δt
- For each overlapping pair of bodies
 - Fix penetration (e.g. back off bodies to earlier position)
 - Handle collision (e.g. update velocities)

Problems with this approach

- Must deal with interpenetration
- **Tunnelling problem (small bodies, high velocities, large** Δt)
- Stacking problem (will talk about this later...)

Collision Manifolds

- Area of contact (manifold) between colliding bodies can be
 - a single point
 - a discreet number of points
 - a continuum of points (line / area)
 - a mix of the above п.
- Common occurrences
 - corner with side (vertex face)
 - edge with edge (edge edge)
 - edge with surface (edge face)
- Other types (rare)
 - corner with corner
 - corner with edge
- Lines / areas of contacts simplified to discreet points

point of contact

line of contact

area of contact

multiple areas of contact

Collision Detection Output

For each discreet point of collision we need

- Point of contact
 - Location where collision has occurred
- Contact normal vector ň
 Direction of the collision
- Penetration distance p
 For resolving interpenetration

Sphere Collision Detection Example

- Sphere 1, centre at \mathbf{p}_1 , radius r_1
- Sphere 2, centre at \mathbf{p}_2 , radius r_2
- Spheres in contact / overlapping when

 $\left|\mathbf{p}_{2}-\mathbf{p}_{1}\right|=d\leq r_{1}+r_{2}$

 \square If overlapping, then penetration p is

$$p = r_1 + r_2 - d$$

Contact normal ň is

$$\hat{\mathbf{n}} = \frac{1}{d} \left(\mathbf{p}_2 - \mathbf{p}_1 \right)$$

Point of contact \mathbf{p}_{c} **is (approximately)**

$$\mathbf{p}_c = \mathbf{p}_1 + \left(r_1 - \frac{p}{2}\right)\hat{\mathbf{n}}$$

Collision Detection Performance

- Simplest solution: test all possible body pairs n(n-1)/2 combinations!
- Better approaches: partition space for better performance, for example:
 - Regular grids
 - Quadtrees (2D) / octrees (3D)
 - KD-trees
 - co-ordinate sorting

Regular Grids

Only 5 out of 36 possible combinations tested!

Collision Response

- In a real collision
 - Bodies undergo compression, followed by expansion before breaking contact, over short period of time
 - During compression and expansion phases, repulsive forces (along contact normal) accelerate bodies apart
 - Linear and angular velocities change gradually throughout collision
- In a simulated collision between perfectly rigid bodies
 - We avoid simulating compression and expansion phases
 - We model repulsive force by instantaneous change in momentum (*impulse*)

$$\mathbf{J}_{1} = m_{1} (\mathbf{v}_{n1}' - \mathbf{v}_{n1}) = -\mathbf{J}_{2} = m_{2} (\mathbf{v}_{n2}' - \mathbf{v}_{n2})$$

Linear and angular velocities change instantly

Coefficient of Restitution

- In a frictionless rigid body collision, relative velocity of contact points
 - changes only along contact normal
 - is unaffected along perpendicular direction to normal (surface tangent)
- **Collision modelled by restitution coefficient** e with value between 0 and 1
 - $e = 1 \Rightarrow$ perfectly elastic collision
 - $e = 0 \Rightarrow$ perfectly inelastic (sticky) collision
 - **•** measured empirically e.g. wooden ball hitting concrete $e \approx 0.6$

$$\mathbf{v}' = \mathbf{v} - (\mathbf{v} \cdot \hat{\mathbf{n}}(1+e))\hat{\mathbf{n}}$$

Collision Effects

- Relative velocity of contact points changes according to coefficient *e* (as per previous slide)
- Can compute contact point velocity from linear and angular body velocity

$$\mathbf{v}_{\text{contact}} = \mathbf{v}_{\text{body}} + \mathbf{r}_{\text{contact}} \times \mathbf{\omega}_{\text{body}}$$

Then compute relative velocity of contact points

$$\mathbf{v}_r = \mathbf{v}_{\text{contact2}} - \mathbf{v}_{\text{contact1}}$$

Several substitutions later lead to...

