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Computer Vision 

for Computer Graphics 

Mark Borg 

Computer Vision & Computer Graphics I 

Mark Borg  28 March 2010 CSA2207 

 Computer Vision 

 Understanding the “content” of an image (normaly by creating 

a “model” of the observed scene) 

 Computer Graphics 

 Creating an image using a computer “model” 

 

 
          

                               (synthesis)                                                                             (analysis) 
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Computer Vision & Computer Graphics II 

Mark Borg  28 March 2010 CSA2207 

 Recent confluence between computer vision (CV) and 

computer graphics (CG) 

 

Computer  

Vision 
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Graphics 

 

 

 

 

 

 

 

Outline 

Mark Borg  28 March 2010 CSA2207 

 We will look at the following CV areas: 

 Stereovision 

 Recovering depth information 

 Stereo correspondence problem 

 Multi-view imaging and the Plenoptic function  

 Applications to CG: 

 3D Model Acquisition 

 View Morphing,  “bullet time” effect 

 Automated Visual Surveillance 

 Motion Detection 

 Background Subtraction techniques 

 Object Tracking 

 Applications to CG: 

 Motion Capture 

 Basis for Behaviour Recognition in HCI interfaces, Project Natal 
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Stereo Vision 

Mark Borg  28 March 2010 CSA2207 

 “Stereo Vision” generally means two synchronised cameras or 

eyes capturing images 

 

 Allows recovery of depth information / sensation of depth 

 

 (stereo vision = stereoscopic vision = stereopsis) 

Parallax effect 

Mark Borg  28 March 2010 CSA2207 

 Each eye has a slightly different view of the world 

 

 

 

 

 

 

 

 

 
 Nearby objects have a larger parallax than more distant objects 

 



14/04/2010 

4 

Depth from Binocular Disparity 

Mark Borg  28 March 2010 CSA2207 

 Binocular disparity: 

 The difference in image location of an object seen by the left and right 

eyes, resulting from the horizontal separation between the eyes. 

Depth from Binocular Disparity II 

Mark Borg  28 March 2010 CSA2207 

 Binocular disparity:  

 The difference in image location of an object seen by the left and right 

eyes, resulting from the horizontal separation between the eyes. 

disparity d 
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Camera model 

Mark Borg  28 March 2010 CSA2207 

 

 

 

 

 

 
 

 „Pinhole‟ camera model 

 Simplified camera model; most often used in CV. 

 No lens; just a single very small aperture (infinitely small). 

 Models perspective projection. 

 Assumes all light rays pass through a single point (the „pinhole‟). 

 Assumes the View Volume (camera‟s FOV) is an infinite pyramid. 

camera 

View volume (camera‟s FOV) 

image plane 

pinhole 

Camera model II 

Mark Borg  28 March 2010 CSA2207 

 

 

 

 

 

 

 

 Limitations of the pinhole camera model: 

 Depth-of-field effects and light attenuation ignored in this model. 

 View volume is not really infinite. 

camera 

View volume (camera‟s FOV) 

image plane 

pinhole 



14/04/2010 

6 

Camera model III 

Mark Borg  28 March 2010 CSA2207 

 

 

 

 

 

 
 

 Single Viewpoint Constraint 

 Image plane is situated at a distance ƒ (the focal length) from the pinhole. 

 The pinhole is also called the focal point, or centre of projection, or lens centre. 

 A camera with a single centre of projection is called a central projection camera 
(central camera for short) and obey the single viewpoint constraint. 

 Such a camera „sees‟ the world from a single point (has a single viewpoint). 

