Computer Vision for Computer Graphics

Mark Borg

Computer Vision \& Computer Graphics I

- Computer Vision
* Understanding the "content" of an image (normaly by creating a "model" of the observed scene)
- Computer Graphics
- Creating an image using a computer "model"

Computer Vision \& Computer Graphics II

- Recent confluence between computer vision (CV) and computer graphics (CG)

Outline

- We will look at the following CV areas:
- Stereovision
- Recovering depth information
- Stereo correspondence problem
- Multi-view imaging and the Plenoptic function
- Applications to CG:
\square 3D Model Acquisition
\square View Morphing, "bullet time" effect
- AutomatedVisual Surveillance
- Motion Detection
- Background Subtraction techniques
, Object Tracking
- Applications to CG:
\square Motion Capture
\square Basis for Behaviour Recognition in HCl interfaces, Project Natal

Stereo Vision

- "Stereo Vision" generally means two synchronised cameras or eyes capturing images
- Allows recovery of depth information / sensation of depth
- (stereo vision $=$ stereoscopic vision $=$ stereopsis)

Parallax effect

- Each eye has a slightly different view of the world

- Nearby objects have a larger parallax than more distant objects

CSA2207

Depth from Binocular Disparity

- Binocular disparity:
- The difference in image location of an object seen by the left and right eyes, resulting from the horizontal separation between the eyes.

Depth from Binocular Disparity II

- Binocular disparity:
- The difference in image location of an object seen by the left and right eyes, resulting from the horizontal separation between the eyes.

Camera model III

mage plane
focal length f

- Single Viewpoint Constraint

- Image plane is situated at a distance f (the focal length) from the pinhole.
| The pinhole is also called the focal point, or centre of projection, or lens centre.
- A camera with a single centre of projection is called a central projection camera (central camera for short) and obey the single viewpoint constraint.
- Such a camera 'sees' the world from a single point (has a single viewpoint).

Depth from Binocular Disparity III

- Ratio of sides of similar triangles:
$\frac{P_{L}}{f}=\frac{-\frac{1}{2} b+x}{Z}$

Depth from Binocular Disparity III

- Ratio of sides of similar triangles:
$\frac{P_{L}}{f}=\frac{-\frac{1}{2} b+x}{Z}$
$\frac{P_{R}}{f}=\frac{\frac{1}{2} b+x}{Z}$

Depth from Binocular Disparity III

- Ratio of sides of similar triangles:
$\frac{P_{L}}{f}=\frac{-\frac{1}{2} b+x}{Z}$
$\frac{P_{R}}{f}=\frac{\frac{1}{2} b+x}{Z}$
, $z\left(P_{R}-P_{L}\right)=b f$
$Z=\frac{b f}{P_{R}-P_{L}}$
where $\left(P_{R}-P_{L}\right)$ is the disparity

Depth from Binocular Disparity IV

$z=\frac{b f}{P_{R}-P_{L}}$
where $\left(P_{R}-P_{L}\right)$ is the disparity
$Z \propto \frac{1}{\text { disparity }}$

- As disparity $\left(P_{R}-P_{L}\right) \rightarrow 0$, depth $\mathbf{z} \rightarrow \infty$
- In reality, depth resolution
 determined by minimum disparity

Choosing the stereo baseline

, What's the optimal baseline?

- Small baseline:
- Smaller disparities \rightarrow larger depth error; limited depth range.

Choosing the stereo baseline

, What's the optimal baseline?

- Small baseline:
, Smaller disparities \rightarrow larger depth error; limited depth range.
- Large baseline:

Less FOV intersection \rightarrow less scene points for which depth can be measured; more difficult search problem.
, Examples:
, Human binocular vision: baseline $=\sim 6 \mathrm{~cm}$; depth estimation $=$ up to $\sim 10 \mathrm{~m}$.
. Stellar parallax estimation: baseline $=$ Earth's orbital diameter; depth estimation $=$ up to $\sim 100 \mathrm{LY}$.
CSA2207

Correspondence Problem

- Basic stereo algorithm:
- For a pixel P_{L} in the left image
- Find the matching pixel P_{R} in the right image
- Compute the depth value $z=\frac{b f}{\text { disparity }}$, where disparity $=\left(P_{R}-P_{L}\right)$
- Matching the points is a hard problem

Called the (Stereo) Correspondence Problem

- Can reduce the search problem from 2D to ID by using constraints from epipolar geometry

Epipolar Geometry

- Epipolar plane
, Scene point $P+$ image points $P_{L}, P_{R}+$ camera focal points
- Epipolar line
* Intersection of epipolar plane with image plane of the camera
- Epipolar Constraint
* Given a point P_{L}, the corresponding point P_{R} will always occur along the conjugate epipolar line.
- Reduces the search problem to a ID search along conjugate epipolar lines.
- For the camera configuration above, the conjugate epipolar lines correspond to the same image rows.

