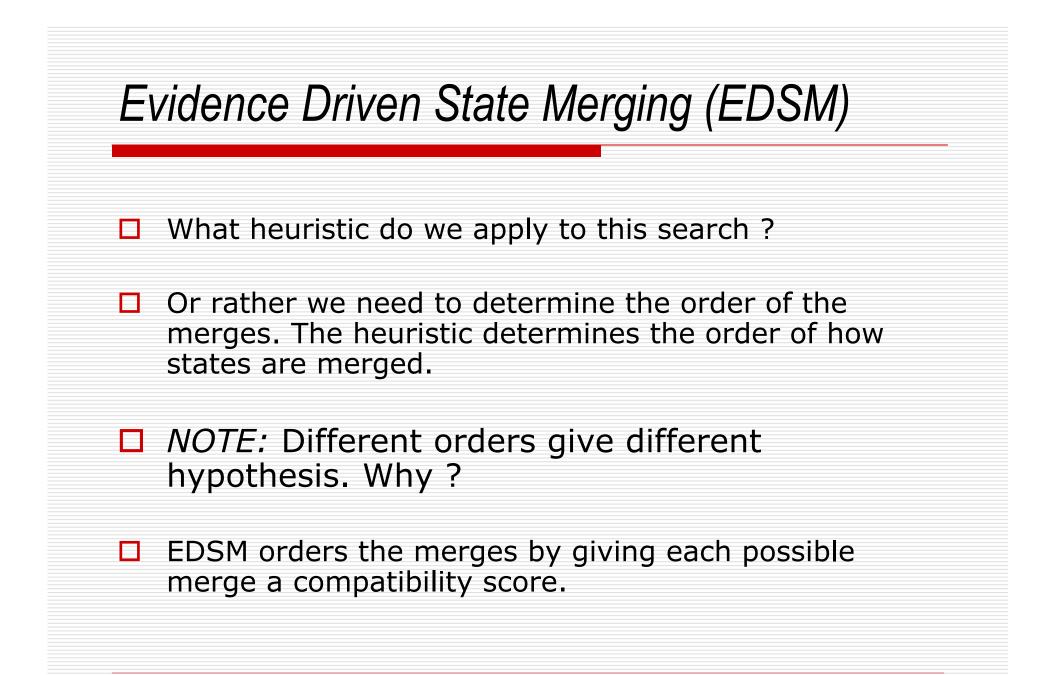
Conversion Masters in IT (MIT) AI as Representation and Search

(Machine Learning: EDSM + Version Search Space) Lecture 006

Sandro Spina

State Merging Algorithms	
	Starting from the APTA we merge states together in order to label the unlabled states in the APTA
	By merging we introduce cycles in the APTA.
	With every merge the hypothesis becomes more general.
	We keep on merging (compatible) states until there are no more compatible merges.
	Finally we output the final hypothesis.



V	Version Space Search	
	Version Space search (Mitchell 1978, 1982) illustrates the implementation of inductive learning as search through a concept space (the set of all concept descriptions consistent with training examples).	
	 The representation of learned knowledge: Eg the concept ball General concept Size (X, Y) ∧ color (X, Z) ∧ shape (X, round) Less General concept Size (X, small) ∧ color (X, Z) ∧ shape (X, round) 	
	<u>A set of operations</u> . Given a set of training instances, the learner must construct a generalisation that satisfies it's goals. Therefore we need operations to manipulate representations. <i>Eg Generalisation or specializing symbolic expressions</i> .	

Generalisation Operators

п

Size (obj1, small) Λ colour (obj1, red) Λ shape (obj1, round)