View volume (camera‟s FOV) 

image plane focal length f 

pinhole / focal point 

/ centre of projection 

Camera model IV 

Mark Borg  28 March 2010 CSA2207 

 

 

 

 

 

  

 

 

 

optical axis 
focal point 

focal length f 

image plane 
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Camera model IV 

Mark Borg  28 March 2010 CSA2207 

 

 

 

 

 

  

 

 

 

 Equivalent representations 

optical axis 
focal point 

focal length f focal length f 

image plane 

Stereo vision cameras 

Mark Borg  28 March 2010 CSA2207 
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Depth from Binocular Disparity III 

Mark Borg  28 March 2010 CSA2207 

 Ratio of sides of similar triangles: 
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Depth from Binocular Disparity III 
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Depth from Binocular Disparity III 

Mark Borg  28 March 2010 CSA2207 

 Ratio of sides of similar triangles: 
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Depth from Binocular Disparity IV 

Mark Borg  28 March 2010 CSA2207 

 

 𝑧 =
𝑏𝑓

𝑃𝑅−𝑃𝐿
 

   where 𝑃𝑅 − 𝑃𝐿  is the disparity 

 

 

 𝑧 ∝  
1

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
   

 

 

 As disparity 𝑃𝑅 − 𝑃𝐿  → 0,       

depth z → ∞ 

 In reality, depth resolution 

determined by minimum disparity 

baseline b 
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Choosing the stereo baseline 

Mark Borg  28 March 2010 CSA2207 

 What‟s the optimal baseline? 

 Small baseline:   

 Smaller disparities → larger depth error; limited depth range. 

 

 

 

 

 

 

 

 

 

one pixel 

All these points 

project to the same 

pixel pair 

Smaller disparity 

Large baseline   Small baseline 

Choosing the stereo baseline 

Mark Borg  28 March 2010 CSA2207 

 What‟s the optimal baseline? 

 Small baseline:   

 Smaller disparities → larger depth error; limited depth range. 

 Large baseline:   

 Less FOV intersection → less scene points for which depth can be measured; more difficult search 
problem. 

 

 Examples:  

 Human binocular vision:  baseline = ~6cm;  depth estimation = up to ~10m. 

 Stellar parallax estimation:  baseline = Earth‟s orbital diameter;  depth estimation = up to ~100 LY. 

Large baseline   Small baseline 

Less FOV 

intersection 

Points for which 

no depth estimation 

can be done 
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Correspondence Problem 

Mark Borg  28 March 2010 CSA2207 

 Basic stereo algorithm: 

 For a pixel PL in the left image 

 Find the matching pixel PR in the right image 

 Compute the depth value  𝑧 =
𝑏𝑓

disparity
,  where disparity = 𝑃𝑅 − 𝑃𝐿  

 

 

 Matching the points is a        

hard problem 

 Called the (Stereo) Correspondence Problem 

 Can reduce the search problem from 2D to 1D by using 

constraints from epipolar geometry 

Right image 

 

     
 

Left image 

PL ? 

Epipolar Geometry 

Mark Borg  28 March 2010 CSA2207 

 Epipolar plane 

 Scene point P + image points PL, PR + camera focal points 

 Epipolar line 

 Intersection of epipolar plane with image plane of the camera 

 Epipolar Constraint 

 Given a point PL, the corresponding point PR will always occur along the conjugate epipolar 
line. 

 Reduces the search problem to a 1D search along conjugate epipolar lines. 

 For the camera configuration above, the conjugate epipolar lines correspond to the same 
image rows. 

fL fR 

Epipolar 

plane 

P 

PL PR 

Epipolar line 

Epipolar line  
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Basic Stereo Algorithm I 

Mark Borg  28 March 2010 CSA2207 

 For each epipolar line: 

 For each pixel PL in the left image 

 Compare with every pixel on the same epipolar line in the right image 

 Pick the pixel PR with the best match score/minimum cost. 

 Compute the depth value  𝑧 =
𝑏𝑓

disparity
,  where disparity = 𝑃𝑅 − 𝑃𝐿  

 

 

left image right image 

Images from: H. Tao et al., 

“Global Matching Criterion 

and Colour Segmentation 

Based Stereo”, 2000. 

epipolar lines 

Basic Stereo Algorithm II 

Mark Borg  28 March 2010 CSA2207 

 Matching of pixels: 

 A pixel must be quite distinct from its neighbours (else all neighbouring 

pixels will be good matches) 

 Therefore, must locate matchable features 

 

 Examples: 

 Using edge information 
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Basic Stereo Algorithm II 

Mark Borg  28 March 2010 CSA2207 

 Matching of pixels: 

 A pixel must be quite distinct from its neighbours (else all neighbouring 

pixels will be good matches) 

 Therefore, must locate matchable features 

 

 Examples: 

 Using edge information 

 Using corner features 

 Using region correlation 

 

 End result: 

 Normally a subset of pixels/features are selected for matching and depth 

computation.  