Basic Stereo Algorithm I

- For each epipolar line:
- For each pixel P_{L} in the left image
\square Compare with every pixel on the same epipolar line in the right image
\square Pick the pixel P_{R} with the best match score/minimum cost.
- Compute the depth value $z=\frac{b f}{\text { disparity' }}$, where disparity $=\left(P_{R}-P_{L}\right)$

Basic Stereo Algorithm II

- Matching of pixels:
- A pixel must be quite distinct from its neighbours (else all neighbouring pixels will be good matches)
, Therefore, must locate matchable features
- Examples:
- Using edge information

Basic Stereo Algorithm II

- Matching of pixels:
- A pixel must be quite distinct from its neighbours (else all neighbouring pixels will be good matches)
b Therefore, must locate matchable features
- Examples:
- Using edge information
- Using corner features
- Using region correlation

- End result:
- Normally a subset of pixels/features are selected for matching and depth computation.
- Depth at other points can be estimated via interpolation techniques.

Basic Stereo Algorithm III

3D point cloud

* Can be sparse or dense, depending on the features used for matching
- Can be transformed into a surface model
- Via depth or shape interpolation techniques
- Mesh fitting
- One common method: Dalaunay Triangulation

Parallel camera configuration

- Cameras oriented parallel to each other
- Conjugate epipolar lines map to the same image rows
- Requires precise positioning and orientation of the cameras
- Difficult to achieve in practice

CSA2207

Converging camera configuration I

- Cameras no longer oriented parallel to each other.
- Conjugate epipolar lines no longer correspond to image rows and are not even parallel to each other.
- Each focal point projects onto a distinct point into the other camera's image plane
- These are called the epipoles (or epipolar points)
- All epipolar lines in an image must intersect the epipole.

Converging camera configuration II

- How can we find the epipolar lines since they are not parallel or image rows?
- Fundamental matrix F
, This is a 3×3 matrix that relates any point P_{L} with P_{R}
- Epipolar Constraint can be expressed mathematically:

$$
\left(P_{L}^{T}\right) F\left(P_{R}\right)=0
$$

- Also, multiplying the Fundamental matrix with a point gives the corresponding epipolar line in the other image:

$$
F\left(P_{L}\right)=L_{R} \text { and } F^{T}\left(P_{R}\right)=L_{L}
$$

CSA2207

Fundamental Matrix

- Given 2 corresponding image points $p=(x, y)$ and $p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$
, Epipolar constraint: $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]\left[\begin{array}{l}F\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$

$$
F=\left[\begin{array}{ccc}
0 & -e_{w}^{\prime} & e_{y}^{\prime} \\
e_{w}^{\prime} & 0 & -e_{x}^{\prime} \\
-e_{y}^{\prime} & e_{x}^{\prime} & 0
\end{array}\right] \times P^{\prime} P^{+}
$$

where $e^{\prime}=\left[\begin{array}{lll}e_{x}^{\prime} & e^{\prime} y_{y} & e^{\prime} \\ w\end{array}\right]$ is the epipole in the right image,
P, P^{\prime} are the camera projection matrices, and P^{+}is the pseudo-inverse of matrix P .

- For the parallel camera configuration, the fundamental matrix F simplifies to:

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

, Hence: $\left[x^{\prime} y^{\prime} 1\right]\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0 \quad \rightarrow \quad y^{\prime}=y$
and the epipoles are: $e=e^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ (at infinity).

Converging camera configuration III

- Advantage:
- No need for precise positioning and orientation of the cameras.
- Disadvantage:
- Difficult to perform a search along epipolar lines during pixel matching.
- Solution:
- Perform stereo image rectification.

Stereo Image Rectification I

- Rectification is the process of resampling the stereo images so that the epipolar lines correspond to image rows.

Stereo Image Rectification I

- Rectification is the process of resampling the stereo images so that the epipolar lines correspond to image rows.
- Images re-projected onto a common plane parallel to the line between focal points.

Some Results I

\qquad

Some Results I

Some Results I

Some Results III

Some Results IV

Depth from a single camera I

- What about this guy?

- Can we recover (some) depth information using only one sensor/camera?