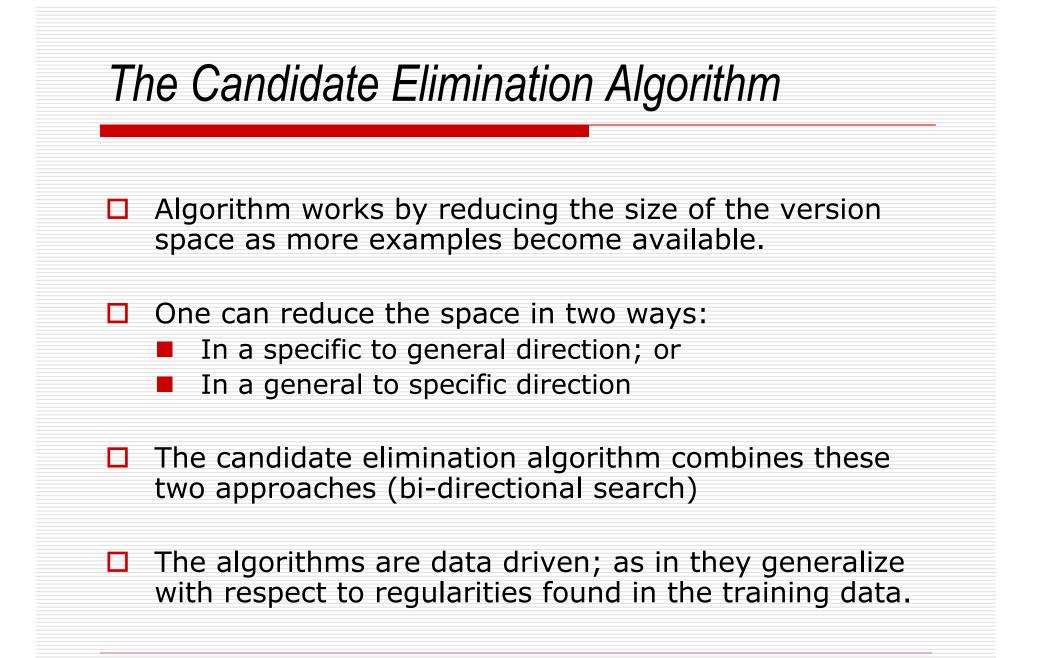
Replacing a single constant with a variable produces the generalizations:

- □ Size (obj1, X) ∧ colour (obj1, red) ∧ shape (obj1, round)
- □ Size (obj1, small) ∧ colour (obj1, X) ∧ shape (obj1, round)
- □ Size (obj1, small) ∧ colour (obj1, red) ∧ shape (obj1, X)
- □ Size (X, small) ∧ colour (X, red) ∧ shape (X, round)
- **1.** Replacing constants with variables
- 2. Dropping conditions from a conjunction expression
- 3. Adding a disjunction to an expression
- 4. Replacing a property with it's parent in a class hierarchy. Eg primary colour is a superclass of red.

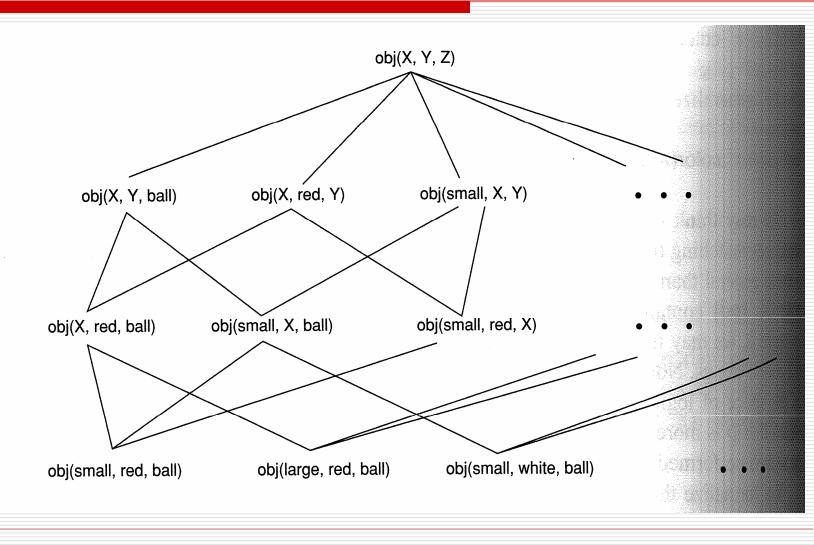
Concept Space and Heuristic search

The concept space is the representation language, together with the operations described in previous slide, defines a space of potential concept definitions.

Heuristic Search. The learner must search this space to find the desired concept. Learning programs must commit to a direction or order of search (inductive bias).



Eg of a concept space obj(X, Y, Z) ...