 Depth at other points can be estimated via interpolation techniques. 

 

 

 

Basic Stereo Algorithm III 

Mark Borg  28 March 2010 CSA2207 

 3D point cloud 

 Can be sparse or dense, depending on the features used for 

matching 

 Can be transformed into a surface model  

 Via depth or shape interpolation techniques 

 Mesh fitting 

 One common method:  Dalaunay Triangulation 
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Some Results I 

Mark Borg  28 March 2010 CSA2207 

left image right image depth map 

Images from: H. Tao et al., 

“Global Matching Criterion 

and Colour Segmentation 

Based Stereo”, 2000. 

Some Results II 

Mark Borg  28 March 2010 CSA2207 

depth map 

rendered view 

Note the „holes‟ caused by 

scene occlusions. These 

scene points are hidden 

from both cameras. 
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Some Results III 

Mark Borg  28 March 2010 CSA2207 

Disparity map 

Stereo vision for robot navigation. 

Source: Jet Propulsion Laboratory, NASA. 

Some Results III 

Mark Borg  28 March 2010 CSA2207 

Source: Project IS-3D, Centre 

for Machine Perception, Czech 

Academy of Sciences, 2008. 
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Some Results III 

Mark Borg  28 March 2010 CSA2207 

Source: Project IS-3D, Centre 

for Machine Perception, Czech 

Academy of Sciences, 2008. 

Disparity map 

Some Results III 

Mark Borg  28 March 2010 CSA2207 

Source: Project IS-3D, Centre 

for Machine Perception, Czech 

Academy of Sciences, 2008. 

Disparity map 
3D Point cloud 
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Some Results III 

Mark Borg  28 March 2010 CSA2207 

Source: Project IS-3D, Centre 

for Machine Perception, Czech 

Academy of Sciences, 2008. 

Disparity map 
3D Point cloud 

3D Model 

Parallel camera configuration 

Mark Borg  28 March 2010 CSA2207 

 Cameras oriented parallel to each other 

 Conjugate epipolar lines map to the same image rows 

 Requires precise positioning and orientation of the cameras 

 Difficult to achieve in practice 

fL fR 

Epipolar 

plane 

P 

Epipolar line 

Epipolar line  
PL PR 
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Converging camera configuration I 

Mark Borg  28 March 2010 CSA2207 

 Cameras no longer oriented parallel to each other. 

 Conjugate epipolar lines no longer correspond to image rows and are not 
even parallel to each other. 

 Each focal point projects onto a distinct point into the other camera‟s 
image plane 

 These are called the epipoles (or epipolar points) 

 All epipolar lines in an image must intersect the epipole. 

P 

fL fR 

PL PR 

Epipolar 

plane Epipolar line 

Epipole eL Epipole eR 

Converging camera configuration II 

Mark Borg  28 March 2010 CSA2207 

 How can we find the epipolar lines since they are not parallel or image rows? 

 Fundamental matrix 𝐹 

 This is a 3x3 matrix that relates any point PL with PR 

 Epipolar Constraint can be expressed mathematically: 

  𝑃𝐿
𝑇 𝐹 𝑃𝑅 = 0 

 Also, multiplying the Fundamental matrix with a point gives the corresponding epipolar 
line in the other image: 

𝐹 𝑃𝐿 = 𝐿𝑅    and     𝐹𝑇 𝑃𝑅 = 𝐿𝐿 

 

Epipolar line LL  

P 

fL fR 

PL PR 

Epipolar 

plane Epipolar line LR 

Epipole eL Epipole eR 
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Fundamental Matrix 