Collision Equation

□ Step 1: Computation of impulse magnitude *j*

$$j = \frac{-(1+e)\mathbf{v}_r \cdot \hat{\mathbf{n}}}{\frac{1}{m_1} + \frac{1}{m_2} + (I_1^{-1}(\mathbf{r}_1 \times \hat{\mathbf{n}}) \times \mathbf{r}_1 + I_2^{-1}(\mathbf{r}_2 \times \hat{\mathbf{n}}) \times \mathbf{r}_2) \cdot \hat{\mathbf{n}}}$$

Step 2: Vector forms of impulses \mathbf{j}_1 , \mathbf{j}_2

 $\mathbf{j}_1 = j\hat{\mathbf{n}} \qquad \mathbf{j}_2 = -j\hat{\mathbf{n}}$

Step 3a: New linear velocities \mathbf{v}'_1 , \mathbf{v}'_2

$$\mathbf{v}_1' = \mathbf{v}_1 + \frac{1}{m_1} \mathbf{j}_1$$
 $\mathbf{v}_2' = \mathbf{v}_2 + \frac{1}{m_2} \mathbf{j}_2$

Step 3b: New angular velocities ω'_{1} , ω'_{2}

$$\boldsymbol{\omega}_1' = \boldsymbol{\omega}_1 + \mathbf{I}_1^{-1} \big(\mathbf{r}_1 \times \mathbf{j}_1 \big) \qquad \boldsymbol{\omega}_2' = \boldsymbol{\omega}_2 + \mathbf{I}_2^{-1} \big(\mathbf{r}_2 \times \mathbf{j}_2 \big)$$

Solving Interpenetration

- Option 1 (Simple)
 - Move each body away by half penetration along contact normal

$$\mathbf{p}_1' = \mathbf{p}_1 - \frac{p}{2}\hat{\mathbf{n}}$$
 $\mathbf{p}_2' = \mathbf{p}_2 + \frac{p}{2}\hat{\mathbf{n}}$

Option 2 (Better)

Move each body away taking mass into consideration

$$\mathbf{p}_{1}' = \mathbf{p}_{1} - \frac{m_{2}}{m_{1} + m_{2}} p \hat{\mathbf{n}}$$
 $\mathbf{p}_{2}' = \mathbf{p}_{2} + \frac{m_{1}}{m_{1} + m_{2}} p \hat{\mathbf{n}}$

Option 3 (Even Better)

Apply 'impulse' equation at positional level (handles rotation)

Collision Algorithm

For each collision

- (1) Compute collision impulse
- (2) Update linear velocities
- (3) Update angular velocities
- (4) Solve body interpenetration

Problems

- Solving one interpenetration may cause another
- Cannot handle stacks of bodies

The Stacking Problem

Simultaneous Collision Resolution

- All collisions considered simultaneously
- Solves (or minimises) stacking problem
- Various solutions (look up for fun...)
 - Shock Propagation
 - Iterative Solver
 - Linear Complementary Problem Formulation

Further Topics on Physics Animation

- Simulating friction, for example:
 - Static box on inclined plane
 - Tyre traction
- □ Joints, for example:
 - Ball-and-socket
 - Hinges
 - Motors
- Modelling Forces, for example:
 - Springs
 - Buoyancy

Some References

Physics Engines

http://en.wikipedia.org/wiki/Physics_engine

Collision Detection

http://en.wikipedia.org/wiki/Collision detection

Collision Response

http://en.wikipedia.org/wiki/Collision response

List of Inertia Tensors

http://en.wikipedia.org/wiki/List of moment of inertia tensors

Octrees

http://en.wikipedia.org/wiki/Octree

Open Source / Free Physics Engines

http://www.thefreecountry.com/sourcecode/physics.shtml

Farseer Physics Engine (XNA Friendly)

http://www.farseergames.com/storage/farseerphysics/Manual2.1.htm