
Run-Time Environments/Garbage Collection

Sandro Spina

Department of Computer Science, Faculty of ICT

January 5, 2014

Sandro Spina RT Environments



Introduction

Compilers need to be aware of the run-time environment in
which their compiled programs will execute.

We have already covered a brief overview of activation records.

We now delve into some additional details ... and

Discuss a number garbage collection strategies/mechanisms.

Sandro Spina RT Environments



Common Memory Layout

Each executing program has access to its own logical address
space.

The operating system, is responsible for mapping this logical
address space into physical addresses, which could be spread
throughout memory.

A program, in this logical address space, consists of data and
program areas.

Run-time storage is exposed by the OS as blocks of
contiguous bytes, where a byte is the smallest unit of
addressable memory.

Primitive data types come in handy in determining the
amount of storage required.

Sandro Spina RT Environments



A typical subdivision of run-time memory

Sandro Spina RT Environments



The Stack and the Heap

The stack and the heap, are at the opposite ends of the
remainder of the address space and grow as needed towards
each other.

The stack is used to store activation records generated during
procedure calls, e.g. names local to a procedure.

The heap is used to manage long-lived data, possibly
outliving the call to the procedure that created it.

Sandro Spina RT Environments



Static Versus Dynamic Allocation

If a compiler by looking at the text of a program, i.e. at
compile time, can determine the size for a particular
allocation, then the allocation is done statically, e.g. static
variables.

If size can only be determined at run time, then allocation
has to be dynamic, e.g. container classes.

Sandro Spina RT Environments



The Heap

Variables which become inaccessible when their procedures
exit, are stored in the stack.

The other variables, whose data lives indefinitely are stored in
the heap.

Their existance therefore, is not tied to the procedure
activation that created them.

Both C++ and Java use the new operator to create objects
(pointers to them) that may be passed between procedure
activations.

Programs written in C or C++, take care of de-allocation
using operators free and delete, whereas in VM based
languages e.g. Java, a GC usually take care of memory
de-allocations.

Sandro Spina RT Environments



Memory Manager (MM)

Manages allocations/de-allocations on the heap data structure
and keeps track of all the free space at all times.

It bridges between the application program and the underlying
operating system.

Allocation: the MM returns a chunk of contiguous heap
memory of the requested size. Might itself make requests to
the virtual memory managed by the OS if request cannot be
handled.

De-Allocation: the MM returns de-allocated space to the
pool of free heap space.

Sandro Spina RT Environments



Properties of MMs

Note that i) usually not all allocation requests are of the same
size and ii) usually deallocations are not carried out in the
same order (reversed) as allocations.

The MM, therefore must be prepared to service, in any order,
allocation and de-allocation requests of any size.

Space Efficiency: Minimize fragmentation in order to
minimize total heap space needed by a program.

Program Efficiency: Attention to the placement of objects
in memory allows programs to run faster.

Low Overhead: Efficient memory allocations and
de-allocations.

Sandro Spina RT Environments



Memory Hierarchy

Sandro Spina RT Environments



Compiler Optimisations

Knowledge of how memory is organised is very important for
memory managers and compiler optimisations.

Program efficiency is determined by i) the number of
instructions executed and ii) the time taken to execute each
instruction.

In particular, data-intensive programs can benefit significantly,
since the time taken to access different parts of the hierarchy
differ significantly.

Register usage is determined by the code a compiler
generates. Caches are managed in hardware, whereas virtual
memory is managed by the OS.

Each memory access, incurs a search which is carried out
across this memory hierarchy, starting from the lowest level.

Sandro Spina RT Environments



Reducing Fragmentation

At the beginning the heap is one contiguous unit of free space.

Fragmentation occurs at runtime when the program allocates
and de-allocates memory resulting in holes in the initial
contiguous unit.

Why is memory fragmentation a problem?

A fragmented memory consists of a large number of small,
non-contiguous holes making it difficult for the memory

manager to service future allocation requests.

Sandro Spina RT Environments



Reducing Fragmentation

At the beginning the heap is one contiguous unit of free space.

Fragmentation occurs at runtime when the program allocates
and de-allocates memory resulting in holes in the initial
contiguous unit.

Why is memory fragmentation a problem?

A fragmented memory consists of a large number of small,
non-contiguous holes making it difficult for the memory

manager to service future allocation requests.