Mark Borg  28 March 2010 CSA2207 

 Given 2 corresponding image points   𝑝 = 𝑥, 𝑦  and 𝑝′ = 𝑥′, 𝑦′   

 

 Epipolar constraint:  𝑥′  𝑦′  1 𝐹

𝑥
𝑦
1

= 0 

 

  F = 

0 −𝑒′𝑤 𝑒′𝑦
𝑒′𝑤 0 −𝑒′𝑥

−𝑒′𝑦 𝑒′𝑥 0

× 𝑃′𝑃+ 

      

      where  𝑒′ = 𝑒′𝑥 𝑒′𝑦 𝑒′𝑤  is the epipole in the right image, 

 𝑃, 𝑃′ are the camera projection matrices, 

 and 𝑃+ is the pseudo-inverse of matrix P. 

 
 For the parallel camera configuration, the fundamental matrix F simplifies to:  

0 0 0
0 0 −1
0 1 0

 

 Hence:   𝑥′𝑦′1
0 0 0
0 0 −1
0 1 0

𝑥
𝑦
1

= 0        →    𝑦′ = 𝑦 

 

       and the epipoles are:  𝑒 = 𝑒′ = [1  0  0]  (at infinity). 

P 

Converging camera configuration III 

Mark Borg  28 March 2010 CSA2207 

 Advantage: 

 No need for precise positioning and orientation of the cameras. 

 Disadvantage: 

 Difficult to perform a search along epipolar lines during pixel matching. 

 Solution: 

 Perform stereo image rectification. 

fL fR 

PL PR 

Epipolar 

plane Epipolar line LR 

Epipole eL Epipole eR 

Epipolar line LL  
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Stereo Image Rectification I 

Mark Borg  28 March 2010 CSA2207 

 

 Rectification is the process of re-

sampling the stereo images so 

that the epipolar lines correspond 

to image rows. 

 

 

 
fL 

fR 

Stereo Image Rectification I 

Mark Borg  28 March 2010 CSA2207 

 

 Rectification is the process of re-

sampling the stereo images so 

that the epipolar lines correspond 

to image rows. 

 

 Images re-projected onto a 

common plane parallel to the line 

between focal points. 

 

 

fL 

fR 



14/04/2010 

21 

Stereo Image Rectification II 

Mark Borg  28 March 2010 CSA2207 

Some Results I 

Mark Borg  28 March 2010 CSA2207 

Source: M. Bujnak, Centre for Machine 

Perception, Czech Technical Univ. 
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Some Results I 

Mark Borg  28 March 2010 CSA2207 

Source: M. Bujnak, Centre for Machine 

Perception, Czech Technical Univ. 

Some Results I 

Mark Borg  28 March 2010 CSA2207 

Source: M. Bujnak, Centre for Machine 

Perception, Czech Technical Univ. 
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Some Results I 

Mark Borg  28 March 2010 CSA2207 

Source: M. Bujnak, Centre for Machine 

Perception, Czech Technical Univ. 

Some Results II 

Mark Borg  28 March 2010 CSA2207 

3D disparity 

point cloud 

Disparity 

map 

Synthetic 

image from 

disparity 

map 

Source: 

www.metria.es 
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Some Results III 

Mark Borg  28 March 2010 CSA2207 

Source: Group of Robotics and Cognitive Systems, 

Democritus University of Thrace, Greece. 

Some Results IV 

Mark Borg  28 March 2010 CSA2207 

Source: Marco Mengelkoch, Universitat Koblenz. 
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Depth from a single camera I 

Mark Borg  28 March 2010 CSA2207 

 What about this guy? 

 

 

 

 

 

 

 

 

 Can we recover (some) depth information using only one 
sensor/camera? 

Depth from a single camera II 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

C. Wu et al., “Shape-from-Shading under Near Point 

Lighting and Partial views for Orthopeadic Endoscopy”, 

2007. 
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Depth from a single camera III 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

 Texture 

“The Visual Cliff”, William Vandivert, 1960. 