Depth from a single camera II

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
- In CV, "Shape from X " techniques:
- Shading

C. Wu et al., "Shape-from-Shading under Near Point Lighting and Partial views for Orthopeadic Endoscopy"; 2007.

Depth from a single camera III

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
- In CV, "Shape from X" techniques:
- Shading
- Texture

"The Visual Cliff", William Vandivert, 1960

Depth from a single camera IV

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
- In CV, "Shape from X" techniques:
- Shading
, Texture

- Focus

T. Aydin et al., "A New Adaptive Focus Measure for Shape From Focus", 2008.

Depth from a single camera V

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
- In CV, "Shape from X" techniques:
- Shading
- Texture
- Focus
- Motion

motion parallax
optical flow
- \& many others...

Depth from a single camera VI

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
- In CV, "Shape from X" techniques:
- Shading
, Texture
- Focus

- Motion
- \& many others...
- Structured light \& laser scanning

(I) L. Zhang et al., "Rapid Shape Acquisition Using Colour Structured Light and Multi-pass Dynamic Programming"
(2) The Digital Michn (2) The Digital Michelangelo project, Stanford

CSA2207
Mark Borg 28 March 2010

Depth from a single camera VII

- Human vision does not rely solely on binocular vision for depth estimation
- Other visual cues can be used for 3D
" \ln CV, "Shape from X" techniques:
- Shading
- Texture
- Focus
- Motion
- \& many others...
- Structured light \& laser scanning
- Time-of-flight cameras

Multi-View Stereo

- Monocular depth estimation
- Stereo Vision systems
- 2 camera systems (Binocular systems)
- Can extend the same process and algorithms to: b 3 camera systems (Trinocular systems)
- 4 camera systems and more...
- Multi-View Stereo systems

Multi-View Stereo II

- Finding correspondences between adjacent rectified image pairs
- Pair-wise disparity estimation
- Fusing all the estimates into one 3D model
- Bundle Adjustment algorithm
- Derived from the idea of "bundles" of light rays
- Iteratively refining the 3D coordinates of the scene points (as well as the cameras' parameters) by minimising the reprojection error between the image locations of the observed and predicted image points
- Minimisation through the use of the Levenberg-Marquardt algorithm
- Triggs et al."Bundle Adjustment - A Modern
 Synthesis", I999.

Example I

- Photosynth (http://photosynth.net)
- Extracts distinctive feature points in each image, matching these across the image set, and automatically reconstructs a partial 3D model of the scene and camera geometry.
- The sparse 3D model consists of a point cloud, line segments, and low-resolution "watercolour washes".

Example I

- Photosynth (http://photosynth.net)
- Extracts distinctive fea *Shotosynth Home | Explore | About | My Photosynths automatically reconstr
- The sparse 3D model "watercolour washes

Example I

Example I

- Photosynth (httr./lnhatncunth not)
- Extracts distin - EPMOtosynth
\qquad


``` About My Photosynths
``` Search Search 0 automatically \(r\)
- The sparse 3D "watercolour

\footnotetext{
CSA2207
}

\section*{Example II}
- Urban 3D modelling project using multi-camera systems (The University of North Carolina at Chapel Hill).
- Uses a 4-camera stereovision system mounted on a car
- Uses a multi-way plane sweeping stereovision algorithm

\section*{Example II}
- Urban 3D modelling project using multi-camera systems (The University of North Carolina at Chapel Hill).
- Uses a 4-camera stereovision system mounted on a car
- Uses a multi-way plane sweeping stereovision algorithm

Reconstructed 3D view of part of a street

\section*{Example II}
- Urban 3D modelling project using multi-camera systems (The University of North Carolina at Chapel Hill).
- Uses a 4-camera stereovision system mounted on a car
- Uses a multi-wav Dlane sweeping stereovision alrorithm

\section*{Example II}

Urban 3D modelling proiect usins multi-camera systems (The University of North Carolina at Chapel Hill).
- Uses a 4-car
- Uses a multi

Reconstructed 3D view

\section*{The Plenoptic function II}
\[
P\left(\theta, \phi, V_{x}, V_{y}, V_{z}, t, \lambda\right)
\]
- We can only sample the plenoptic function at a finite number of points in space (N -camera system)
- What's the use of the plenoptic function?
- Allows us to think about novel ways of sampling/navigating in this 7D space
-

\section*{The Plenoptic function II}
\[
P\left(\theta, \phi, V_{x}, V_{y}, V_{z}, t, \lambda\right)
\]
- We can only sample the plenoptic function at a finite number of points in space (N -camera system)
- What's the use of the plenoptic function?
- Allows us to think about novel ways of sampling/navigating in this 7D space
- Given images acquired from \(N\) cameras (sparse sampling),
- can we observe the scene by moving freely in space?
> i.e., create a virtual camera, let it move along some trajectory/manifold in space, thus creating a so-called free-viewpoint video?