Sandro Spina RT Environments



Object Placement

Fragmentation is reduced by controlling how the memory
manager places new objects in the heap. Different strategies
are possible:

Best-fit: Allocate the requested memory in the smallest
available hole that is large enough. The algorithm tends to
spare large holes to satisfy subsequent, larger requests.

Next-fit: Allocate the requested memory in the first hole
which it fits. Takes less time but in general inferior to best fit
algorithms.

Sandro Spina RT Environments



Best-Fit Data Structures

To improve efficiency, MMs typically organise free space into
bins, according to their sizes.

In general, there are many more bins for smaller sizes
(16,24,32,...,512 bytes), because there are usually more small
objects and less larger sized bins.

The larger bins, chunks of different sizes are ordered by their
size.

Additional memory can always be requested from the OS (via
paging).

Sandro Spina RT Environments



Best-Fit Steps

A typical best-fit algorithm proceeds as follows for a memory
allocation request for n bytes:

If there is a non-empty bin of n sized chunks, take any chunk
from that bin,

If n does not match any of the bins (smaller chunks), we find
the bin that is allowed to include chunks of size n. A first-fit
or best-fit strategy is applied on this bin in order to choose a
sufficiently large chunk of memory. If size of chunk is greater
than n, the extra bytes are added to bins of smaller sizes.

If the required memory chunk is not found, the previous step
is applied again on the next bin. Eventually, if required the
MM can always request additional pages from the OS.

Sandro Spina RT Environments



Coalescing of Free Space

When an object is de-allocated manually (not GCed), the
memory manager must make its chunk free, so it can be
allocated again.

In some cases, the freed chunk can be combined with adjacent
free chunks on the heap.

In advantage, mainly, is that we can always use a large chunk
to do the work of small chunks of equal total size, but many
small chunks cannot hold one large object, as the combined
chunk would.

Sandro Spina RT Environments



Problems with Manual Deallocation

Mainly two!! - memory leaks and dangling pointers

Memory leaks: or not deleting storage that will never be
referenced. In general we can live with them (as long as the
machine does not run out of memory).

Dangling Pointers: occurs when storage is reclaimed
(de-allocated) and then the program tries to refer to that
data.

Unlike memory leaks, dereferencing a dangling pointer after
the freed storage is reallocated almost always creates a
program error that is hard to debug!!

One good reason to use managed languages.

Sandro Spina RT Environments



Garbage Collection

Many programming languages support implicit deallocation of
heap objects, i.e. the implementation de-allocates memory
objects automatically when they are no longer in use.

This requires some changes to both the (memory) allocator
and compiled code generated, i.e. the compiler and run-time
must include some mechanism for determining when an object
is no longer of interest (dead).

Garbage collectors adopt these mechanisms to reclaim and
recycle this dead space.

Two main categories - Reference Counting and Trace-Based
Collection

Sandro Spina RT Environments



Type Safe Languages

Can GC be applied to all languages? Yes and No !! Not all
are ideal candidates.

Basically, for a GC to work it needs (at runtime) to be able to
tell which elements could be used as a pointer to a chunk of
allocated memory space, i.e. a language in which the type of
any data component can be determined.

We call these languages, type safe languages.

ML and Java are examples of type safe languages, thus good
candidates for garbage collection, whereas C and C++ are
bad candidates. Why?

Because memory addresses can be manipulated arbitrarily,
pointer arithmentic, integers can be cast to pointers, etc..
effectively no memory location can be considered to be
inaccessible!!

Sandro Spina RT Environments



Type Safe Languages

Can GC be applied to all languages? Yes and No !! Not all
are ideal candidates.

Basically, for a GC to work it needs (at runtime) to be able to
tell which elements could be used as a pointer to a chunk of
allocated memory space, i.e. a language in which the type of
any data component can be determined.

We call these languages, type safe languages.

ML and Java are examples of type safe languages, thus good
candidates for garbage collection, whereas C and C++ are
bad candidates. Why?

Because memory addresses can be manipulated arbitrarily,
pointer arithmentic, integers can be cast to pointers, etc..
effectively no memory location can be considered to be
inaccessible!!

Sandro Spina RT Environments



Reachability

The term root set refers to all the data that can be accessed
directly (i.e. without dereferencing a pointer) by a running
program. These elements are said to be directly reachable

For example, in Java the root set consists of all static field
members and all variables currently on the stack.

Reachability is then defined recursively, starting from the root
set, i.e. any object with a reference in this reachable set is
itself reachable.