Specific to general search for hypothesis set S

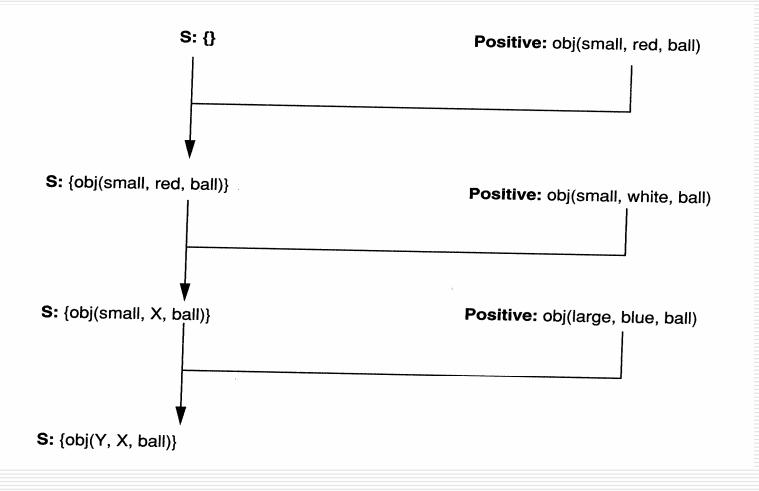
- □ Initialize S to the first +ve training instance;
- N is the set of all -ve instances seen so far;
- For each +ve instance p
 - Begin
 - For every s in S, if s does not match p, replace s with its most specific generalization that matches p;
 - Delete from S all hypothesis more general than some other hypothesis in S
 - Delete from S all hypothesis that match a previously observed -ve instance in N;
 - End;
- For each –ve instance n
 - Begin
 - Delete all members of S that match n;
 - Add n to N to check future hypothesis for overgeneralization;
 - End;

General to specific search for hypothesis set S

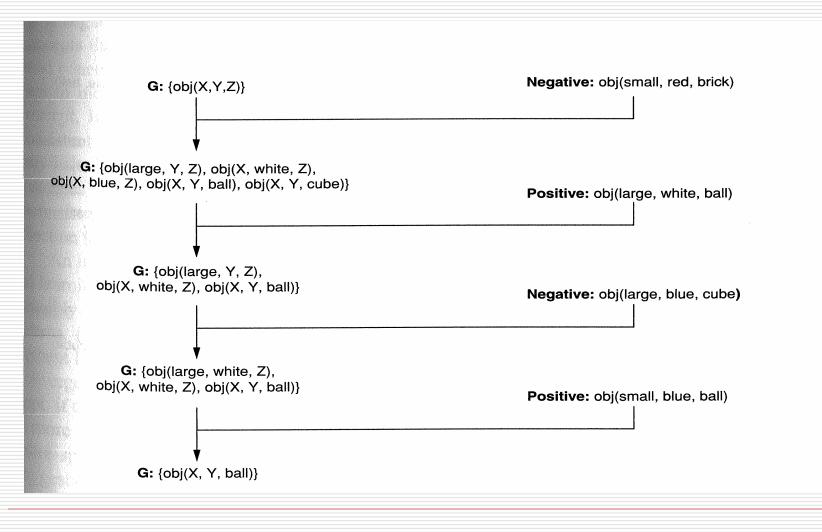
□ Initialize G to contain the most general concept in the space;

- P contains all +ve examples seen so far;
- □ For each -ve instance n
 - Begin
 - For every g in G that matches n, replace g with its most general specialization that do not match n;
 - Delete from G all hypothesis more specific than some other hypothesis in G;
 - Delete from G all hypothesis that fail to match some +ve examples in P;
 - End;
- For each +ve instance p
 - Begin
 - Delete from G all hypothesis that fail to match p;
 - $\Box \quad \text{Add p to P;}$
 - End;

Eg of using the specific \rightarrow generic algo



Eg of using the generic \rightarrow specific algo



Combining the two together		
Keep both sets S and G.		
S contains the most specific description;		
G contains the most generic;		
If G=S and both are singletons, then the algorithm has found a single concept that is consistent with all the data and the algorithm halts;		
If G and S become empty, then there is no concept that covers all +ve instances and none of the -ve instances.		

Eg Combining the two together

