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Heuristic Search

� AI problem solvers employ heuristics in the situations:

� A problem may not have an exact solution. Eg Medical 
diagnosis. A given set of symptoms may have several possible 
causes. Doctors use heuristics to choose the most likely 
diagnosis.

� A problem may have an exact solution BUT the computational 
cost of finding it may be prohibitive. In many problems (such 
as chess, GI, etc), state space grows exponentially with the 
depth of the search. Using a heuristic algorithm can (its 
designer hopes) defeat this combinatorial explosion and find 
an acceptable solution.

� We’ll discuss the second scenario. Always keep in mind that 
heuristics are fallible. Game playing and theorem proving are two 
areas of AI which require heuristics.



An algorithm for heuristic search 

(Best-First Search … hill climbing for now)

� The simplest way to implement a heuristic is through 
a procedure called hill climbing.

� Algorithm:
� Expand current state and evaluate children. 

� If there exists a better child

� The best child is becomes the current state

� Repeat loop

� If not … then the current state is the solution

� Problem of becoming stuck at a local maxima

� Thus if state is not a goal but just a local maxima the 
algorithm fails to find a solution !!!



An algorithm for heuristic search 

(Best-First Search … implementation)

� The evaluation function has to be sufficiently informative to 
avoid local maxima. However if this happens we need a 
method (priority queue) by which to recover from this local 
maxima.

� Like DFS and  BFS, best-first search uses lists to maintain 
states:
� OPEN keeps track of the current fringe of the search
� CLOSED records states already visited

� An added step is necessary to ORDER the states on the open
list according to some heuristic estimate of their ‘closeness’ to 
a goal.

� Hence, each iteration effectively considers the most ‘promising’
state on the open list.



The pseudo-code !!!

� Open := [Start]

� Closed := []

� While open != [] do

� Remove leftmost state X from open

� If X=Goal return path from Str to X else 

� Generate children of X and for each do

� If child is not on open or closed

� Assign heuristic value to child

� Add the child to open

� If child is already on open

� Give state in open shorter path (if shorter found)

� If child is already on closed

� If child reached from shorter path then remove from 
closed and add child to open

� Put X on closed

� Re-order states in open by heuristic merit (leftmost)



Some notes on Best First Search

� By updating the ancestor history of nodes on open and 
closed when they are rediscovered, the algorithm is 
more likely to find a shorter path to a goal

� Always selects the most promising state on open for 
further expansion

� Since the heuristic might be erroneous, it does not 
abandon all the other states but maintains them on open

� IMP the open list allows backtracking from paths that fail 
to produce a goal



Example … 8-puzzle (part i)

The simplest 
heuristic 
counts the tiles 
out of place in 
each state 
when it is 
compared with 
the goal.

Or

This + taking 
into account 
the distance 
the tiles are 
out of place.



Example … 8-puzzle (part ii)

� But both heuristics underestimate the 
difficulty of tile reversals. That is, if two 
tiles are next to each other and the goal 
requires their being in opposite locations, it 
takes (many) more than two moves to put 
them back in place.

� Therefore we add a third measure to 
include in the heuristic that takes into 
account adjacent tiles. For example we 
multiply by 2 for each direct tile reversal



Example … 8-puzzle (part iii)



Example … 8-puzzle (part iv)

� We can (not necessarily) combine these 
heuristics. Sum of distances out of place 
seems the most promising,

� Moreover since we want the shortest path to 
a solution we keep track of the number of tile 
movements we’ve done to reach a particular 
state,

� F(n) = g(n) + h(n)



Example … 8-puzzle (part v)



Example … 8-puzzle (part vi)



Example … 8-puzzle (part vii)

• Implementation using the best-first
Search algorithm. These are the open
And close lists. 

• Note how OPEN is sorted according
to the heuristic used.

• Hence with this algorithm one can 
change the heuristic and see what
happens.!!



Two Player Games – MiniMax Algorithm !!

� Two-person games are more complicated 
than simple puzzles because of the 
existence of a ‘hostile’ and essentially 
unpredictable opponent !!

� Here we describe the MiniMax algorithm 
(with alpha-beta pruning) and implement 
two games, namely, a variant of nim and 
tic-tac-toe.

� Nim game state space can be exhaustively 
searched.



Two Player Games – Nim

� To play this game, a number of tokens are placed on 
a table between the two opponents; at each move, 
the player must divide a pile of tokens into two 
nonempty piles of different sizes.

� Thus, 6 tokens may be divided into piles of 5/1, 4/2 
but not 3/3.

� The player who can no longer make a move loses the 
game.

� Next slide illustrates the search space with 7 tokens



Two Player Games – Nim Search Space



Two Player Games – Generic MiniMax

� We need to account for the actions of the opponent.

� Assuming opponent uses same knowledge of the state 
space and applies that knowledge in a consistent way, 
we can predict the opponent’s behaviour.

� MiniMax searches the game space under this 
assumption.

� Opponents are referred to as MIN and MAX

� MIN attempts to MINimize MAX’s score while MAX 
tries to win by MAXimizing his/her advantage.



Two Player Games – MiniMax Algorithm

� Label each level in the search space according to whose 
move it is at that point in the game, MIN or MAX,

� Each leaf node is given a value of 1 or 0, depending on 
whether it is a win for MAX or for MIN.

� Minimax propagates these values up the graph through 
successive parent nodes according to these rules:

� If parent state is a MAX node, give it the maximum 
value among its children

� If parent state is a MIN node, give it the minimum value 
of its children



Two Player Games – MiniMax Nim



Minimaxing to a fixed ply depth

� With more complex problems (games) we cannot expand 
the state space graph out to the leaf nodes.

� Since the leaves of this subgraph are not final states of the 
game, it is not possible to give them values that reflect a 
win or a loss (1 or 0)

� We have to use a heuristic function !!

� Therefore we are actually computing the best state that can 
be reached in n moves (according to a particular heuristic)

� These values are propagated back to the root in a similar 
fashion to what we’ve seen with nim



Minimaxing to a fixed ply depth – Tic Tac Toe



Minimaxing to a fixed ply depth – Tic Tac Toe