Depth from a single camera IV 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

 Texture 

 Focus 

 

T. Aydin et al., “A New Adaptive Focus Measure for 

Shape From Focus”, 2008. 
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Depth from a single camera V 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

 Texture 

 Focus 

 Motion 
- motion parallax 

- optical flow 

 & many others… 

 

 

(1) T. Sato et al., “Reconstuction of 3-D Models of an Outdoor Scene from Multiple Image Sequences 

by Estimating Camera Motion Parameters”.  (2) K. Kutulakos, “A Theory of Shape by Space Carving”. 

Depth from a single camera VI 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

 Texture 

 Focus 

 Motion 

 & many others… 

 Structured light & 

   laser scanning 

(1) L. Zhang et al., “Rapid Shape Acquisition 

Using Colour Structured Light and Multi-pass 

Dynamic Programming” 

(2) The Digital Michelangelo project, Stanford 

Univ. 

http://www.washington.edu/newsroom/news/images/David.jpg
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Depth from a single camera VII 

Mark Borg  28 March 2010 CSA2207 

 Human vision does not rely solely on binocular vision for depth estimation 

 Other visual cues can be used for 3D 

 In CV,  “Shape from X” techniques: 

 Shading 

 Texture 

 Focus 

 Motion 

 & many others… 

 Structured light & 

   laser scanning 

 Time-of-flight  

    cameras PMDT Technologies, GmbH. 

 

Multi-View Stereo 

Mark Borg  28 March 2010 CSA2207 

 Monocular depth estimation 

 Stereo Vision systems 

 2 camera systems (Binocular systems) 

 Can extend the same process and algorithms to: 

 3 camera systems (Trinocular systems) 

 4 camera systems and more… 

 Multi-View Stereo systems 

10 stereo reconstructions, MER Opportunity Rover. 

Source: ExoMars PanCam 3D Vision Team 

 

Commercial 2- and 3-camera 

systems, PointGrey Inc. 

 



14/04/2010 

29 

Multi-View Stereo II 

Mark Borg  28 March 2010 CSA2207 

 Finding correspondences between 
adjacent rectified image pairs 

 Pair-wise disparity estimation 

 Fusing all the estimates into one 3D 
model 

 Bundle Adjustment algorithm 
 Derived from the idea of “bundles” of light 

rays 

 Iteratively refining the 3D coordinates of 
the scene points (as well as the cameras‟ 
parameters) by minimising the re-
projection error between the image 
locations of the observed and predicted 
image points 

 Minimisation through the use of the 
Levenberg-Marquardt algorithm 

 
 Triggs et al. “Bundle Adjustment – A Modern 

Synthesis”, 1999. 

Example I 

Mark Borg  28 March 2010 CSA2207 

 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 
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Example I 

Mark Borg  28 March 2010 CSA2207 

 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 

Example I 
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 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 
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Example I 
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 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 

Example I 

Mark Borg  28 March 2010 CSA2207 

 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 
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Example I 
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 Photosynth   (http://photosynth.net) 

 Extracts distinctive feature points in each image, matching these across the image set, and 

automatically reconstructs a partial 3D model of the scene and camera geometry. 

 The sparse 3D model consists of a point cloud, line segments, and low-resolution 

“watercolour washes”. 

Example II 

Mark Borg  28 March 2010 CSA2207 

 Urban 3D modelling project using multi-camera systems (The University of North Carolina at 

Chapel Hill). 

 Uses a 4-camera stereovision system mounted on a car 

 Uses a multi-way plane sweeping stereovision algorithm 

4-camera system 
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Example II 
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 Urban 3D modelling project using multi-camera systems (The University of North Carolina at 

Chapel Hill). 

 Uses a 4-camera stereovision system mounted on a car 

 Uses a multi-way plane sweeping stereovision algorithm 

4-camera system 
 

Reconstructed 3D view of part of a street 
 

Example II 

Mark Borg  28 March 2010 CSA2207 

 Urban 3D modelling project using multi-camera systems (The University of North Carolina at 

Chapel Hill). 