The set of reachable objects changes as a program executes.
It grows as new objects are created and shrinks as objects
become unreachable.

For GC purposes, it is important to note that once an object
falls out of the reachable set (becomes unreachable), it cannot
become reachable again.

Sandro Spina RT Environments



Reachability Set Computation

There are four basic operations that a mutator performs to
change the set of reachable objects:

Object Allocation: Performed by MM, returns a reference to
the newly allocated chunk of memory. Increments the set of
reachable objects.

Parameter Passing and Return Values: References passed
between caller and callee (parameters) and value returned by
callee. Objects pointed to by these references remain
reachable.

Reference Assignments: u = v, where u and v are
references. What happens to the objects pointed to u and v?

Procedure Returns: As a procedure exits, the frame holding
its local variables is popped off the stack. If objects are
reachable only through these variables, these become
unreachable.

Sandro Spina RT Environments



Tracking Reachability

In Summary:

New objects are introduced through object allocations.

Parameter passing can propagate reacability.

Assignments and ends of procedure can terminate reachability.

As an object becomes unreachable, so may others who were
previously reachable through it.

How do MMs track reachability? Either we catch the event as
a reachable object turns unreachable, or the MM periodically
locates all the reachable objects and then infers that all the
other objects are unreachable.

Sandro Spina RT Environments



Reference Counting

A technique used when an object’s lifetime needs to be
determined dynamically. The traditional way of performing
incremental garbage collection.

The technique adds a counter to each heap-allocated object
which keeps track of the number of outstanding pointers that
refer to the object.

Whenever a reference to an object is created, the reference
counter is incremented and this is removed decremented.

When this counter goes to zero, there’s no way this object can
be accessed and therefore its space can be de-allocated.

What happens with circular data structures!!?

Resolves dangling-pointer problems but is quite expensive!
Why?

Sandro Spina RT Environments



Reference Counting GC

Reference counts can be maintained as follows:

Object Allocation: The reference count of the new object is
set to 1.

Parameter Passing : The reference count of each object
passed into a procedure is incremented.

Reference Assignment u=v : The reference count of the object
refered to by v going up by 1 and the reference count of the
object refered to by u goes down by one.

Procedure Returns: As a prodecure returns all the references
held by the local variables of that procedure activation record
must also be decremented.

Transitive Loss of Reacability : Whenever the reference count
of an object becomes zero, we must also decrement the count
of each object pointed to by a reference within the object.

Sandro Spina RT Environments



Disadvantages of RC Collectors

Cyclic Data Structures, e.g. data structures which point back
to their parents, could lead to memory leaks.

Sandro Spina RT Environments



Disadvantages of RC Collectors

Performance - Additional overheads are introduced with each
reference assignment, procedure entries and exists.

The overheads incurred increase proportional to the amount
of computation in the program, and not just the number of
objects in the system, which could be significant.

The C++ Boost library provides templated smart pointers
which essentially use a reference counting mechanism.

Sandro Spina RT Environments



Trace-based Batch Collectors

Instead of collecting garbage as it is created (reference
counting), trace-based collectors run periodically (or when
invoked) to find unreachable objects and deallocate their
space.

Typically, batch collectors consider deallocation when the
free-space pool has been exhausted (or close to).

These collectors, pause the execution of the program, examine
the pool of allocated memory to discover unused objects, and
reclaims their space.

The traditional way of performing batch-oriented garbage
collection is sometimes referred to as stop-the-world collector.

As with ref counting, algorithms exist that perform collection
incrementally to amortize the cost over longer periods of
execution time.

Sandro Spina RT Environments



Phases in a Trace-based Collector

It’s goal is to find all the unreachable objects, and put them
on the list of free space.

Phase 1: Discover the set of objects that can be reached from
pointers stored in the program variables and compiler
generated temporaries. The collector assumes that any object
reachable in this manner is live. The rest are dead!!

—

Phase 2: Deallocate/recycle dead objects. Two common
techniques used are

Mark-and-sweep or mark-and-compact,
Copying collectors.

Sandro Spina RT Environments



Marking in a Mark-and-Sweep GC

A marking algorithm is used, which assigns a mark bit to each
object in the heap. The initial step clears these bits and builds
a worklist containing all the pointers stored in registers and in
variables accessible (root set).
The second step of the algorithm traverses these pointers and
marks every object that is reachable.

