
Sandro Spina

Conversion Masters in IT (MIT)

AI as Representation and Search

(‘Intelligent’ Game Playing Algorithms)
Lecture 003

Heuristic Search

� AI problem solvers employ heuristics in the situations:

� A problem may not have an exact solution. Eg Medical
diagnosis. A given set of symptoms may have several possible
causes. Doctors use heuristics to choose the most likely
diagnosis.

� A problem may have an exact solution BUT the computational
cost of finding it may be prohibitive. In many problems (such
as chess, GI, etc), state space grows exponentially with the
depth of the search. Using a heuristic algorithm can (its
designer hopes) defeat this combinatorial explosion and find
an acceptable solution.

� We’ll discuss the second scenario. Always keep in mind that
heuristics are fallible. Game playing and theorem proving are two
areas of AI which require heuristics.

An algorithm for heuristic search

(Best-First Search … hill climbing for now)

� The simplest way to implement a heuristic is through
a procedure called hill climbing.

� Algorithm:
� Expand current state and evaluate children.

� If there exists a better child

� The best child is becomes the current state

� Repeat loop

� If not … then the current state is the solution

� Problem of becoming stuck at a local maxima

� Thus if state is not a goal but just a local maxima the
algorithm fails to find a solution !!!

An algorithm for heuristic search

(Best-First Search … implementation)

� The evaluation function has to be sufficiently informative to
avoid local maxima. However if this happens we need a
method (priority queue) by which to recover from this local
maxima.

� Like DFS and BFS, best-first search uses lists to maintain
states:
� OPEN keeps track of the current fringe of the search
� CLOSED records states already visited

� An added step is necessary to ORDER the states on the open
list according to some heuristic estimate of their ‘closeness’ to
a goal.

� Hence, each iteration effectively considers the most ‘promising’
state on the open list.

The pseudo-code !!!

� Open := [Start]

� Closed := []

� While open != [] do

� Remove leftmost state X from open

� If X=Goal return path from Str to X else

� Generate children of X and for each do

� If child is not on open or closed

� Assign heuristic value to child

� Add the child to open

� If child is already on open

� Give state in open shorter path (if shorter found)

� If child is already on closed

� If child reached from shorter path then remove from
closed and add child to open

� Put X on closed

� Re-order states in open by heuristic merit (leftmost)

Some notes on Best First Search

� By updating the ancestor history of nodes on open and
closed when they are rediscovered, the algorithm is
more likely to find a shorter path to a goal

� Always selects the most promising state on open for
further expansion

� Since the heuristic might be erroneous, it does not
abandon all the other states but maintains them on open

� IMP the open list allows backtracking from paths that fail
to produce a goal

Example … 8-puzzle (part i)

The simplest
heuristic
counts the tiles
out of place in
each state
when it is
compared with
the goal.

Or

This + taking
into account
the distance
the tiles are
out of place.

Example … 8-puzzle (part ii)

� But both heuristics underestimate the
difficulty of tile reversals. That is, if two
tiles are next to each other and the goal
requires their being in opposite locations, it
takes (many) more than two moves to put
them back in place.

� Therefore we add a third measure to
include in the heuristic that takes into
account adjacent tiles. For example we
multiply by 2 for each direct tile reversal

Example … 8-puzzle (part iii)

Example … 8-puzzle (part iv)

� We can (not necessarily) combine these
heuristics. Sum of distances out of place
seems the most promising,

� Moreover since we want the shortest path to
a solution we keep track of the number of tile
movements we’ve done to reach a particular
state,

� F(n) = g(n) + h(n)

Example … 8-puzzle (part v)

Example … 8-puzzle (part vi)

Example … 8-puzzle (part vii)

• Implementation using the best-first
Search algorithm. These are the open
And close lists.

• Note how OPEN is sorted according
to the heuristic used.

• Hence with this algorithm one can
change the heuristic and see what
happens.!!

Two Player Games – MiniMax Algorithm !!

� Two-person games are more complicated
than simple puzzles because of the
existence of a ‘hostile’ and essentially
unpredictable opponent !!

� Here we describe the MiniMax algorithm
(with alpha-beta pruning) and implement
two games, namely, a variant of nim and
tic-tac-toe.

� Nim game state space can be exhaustively
searched.

Two Player Games – Nim

� To play this game, a number of tokens are placed on
a table between the two opponents; at each move,
the player must divide a pile of tokens into two
nonempty piles of different sizes.

� Thus, 6 tokens may be divided into piles of 5/1, 4/2
but not 3/3.

� The player who can no longer make a move loses the
game.

� Next slide illustrates the search space with 7 tokens

Two Player Games – Nim Search Space

Two Player Games – Generic MiniMax

� We need to account for the actions of the opponent.

� Assuming opponent uses same knowledge of the state
space and applies that knowledge in a consistent way,
we can predict the opponent’s behaviour.

� MiniMax searches the game space under this
assumption.

� Opponents are referred to as MIN and MAX

� MIN attempts to MINimize MAX’s score while MAX
tries to win by MAXimizing his/her advantage.

Two Player Games – MiniMax Algorithm

� Label each level in the search space according to whose
move it is at that point in the game, MIN or MAX,

� Each leaf node is given a value of 1 or 0, depending on
whether it is a win for MAX or for MIN.

� Minimax propagates these values up the graph through
successive parent nodes according to these rules:

� If parent state is a MAX node, give it the maximum
value among its children

� If parent state is a MIN node, give it the minimum value
of its children

Two Player Games – MiniMax Nim

Minimaxing to a fixed ply depth

� With more complex problems (games) we cannot expand
the state space graph out to the leaf nodes.

� Since the leaves of this subgraph are not final states of the
game, it is not possible to give them values that reflect a
win or a loss (1 or 0)

� We have to use a heuristic function !!

� Therefore we are actually computing the best state that can
be reached in n moves (according to a particular heuristic)

� These values are propagated back to the root in a similar
fashion to what we’ve seen with nim

Minimaxing to a fixed ply depth – Tic Tac Toe

Minimaxing to a fixed ply depth – Tic Tac Toe

