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Introduction

Code optimisations usually involve the replacement
(transformation) of code from one sequence into another
which is faster and that does exactly the same thing.

We have already discussed some local code optimisations (e.g.
dead-code elimination, common subexpressions, etc).

We now further focus into this class of techniques and start
looking into global code optimisations.

Again, we delve into transformations that are machine
independent, i.e. optimisations that ignore target machine
instructions, such as the impact on register allocation.
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Program Transformations

Transformations on programs can be grouped as follows:

Eliminate useless and unreachable code.

Code motion.

Specialise a computation (e.g. convert a multiply into a shift
operation)

Eliminate a redundant computation. (difficult and usually
needs some form of proof)

Enable other transformations.
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Local Code Optimisation - Within a Basic Block

The notion of a basic block is useful to represent context
within the IR of a program.

A basic block is defined as a sequence of consecutive
three-address code with the following properties:

The flow of control can only enter a basic block through the
first instruction in the block. That is, there are no jumps into
the middle of the block.
Control will leave the block without halting or branching,
except possibly at the last instruction, in the block.

These basic blocks are used as nodes in a program flow
graph, with edges indicating which blocks can follow which
other blocks.
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Building Basic Blocks

An algorithm to build basic blocks takes as input the IR code
produced by the front-end of the compiler.

The output is a list of basic blocks (partitioning of IR) in
which each instruction is assigned to exactly one basic block.
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Building Basic Blocks - Algorithm

Leaders : The algorithms first determines which instructions
in the intermediate code are leaders, i.e. the first instruction
of a basic block. Leaders are determined as follows:

R1: The first three-address instruction in the intermediate
code is a leader.
R2: Any instruction that is the target of a conditional or
unconditional jump is a leader.
R3: Any instruction that immediately follows a conditional or
unconditional jump is a leader.

Leaders determine entry points into a program’s flow of
control.

A basic block is created for each leader consisting of itself and
all instructions up to but not including the next leader.
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Matrix::Identity() - Example 527 Aho

Algorithm 1 Function to turn a matrix into an identity matrix

1: for i = 1 to 10 do
2: for j = 1 to 10 do
3: a[i,j] = 0.0;
4: end for
5: end for
6: for i = 1 to n do
7: a[i,i] = 1.0;
8: end for
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Intermediate Code for Matrix::Identity()

Algorithm 2 Intermeidate code for matrix::identity
1: i = 1
2: j = 1
3: t1 = 10 * i
4: t2 = t1 + j
5: t3 = 8 * t2
6: a[t3] = 0.0
7: j = j + 1
8: if j ≤ 10 goto (3)
9: i = i + 1

10: if i ≤ 10 goto (2)
11: i = 1
12: t5 = i - 1
13: a[t5] = 1.0
14: i = i + 1
15: if i ≤ 10 goto (12)
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Leaders and blocks in IR sequence

Instruction 1 is a leader (by rule 1) of the algorithm.

Jumps are located at lines 8, 10 and 15. By rule 2, the targets
of these jumps are leaders. Therefore intructions 3, 2 and 12
are leaders.

Each instruction following a jump is a leader. These are
instructions 9 and 11.

Basic blocks are formed between these leader instructions
resulting in:

B0: 1 → 1
B1: 2 → 2
B2: 3 → 8
B3: 9 → 10
B4: 11 → 11
B5: 12 → 15
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Next-Use Information

Knowing when the value of a variable will be used next is
essential for generating good code.

If the value of a variable that is currently in a register will
never be used subsequently, then that register can be better
used and assigned to another variable.

Assume two three-address statements i (which assigs a value
to x) and j (with x as an operand). The use of a name is
defined as follows:

If statement j has x as an operand (? = x), and control can
flow from statement i to j along a path that has no
intervening assignments to x, then we say that statement j
uses the value of x computed at statement i
x is live at statement i
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Determining Next-Use

For statements such as x = y + z, the compiler need to
determine what the next uses of x, y and z are.

Uses can either be within the current basic block or in a
different block.

We first need to determine the uses of these names within the
basic block where the statement x = y + z is located.