Algorithm 1 A simple Marking Algorithm

1: Clear all marks
2: Unscannedlist ← pointer values from root set
3: while Unscannedlist 6= 0 do
4: remove p from the Unscannedlist
5: if (p → object is unmarked)
6: mark p ← object
7: add pointers from p → object to Unscannedlist
8: end while

Sandro Spina RT Environments



Mark-and-Sweep Algorithm

The second is the sweeping phase.

Algorithm 2 A Mark and Sweep Garbage Collector

1: Free = 0;
2: for each chunk of memory o in the heap do
3: if (o is unreached, i.e., its reached-bit is 0) add o to Free;
4: else set the mark-bit of o to 0;
5: end for

Sandro Spina RT Environments



Basic Abstraction for Trace-Based Collectors

All trace-based algorithms compute the set of reachable
objects and then take the complement of this set.

From the memory point-of-view, how is its state changing
during Garbage Collection?

A number of terms describe these states, namely:

Free: Ready for allocation.
Unreached : Chunks are presumed unreachable unless proved
otherwise.
Unscanned : If a chunk is reachable, it becomes unscanned. i.e.
its pointers have not been scanned yet.
Scanned : When the scan of an object is complete, its state is
set to scanned.

Sandro Spina RT Environments



From Unscanned to Scanned - To Scan an Object

Chunks known to be reachable are either in state unscanned
or scanned.

Every unscanned object will eventually be scanned and
transition to the scanned state.

To scan an object, all pointers (references) in the object are
followed. If this referenced object is in state unreached, that
objects state transitions to unscanned

When the scan of an object is complete, it transitions to the
scanned state. Note that a scanned object can only contain
references to other scanned or unscanned objects, and never
to unreached objects.

The computation of reachability of complete when no objects
are left in the unscanned state. Objects still in the unreached
state are reclaimed and transition to the free state, while the
rest transition to the unreached state and get ready for
another GC invocation.

Sandro Spina RT Environments



States of Memory Chunks - Diagram

Sandro Spina RT Environments



States of Memory Chunks - Diagram

Sandro Spina RT Environments



States of Memory Chunks - Diagram

Sandro Spina RT Environments



Baker’s Mark-and-Sweep Optimisation

The basic mark-and-sweep algorithm is expensive since it has
to examine the entire heap to determine the reachable set.

Basically the algorithm does not know what allocations were
carried out. Baker’s mark-and-sweep improves on the basic
algorithm by simply keeping track of allocated objects.

The set of unreachable objects, is then computed by taking
the set difference of the allocated objects and the reached
objects.

The input consisits of a root set of objects, a heap, a free list
Free, and a list of allocated objects, refered to as Unreached

Note that this algorithm simply maps the memory states just
mentioned, to four lists storing objects in these states.

Sandro Spina RT Environments



Baker’s Mark-and-Sweep collector

Algorithm 3 A simple Marking Algorithm

1: Scannedlist = 0;
2: Unscannedlist = set of objects referenced in the root set;
3: while Unscannedlist 6= 0 do
4: move object o from Unscannedlist to Scannedlist
5: for each object o’ referenced in o do
6: if (o’ is in Unreachedlist)
7: move o’ from Unreachedlist to Unscannedlist;
8: end for
9: end while

10: Freelist = Freelist ∪ Unreachedlist;
11: Unreachedlist = Scannedlist

Sandro Spina RT Environments



Mark-and-Compact Garbage Collectors

In mark-and-sweep, it has been assumed that chunks
returning to the Freelist, remain as there were before
deallocation. However, as we have discussed earlier, it is
usually the case that adjacent free chunks are combined into
larger chunks in order to reduce fragmentation.

A different approach is taken by Mark-and-Compact collectors
(a.k.a relocating collectors) which move reachable objects
around in the heap to eliminate memory fragmentation.

The heuristic used is that (usually) the space occupied by
reachable objects is much smaller that the free space.

After identifying all the unreachable objects (holes) and
freeing them individually, a M-and-C collector relocates all the
reachable objects to one end of the heap and free the rest.

Sandro Spina RT Environments



Mark-and-Compact Variations

Having all reachable objects in contiguous space imporoves
temporal and spatial locality of a program.

It also simplifies the data structure used for maintaining free
space; instead of using Freelist the collector simply needs a
pointer to the beginning of the one free block.