 Uses a 4-camera stereovision system mounted on a car 

 Uses a multi-way plane sweeping stereovision algorithm 

4-camera system 
 

Reconstructed 3D view of part of a street 
 

View from above and details of 2 buildings 
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Example II 
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 Urban 3D modelling project using multi-camera systems (The University of North Carolina at 

Chapel Hill). 

 Uses a 4-camera stereovision system mounted on a car 

 Uses a multi-way plane sweeping stereovision algorithm 

4-camera system 
 

Reconstructed 3D view of part of a street 
 

View from above and details of 2 buildings 
 

The Plenoptic function I 

Mark Borg  28 March 2010 CSA2207 

 Plenoptic: 

 Plenus = complete/full   +   Optic = light 

 7-dimensional function: 

𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝑡, 𝜆  

 

 To measure the plenoptic function one can imagine: 

 Placing an imaginary eye at every possible location 𝑉𝑥, 𝑉𝑦, 𝑉𝑧  

 Recording the intensity of light at every angle 𝜃, 𝜙  

 For every wavelength 𝜆 

 At every time 𝑡 

 

 The Plenoptic function is an idealised   

 concept of a “complete view of the  

 world” 
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The Plenoptic function II 

Mark Borg  28 March 2010 CSA2207 

𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 , 𝑡, 𝜆  
 

 We can only sample the plenoptic 
function at a finite number of points in 
space (N-camera system) 

 What‟s the use of the plenoptic 
function? 
 Allows us to think about novel ways of 

sampling/navigating in this 7D space 

 Given images acquired from N cameras 
(sparse sampling),  
 can we observe the scene by moving 

freely in space? 
 i.e., create a virtual camera, let it move along 

some trajectory/manifold in space, thus 
creating a so-called free-viewpoint video? 
 Need to be able to synthesise new views 

 can we let the virtual camera move in 
space while freezing time? 
 i.e., create a so-called “bullet time” special 

effect? 

The Plenoptic function II 

Mark Borg  28 March 2010 CSA2207 

𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 , 𝑡, 𝜆  
 

 We can only sample the plenoptic 
function at a finite number of points in 
space (N-camera system) 

 What‟s the use of the plenoptic 
function? 
 Allows us to think about novel ways of 

sampling/navigating in this 7D space 

 Given images acquired from N cameras 
(sparse sampling),  
 can we observe the scene by moving 

freely in space? 
 i.e., create a virtual camera, let it move along 

some trajectory/manifold in space, thus 
creating a so-called free-viewpoint video? 
 Need to be able to synthesise new views 

 can we let the virtual camera move in 
space while freezing time? 
 i.e., create a so-called “bullet time” special 

effect? 
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The Plenoptic function II 

Mark Borg  28 March 2010 CSA2207 

𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 , 𝑡, 𝜆  
 

 We can only sample the plenoptic 
function at a finite number of points in 
space (N-camera system) 

 What‟s the use of the plenoptic 
function? 
 Allows us to think about novel ways of 

sampling/navigating in this 7D space 

 Given images acquired from N cameras 
(sparse sampling),  
 can we observe the scene by moving 

freely in space? 
 i.e., create a virtual camera, let it move along 

some trajectory/manifold in space, thus 
creating a so-called free-viewpoint video? 
 Need to be able to synthesise new views 

 can we let the virtual camera move in 
space while freezing time? 
 i.e., create a so-called “bullet time” special 

effect? 

The Plenoptic function II 

Mark Borg  28 March 2010 CSA2207 

𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 , 𝑡, 𝜆  
 

 We can only sample the plenoptic 
function at a finite number of points in 
space (N-camera system) 

 What‟s the use of the plenoptic 
function? 
 Allows us to think about novel ways of 

sampling/navigating in this 7D space 

 Given images acquired from N cameras 
(sparse sampling),  
 can we observe the scene by moving 

freely in space? 
 i.e., create a virtual camera, let it move along 

some trajectory/manifold in space, thus 
creating a so-called free-viewpoint video? 
 Need to be able to synthesise new views 

 can we let the virtual camera move in 
space while freezing time? 
 i.e., create a so-called “bullet time” special 

effect? 
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The Plenoptic function II 
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𝑃 𝜃, 𝜙, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 , 𝑡, 𝜆  
 