Given an input block B consisting of three-address code
statements i:x = y + z, we attach liveness and next-use
information to x, y and z.
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Determining Next-Use - Algorithm

Starting at the last statement in B, scanning backwards to the
beginning of B. At each statement i: x = y op z

Attach to statement i the information currently found in the
symbol table regarding the next use and liveness of x, y and z.
In the symbol table, set x to ’not live’ and ’no next use’
In the symbol table, set y and z to ’live’ and the next uses of y
and z to i

At the end of the algorithm we end up with liveness and
next-use information of the variables within a block B.

This procedure is carried over all basic blocks derived from the
IR code.
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Flow-Graphs

A flow-graph represents the flow of control between basic
blocks.

An edge between blocks A and B is created only if it is
possible for the first instruction in B to immediately follow the
last instruction in block A. This is determined as follows:

There is a conditional jump from the end of A to the start of B
B immediately follows A in the original order of the
three-address code instructions, and A does not end in an
unconditional jump.

A is a predecessor to B and B is a successor to A

Two special nodes, entry and exit, that do not correspond to
executable instructions are added to mark the start and end of
the flow-graph.
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Matrix::Identity() Flow-Graph

The three loops in the code are clearly visible in the
flow-graph.

Start points to B0, whereas the only exit point is B5.

Flow-graphs are ordinary graphs and can be represented by
any data-structure which is appropriate for graphs.

Nodes (basic blocks) on the other hand can be represented as
a linked list of instructions. Each node elects one of the
instructions as a leader (start of the list)
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Loops - A good place for improvements

Virtually every program spends most of its time executing in
loops (while-statements, do-while-statements, for-statements)

Therefore the identification of loops in a flow-graph is
important in order to optimise the code generated within
loops.

Using flow-graphs this becomes relatively simple. We say that
a set of nodes L in a flow-graph make a loop if:

There is a node in set L called the loop entry with the property
that no other node in L has a predecessor outside L. That is,
every path from the entry of the entire flow graph to any node
in L goes through the loop entry.
Every node in L has a nonempty path, completely within L, to
the entry of L.

Loops in Matrix::Identity() = {B2}, {B5} and {B1, B2, B3}
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Local Optimisation - Optimisation of Basic Blocks

Local optimisations try to improve code within each basic
block.

Global optimisations looks at how information flows among
basic blocks of a program.

Many local optimisations benefit from the transformation of
the 3AC sequences (in a block) to a DAG (Directed Acyclic
Graph) including:

Elimination of local common subexpressions,
Elimination of dead code,
Reordering of statements that do not depend on one another,
Application of algebraic laws to reorder operands.
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DAG Construction - Aho Page.533

1 Create a node in the DAG for each of the initial values of the
variables appearing in the basic block.

2 Create a node N associated with each statement s within the
block. The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of the
operands used by s.

3 Node N is labelled by the operator applied to s, and also
attached to N is the list of variables for which it is the last
definition within the block.

4 Certain nodes are designated as output nodes. These are the
nodes whose variables are live on exit from the block; that is,
their values may be used later, in another block of the flow
graph. Calculation of these ’live variables’ is a matter for
global flow analysis.
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Finding Common Subexpressions - Aho Page.534

During the construction of a DAG for a basic block, common
sub-expressions can be detected as a new node M is about to
the added.

Before adding, check whether there is another node N with
the same children, in the same order, and with the same
operator. If this is the case then N computes the same value
as M and may be used in its place.

Algorithm 3 Common subexpr detection in a block - Example 1

1: a = b + c
2: b = a - d
3: c = b + c
4: d = a - d
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DAG for basic block
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Example Instructions 2

Algorithm 4 Common subexpr detection in a block - Example 2

1: a = b + c
2: b = b - d
3: c = c + d
4: e = b + c
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Example DAG 2
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Dead Code Elimination

In order to identify dead code in a DAG we need to determine
the liveness of each variable. Assume in the previous slide that
variables a and b are live but c and e are not. Then the DAG
in the previous slide can be pruned as follows.