Relocating collectors mainly vary in whether they relocate in
place or reserve space ahead of time for the relocation:

The traditional Mark-and-Compact, compacts objects in place
thus reducing memory usage.
A copying collector moves objects from one region of memory
to another. Reachable objects are moved as they are
discovered.

Sandro Spina RT Environments



Mark-And-Compact Algortihm Overview

1) A marking phase similar to the mark-and-sweep algorithms
described.

2) The algorithm scans the allocated section of the heap and
computes a new address for each of the reachable objects.
New addresses are assigned from the low end of the heap.
The new address for each object is stored in a structure called
NewLocation

3) The algorithm copies objects to their new locations,
updating all references in the objects to point to the
corresponding new locations.

The output of the algorithm is a new value for the pointer
free marking the beginning to the free chunk.

Sandro Spina RT Environments



Mark-And-Compact Psuedo-code

Algorithm 4 Mark-and-Compact Collector - Mark

1: Unscannedlist = set of objects referenced in the root set;
2: while Unscannedlist 6= 0 do
3: remove object o from Unscannedlist
4: for each object o’ referenced in o do
5: if (o’ is unreached)
6: mark o’ as reached;
7: put o’ on unscannedlist;
8: end for
9: end while

Sandro Spina RT Environments



Mark-And-Compact Psuedo-code

Algorithm 5 Mark-and-Compact Collector - Compute New Loca-
tions
1: free = starting location of heap storage;
2: for each chunk of memory o in the heap, from the low end do
3: if (o is reached)
4: NewLocation(o) = free;
5: free = free + sizeof(o);
6: end for

Sandro Spina RT Environments



Mark-And-Compact Psuedo-code

Algorithm 6 Mark-and-Compact Collector - Retarget References

1: for each chunk of memory o in the heap, from the low end do
2: if (o is reached)
3: for each reference o.r in o do
4: o.r = NewLocation(o.r);
5: copy o to NewLocation(o);
6: end for
7: end for
8: for each reference r in the root set do
9: r = NewLocation(r);

10: end for

Sandro Spina RT Environments



Copying Collectors - C.J. Cheney

A copying collector, reserves ahead of time, space to which
the objects can move.

The biggest advantage is that this breaks the dependency
between tracing and finding free space.

Memory is partitioned into two halfspaces, A and B.

New objects are created in one of these halfspaces, until it fills
up, at which point the mutator (MemManager) is stopped
and the garbage collector copies the reachable objects to the
other space.

When GC’tion completes, the roles of the halfspaces are
reversed.

Sandro Spina RT Environments



A Copying Collector Psuedo Code

Algorithm 7 Copying GC

1: for all objects o in From space do
2: NewLocation(o) = NULL;
3: end for
4: unscanned = free = starting address of To space;
5: for each reference r in the root set do
6: replace r with LookupNewLocation(r);
7: end for
8: while unscanned 6= free do
9: o = object at location unscanned ;

10: for each reference o.r referenced in o do
11: o.r = LookupNewLocation(o.r);
12: end for
13: unscanned = unscanned + sizeof(o);
14: end while

Sandro Spina RT Environments



The LookupNewLocation Function

Thus function takes an object o and finds a new location for
it in the To halfspace if it has no location there yet. All new
locations are recorded in a structure (e.g. Hashmap)
NewLocation

Algorithm 8 Copying GC LookupNewLocation()

1: if (NewLocation(o) = NULL); {
2: NewLocation(o) = free;
3: free = free + sizeof(o);
4: copy o to NewLocation(o);
5: }
6: Return NewLocation(o);

Sandro Spina RT Environments



Costs of Garbage Collection

Basic Mark-and-Sweep: Proportional to the number of chunks
in the heap.

Baker’s Mark-and-Sweep: Proportional to the number of
reached objects.

Basic Mark-and-Compact: Proportional to the number of
chunks in the heap plus the total size of the reachable objects.

Cheney’s Copying Collector: Proportional to the total size of
the reached objects.

Sandro Spina RT Environments



More Advanced Topics

We have described stop-the-world garbage collection
techniques. However these are not always ideal due to the
possibility of introducing long pauses into the execution of
programs. This cost can be amortized over the execution time
of the program.

Short-Pause Garbage Collection

Incremental Garbage Collection
Incremental Reachability Analysis

Generational Garbage Collection

Parallel and Concurrent Garbage Collection

Unsafe Languages

Sandro Spina RT Environments