 We can only sample the plenoptic 
function at a finite number of points in 
space (N-camera system) 

 What‟s the use of the plenoptic 
function? 
 Allows us to think about novel ways of 

sampling/navigating in this 7D space 

 Given images acquired from N cameras 
(sparse sampling),  
 can we observe the scene by moving 

freely in space? 
 i.e., create a virtual camera, let it move along 

some trajectory/manifold in space, thus 
creating a so-called free-viewpoint video? 
 Need to be able to synthesise new views 

 can we let the virtual camera move in 
space while freezing time? 
 i.e., create a so-called “bullet time” special 

effect? 

Note that we are not interested in rendering virtual 

views using 3D models here. But just using the 

acquired image data and measured pixel depth map. 

View Morphing I 
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Image A 

Camera A 

Image B 

Camera B 

Source: S. Seitz, C. Dyer, 1996. 
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View Morphing I 

Mark Borg  28 March 2010 CSA2207 

 Virtual camera 

 

Virtual camera 

Image A 

Camera A 

Image B 

Camera B 

Source: S. Seitz, C. Dyer, 1996. 

 

View Morphing I 
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 Virtual camera 

 View morphing 

 

Morphed View 

Virtual camera 

Image A 

Camera A 

Image B 

Camera B 

Source: S. Seitz, C. Dyer, 1996. 
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View Morphing I 
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 Virtual camera 

 View morphing 

 

Morphed View 

Virtual camera 

Image A 

Camera A 

Image B 

Camera B 

Note that view morphing is not image morphing. 

 

 

Source: S. Seitz, C. Dyer, 1996. 

 

Image morphing is not 3D shape preserving. 

View Morphing II 
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 Algorithm: 

 Stereo images are first rectified 

fL 

fR 
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View Morphing III 
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 Algorithm: 

 Stereo images are first rectified 

 Then a virtual camera is 

positioned in the common image 

plane 

 View Morphing 

fL 

fR 

View Morphing IV 
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 Algorithm: 

 Stereo images are first rectified 

 Then a virtual camera is 

positioned in the common image 

plane 

 View Morphing 

 The camera is then moved and 

oriented as required 
fL 

fR 



14/04/2010 

41 

View Morphing IV 
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 Algorithm: 

 Stereo images are first rectified 

 Then a virtual camera is 

positioned in the common image 

plane 

 View Morphing 

 The camera is then moved and 

oriented as required 
fL 

fR 

Source: S. Seitz, C. Dyer, 1996. 

 

Note that we can also „acquire‟ 

multiple views of a single photo by 

operations like mirroring.  Then 

perform view morphing on them. E.g. 

Mona Lisa sequence: 

“Bullet Time” Effect 
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“Bullet Time” Effect 
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“Bullet Time” Effect 
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Some demos 
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 The Campanile movie 

 Paul Debevac, Univ. of California, Berkeley,1996. 

 http://www.debevac.org/campanile 

 ProFORMA 

 Qi Pan, Univ. of Cambridge, 2009. 

 http://mi.eng.cam.ac.uk/~qp202 

 

 

 

 

Paul Debevac, 1996. 

 

Further Information… 
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“Multiple View Geometry in Computer Vision”, Richard 

Hartley,  Andrew Zisserman, 2nd Ed., 2004. 

 

 

 

 

Open Source Computer Vision Library  

C++ library containing lots of CV algorithms, including stereo 

vision algorithms. 

http://sourceforge.net/projects/opencvlibrary/ 

 

 

 

The MSRC Stereo Vision C# SDK 

Microsoft Research in Cambridge 

http://research.microsoft.com/en-us/projects/i2i/default.aspx 

http://sourceforge.net/projects/opencvlibrary/
http://research.microsoft.com/en-us/projects/i2i/default.aspx
http://research.microsoft.com/en-us/projects/i2i/default.aspx
http://research.microsoft.com/en-us/projects/i2i/default.aspx