Root nodes with no live variables can be removed. First node
with e is removed, then node with variable c.
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Using Algebraic Identities

Arithmetic Identities: x+0==0+x==x; x*1==1*x==x;
x/1==x; x-0==x;

Cheaper Ops: x2==x*x; 2*x==x+x; x/2==x*0.5;

Constant Folding: Constant expressions are evaluated at
compile-time. E.g. 2*4.221=8.442.

Commutativity of operators (x*y==y*x): During DAG
construction additional common sub-expressions can be
determined if the compiler takes in consideration
commutativity. Under a * node, the compiler needs to check
both orders of operands (child nodes).
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Problems with Array References

Indexing is an operator applied on array variables. During
DAG constructions it cannot be treated like any other
operator. Why?

Consider the following list of 3AC instructions:

Algorithm 5 3AC with array indexing

1: x = a[i]
2: a[j] = y
3: z = a[i]

Should the compiler replace z = a[i] by the simpler z = x ??
NO, since the second instruction could easily have modified
that value. e.g. j evaluates to the same value as i.
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Problems with Array References

Indexing is an operator applied on array variables. During
DAG constructions it cannot be treated like any other
operator. Why?

Consider the following list of 3AC instructions:

Algorithm 6 3AC with array indexing

1: x = a[i]
2: a[j] = y
3: z = a[i]

Should the compiler replace z = a[i] by the simpler z = x ??
NO, since the second instruction could easily have modified
that value. e.g. j evaluates to the same value as i.
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Handling Array References

Array accesses in DAG are handled by separating assignments
from and to an array as follows,

An assignment from an array, like x = a[i], is represented by
creating a node with operator =[] and two children
representing the initial value of the array, a0 in this case, and
the index i. Variable x becomes a label of this node.

An assignment to an array, like a[j] = y, is represented by a
new node with operator []= and three children representing
a0, j and y. There is no variable labelling this node. IMP The
creation of this node kills previous nodes whose value depends
on a0. A node that has been killed cannot receive more labels
i.e. it cannot become a common sub-expression.
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DAG for basic block with array accesses
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Pointer Assignments and Procedure Calls

With an instruction such as x = *p the program could be
using any variable really (*p).

And with *q = y we can pretty much be assigning the value y
to any variable in the program.

Hence these operators pretty much kill all other previously
constructed nodes in the DAG!!

Same for a procedure. The compiler assumes (unlesss global
data-flow information is available) that the procedure uses
and changes any data it has access to.
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Reassembling basic blocks from DAGs

After performing these optimisations using DAG, the compiler
re-writes the three-address code back for the basic block from
which the DAG was built.

The order of instructions must respect the order of the nodes
in the DAG. Starting from the leafs.

Algorithm 7 Assuming variable b is not live

1: a = b + c
2: d = a - d
3: c = d + c
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Reassembling basic blocks from DAGs

After performing these optimisations using DAG, the compiler
re-writes the three-address code back for the basic block from
which the DAG was built.

The order of instructions must respect the order of the nodes
in the DAG. Starting from the leafs.

Algorithm 8 Assuming all variables are live

1: a = b + c
2: d = a - d
3: b = d
4: c = d + c
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Use of (a limited number of) registers

During code generation the compiler needs to decide on two
important aspects, namely instructions to use and register
allocation.

We now focus on the latter, i.e. optimal allocation of registers.

In general there are four principal uses of registers:

Operands of an operation must be in registers in order to
perform the operation,
Registers are used for temporaries to hold intermediate results
of sub-expressions (i.e. within a BB).
Registers are used to hold (global) values that are computed in
one BB and used in other blocks (e.g. loop index)
Registers are used to maintain information about run-time
storage management, e.g. to manage the run-time stack
pointers.
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A Simple Code Generator

Consider a simple architecture with some set of registers and
exactly one machine instruction that takes the necessary
operands in registers and performs that operation, leaving the
result in a register.

The machine instructions have the form:

LD reg, mem

ST mem, reg

OP reg, reg, reg

A straight-forward code generation algorithm considers each
three-address instruction in turn and decides what loads are
necessry.
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Code Generation Algorithm Data Structures

A data structure is required to store which variables are
currently in a register (and which one it is)

Also, the compiler needs to know whether the memory
location for a given variable currently has the proper value,
since a new value for the variable may have been computed in
a register and not yet stored.