CSA2207

\section*{The Plenoptic function II}
\[
P\left(\theta, \phi, V_{x}, V_{y}, V_{z}, t, \lambda\right)
\]
- We can only sample the plenoptic function at a finite number of points in space (N -camera system)
- What's the use of the plenoptic function?
- Allows us to think about novel ways of sampling/navigating in this 7D space
, Given images acquired from \(N\) cameras (sparse sampling),
- can we observe the scene by moving freely in space?
> i.e., create a virtual camera, let it move along some trajectory/manifold in space, thus creating a so-called free-viewpoint video?

Need to be able to synthesise new views
,
\(-\cdots\)

\section*{The Plenoptic function II}
\[
P\left(\theta, \phi, V_{x}, V_{y}, V_{z}, t, \lambda\right)
\]
- We can only sample the plenoptic function at a finite number of points in space (N -camera system)
- What's the use of the plenoptic function?
- Allows us to think about novel ways of sampling/navigating in this 7D space
- Given images acquired from \(N\) cameras (sparse sampling),
- can we observe the scene by moving freely in space?
> i.e., create a virtual camera, let it move along some trajectory/manifold in space, thus creating a so-called free-viewpoint video?
\(\square\) Need to be able to synthesise new views
b can we let the virtual camera move in space while freezing time?
i.e., create a so-called "bullet time" special effect?
CSA2207

\section*{The Plenoptic function II}
\[
P\left(\theta, \phi, V_{x}, V_{y}, V_{z}, t, \lambda\right)
\]
- We can only sample the plenoptic function at a finite number of points in space (N -camera system)
- What's the use of the plenoptic function?
- Allows us to think about novel ways of sampling/navigating in this 7D space
- Given images acquired from \(N\) cameras (sparse sampling),
- can we observe the scene by moving freely in space?
- i.e., create a virtual camera, let it move along some trajectory/manifold in space, thus creating a so-called free-viewpoint video?

Need to be able to synthesise new views
> can we let the virtual camera move in space while freezing time?
i.e., create a so-called "bullet time" special

Note that we are not interested in rendering virtual views using 3D models here. But just using the acquired image data and measured pixel depth map.

\section*{View Morphing I}

Image A
Image B
CSA2207
Source: S. Seitz, C. Dyer, 1996.
Mark Borg 28 March 2010

\section*{View Morphing I}
- Virtual camera

Image B

\section*{View Morphing I}
- Virtual camera
- View morphing

Image A
Morphed View
Image B

\section*{View Morphing I}
- Virtual camera
- View morphing

Image B

Source: S. Seitz, C. Dyer, 1996.

\section*{View Morphing II}
- Algorithm:
- Stereo images are first rectified

\section*{View Morphing III}
- Algorithm:
- Stereo images are first rectified
b Then a virtual camera is positioned in the common image plane

View Morphing

\section*{View Morphing IV}

\section*{- Algorithm:}
- Stereo images are first rectified
- Then a virtual camera is positioned in the common image plane
- View Morphing
- The camera is then moved and oriented as required

\section*{View Morphing IV}
- Algorithm:
- Stereo images are first rectified
b Then a virtual camera is positioned in the common image plane
, View Morphing
- The camera is then moved and oriented as required

Note that we can also 'acquire' multiple views of a single photo by operations like mirroring. Then perform view morphing on them. E.g. Mona Lisa sequence:

Source: S. Seitz, C. Dyer, 1996.

\section*{Some demos}
- The Campanile movie
- Paul Debevac, Univ. of California, Berkeley, I996.
- http://www.debevac.org/campanile
- ProFORMA
, Qi Pan, Univ. of Cambridge, 2009.
- http://mi.eng.cam.ac.uk/~qp202

Paul Debevac, 1996.

\section*{Further Information...}

"MultipleView Geometry in ComputerVision", Richard Hartley, Andrew Zisserman, \(2^{\text {nd }}\) Ed., 2004.

Open Source ComputerVision Library
C++ library containing lots of CV algorithms, including stereo vision algorithms.
http://sourceforge.net/projects/opencvlibrary/

\section*{Microsoft \\ Research}

\section*{The MSRC Stereo Vision C\# SDK}

Microsoft Research in Cambridge
http://research.microsoft.com/en-us/projects/i2i/default.aspx

CSA2207```