The data structure stores the following descriptors:

For each register, a register descriptor to keep track of the
variables whose current value is in that register.
For each program variable, an address descriptor to keep track
of the locations (register, memory address or stack location)
where the current value of that variable can be found. Symbol
table can be used.
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Code Generation Algorithm - Overview

An integral part of the algorithm is the choice of registers for
each IR code instruction. Recall that operand values need to
be loaded in registers prior to calling the OP instruction.

Assume (for now) that the compiler has a function, called
getReg(I), which given an instruction I, selects registers for
each memory location used in I.

This function has access to both register and address
descriptors for all the variables in the basic block.

The algorithm assumes that there are enough registers to
handle any three-address code operation.
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Code Generation Algorithm - OP Instruction

1 Use getReg(x = y + z) to select registers for x (Rx), y (Ry )
and z (Rz).

2 If y is not in Ry (check with register descriptor for Ry ), then
issue an instruction to load the value of y (from its current
location as determined by the address descriptor for y). Use
instruction LD Ry , y ′.

3 Repeat the process for variable z. If z is not in Rz emit
instruction LD Rz , z ′.

4 Emit instruction ADD Rx , Ry , Rz .
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Code Generation Algorithm - Copy Instruction

The Copy 3AC instruction x = y (assignment statement) is a
important special case.

The function getReg(x = y) returns the same register for
both x and y.

If y is not already in register Ry , then emit instruction LD Ry ,y

Update the register description for Ry so that is now includes
x as one of the values found there.
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Ending the Basic Block

Variables used by the block may end up with their only
location being a register.

If the variable is only a temporary, when the block ends its
value is not needed any longer.

If the variable is live on exit (and even if the compiler is not
usre about that) from the block, then the compiler needs to
emit instructions to store the values back into their respective
memory locations.

For each variable x, the compiler emits ST x, R, where R is a
register in which x’s value exists at the end of the block.
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Managing Register and Address Descriptors - pg 544 Aho.

1 For the instruction LD R,x
1 Change the registor descriptor for register R so it holds only x.
2 Change the address descriptor for x by adding register R as an

additional location.

2 For the instruction ST x,R change the address descriptor for x
to include its own memory location.

3 Check Next Slide ...
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Managing Register and Address Descriptors

1 Check Prev Slide ...

2 Check Prev Slide ...
3 For an operation such as ADD Rx , Ry , Rz , implementing the

3AC instruction x=y+z
1 Change the register descriptor for Rx so that it holds only x.
2 Change the address descriptor for x so that its only location is

Rx .
3 Remove Rx from the address descriptor of any variable other

than x.

4 Check Next Slide ...
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Managing Register and Address Descriptors

1 Check Prev Slide ...

2 Check Prev Slide ...

3 Check Prev Slide ...
4 When processing a copy statement (x=y), after generating

the load for y inti register Ry , if needed, and after managing
descriptors as for all load statements (rule 1):

1 Add x to the register descriptor for Ry .
2 Change the address descriptor for x so that its only location is

Ry .
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Example Execution of Algorithm - pg 546

1 t = a - b

2 u = a - c

3 v = t + u

4 a = d

5 d = v + u

We now run through the code generation steps for this
sequence of 3AC instructions forming one basic block.
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Execution Trace I

1 t = a - b

LD R1, a; LD R2, b; SUB R2, R1, R2;
{ R1={a}, R2={t}, R3={} }
{ a={a,R1},b={b},c={c},d={d},t={R2},u={},v={}}

2 u = a - c

LD R3, c; SUB R1, R1, R3;
{ R1={u}, R2={t}, R3={c} }
{ a={a},b={b},c={c,R3},d={d},t={R2},u={R1},v={}}

3 v = t + u

ADD R3, R2, R1;
{ R1={u}, R2={t}, R3={v} }
{ a={a},b={b},c={c},d={d},t={R2},u={R1},v={R3}}
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Execution Trace II

1 Prev Slide ...

2 Prev Slide ...

3 Prev Slide ...
4 a = d

LD R2, d;
{ R1={u}, R2={a,d}, R3={v} }
{ a={R2},b={b},c={c},d={d,R2},t={},u={R1},v={R3}}

5 d = v + u

ADD R1, R3, R1;
{ R1={d}, R2={a}, R3={v} }
{ a={R2},b={b},c={c},d={R1},t={},u={},v={R3}}

6 exit BB

ST a, R2; ST d, R1;
{ R1={d}, R2={a}, R3={v} }
{ a={a,R2},b={b},c={c},d={d,R1},t={},u={},v={R3}}
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The Function getReg(I)

The code generation algorithm discussed makes use of the
function getRegI which merits some explanation on how it
can be implemented.

The function needs to make absolutely sure that the register
selection choices returned, do not lead to incorrect code due
to the loss of the value of one or more live variables.

The function needs to handle the 3AC operation instructions
x = y + z and x = y

The same procedure is applied for both variables y and z so in
the next slide only x is considered.
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getReg(I) for x = y + z; Choosing register Ry

1 If y is currently in a register, pick a register already containing
y as Ry . Do not emit a machine instruction as none is needed.

2 If y in not in a register, but there is a register that is currently
empty, pick one such register as Ry .

3 If y is not in a register, and there is no register that is
currently empty, the compiler needs to safely choose one that
is currently in use. Let R be the candidate register and v is
one of the variables that is currently contained in R
(according to the register descriptor). The compiler now
needs to check a few things before return R as Ry (next slide)
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Register Re-use - Scoring and Choosing

For each variable v currently held in R check:
1 If the address descriptor for v , states that v is somewhere else

besides R then OK.
2 If v is x , the value begin computed by instruction I , and x is

not also one of the other operands of instruction I (z in this
case) then OK.

3 If v is not used later but is live on exit from the block, then v
will be re-computed again and thus choosing R is OK.

4 If everything fails!!! the compiler needs to generate a ST v, R

instruction in order to place a copy of v in its own memory
location. This operation is called a spill

Finally choose R which the lowest number of store
instructions required.
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getReg(I) for x = y + z; Choosing register Rx

1 Since a new value of x is being computed, a register that
holds only x is always an acceptable choice for Rx . Even if x
is one of y and z , since machine instructions allow for
registers to be the same in one instruction.

2 If y (or z) is not used after instruction I , and Ry holds only
y , if necessary, then Ry can also be used as Rx .
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getReg(I) for x = y; Choosing register Rx

1 Determine the register Ry as decribed in the previous sides,
then always choose Rx = Ry . Easy!!
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Peephole Optimisations

An alternative optimisation strategy is that of first generating
(quickly) naive code then improve the quality of the target
code by applying specific transformations.

Many simple transformations are usually used which can
significantly improve the running time or space requirements
of the target program

Peephile optimisation is done by examining a sliding window
of target instructions (peephole) and replacing instruction
sequences within the peephole by a shorter or faster
alternative.

The peephole is a small, sliding window on a program.
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Peephole Transformations - A few Examples

Consider instruction sequence LD a, R0; ST R0, a; What
transformation can improve this? Assume ST instruction has
no label.

Change instruction sequence to eliminate redundant jumps,

FROM: if debug==1 goto L1; goto L2; L1: print debug info;
L2: move on;
TO: if debug!=1 goto L2; print debug info; L2: move on;

Algebraic simplifications e.g. deleting instructions x=x+0 and
x=x*1 and replacing instruction x2 with cheaper to compute
x ∗ x
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Register Allocation and Assignment

Instructions involving only register operands are much faster
than those involving memory operands (e.g. LD and ST).

Also, processor speeds are usually at least an order of
magnitude faster than memory speeds.

This implies that efficient utilisations of registers is vitally
important in generating optimized code.

We’ve already seen a straight-forward method which
determines how registers are chosen; function getReg(I).

We now look a a couple of alternatives.

Sandro Spina Optimizing Compilers



Global Register Allocation
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Usage Counts
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Register Assignment for Outer Loops
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Optimal Register Allocation by Graph Colouring
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