
Compiler Theory

(GCC – the GNU Compiler Collection)

Sandro Spina 2009

GCC

� Probably the most used compiler.

� Not only a native compiler but it can also cross-compile any program, producing
executables for different systems other than the one it is being used on.

� GCC is written in C and can compile itself !!

� Provides numerous front-ends

� C

� C++

� Objective-C

� Fortran

� Java

� Ada

Intermediate Languages for GCC (GENERIC)

� GCC uses three intermediate languages to represent
the program during compilation:

� GENERIC

� Is a language-independent representation generated by
each front end.

� It is used as an interface between the parser and
optimizer.

� It is a common representation that is able to represent
programs written in all the languages supported by
GCC.

Intermediate Languages for GCC (GIMPLE)

� Gimlipification (done by the gimplifier) is the compiler pass which lowers
GENERIC to GIMPLE. It works recursively by replacing complex statements with
sequences of simple statements.

� GIMPLE

� Used for target and language independent optimisations (e.g. inlining,
constant propagation, etc)

� It is a language independent, tree based representation

� Differs from GENERIC in that the GIMPLE grammar is more restrictive:
expressions contain no more that 3 operands (except for functions calls)

� It has no control flow structures because these are lowered to gotos

Intermediate Languages for GCC (RTL)

� Register Transfer Language (RTL)

� It has mainly an internal form i.e. used
within GCC structures for optimisations.

� It also has a textual form which is used
when printing debugging dumps (core)

Compiling a C Program

� Compilation refers (as you all obviously know by now) to
the process of converting a program from source code
(text), in a programming language such as C or C++,
into machine code, i.e. a sequence of 1’s and 0’s used to
control what the processing unit (CPU, GPU, etc.) does.

� $ gcc –Wall hello.c –o hello

� The above compiles the source code in ‘hello.c’ to
machine code and stores it in the executable file ‘hello’

� -o specifies the output file

GCC warnings flag

� The option ‘-Wall’ turns on all the

most commonly-used compiler

warnings…

� You should ALWAYS use it!!

� Because they are essential when

detecting problems and debugging.

GCC warnings example

� int main (void)

{

printf (“Three plus two is %f\n”, 5);

return 0;

}

� $ gcc –Wall example.c -0 example

Example.c: In function ‘main’:

Example.c:6: warning: double format, different type arg (arg 2)

� Warnings do not prevent compilation … but indicate possible problems.

� The program above compiles (and runs) but gives an incorrect answer.

Compiling multiple source files

� Large programs will always be split in multiple files (if your’s

are not then you might consider it)

� The nice things about this is that one can compile the

individual parts independently.

� Header files are used to specify the prototype of function calls.

Eg. void hello (const char * name);

#include “hello.h”

int main (void)

{

hello (“world”);

return 0;

}

#include <stdio.h>

#include “hello.h”

void hello (const char * name)

{

printf (“Hello, %s!\n”, name);

}

Compiling multiple source files

� $ gcc –Wall main.c hello_fn.c –o hello

� Note that the header file is not included in the list of files to be

compiled.

� This is because the directive #include “hello.h” in the source files

instructs the compiler to include it automatically at the appropriate

points.

� This is something which is carried out by the pre-processor tool cpp.

� Only the files which have changed need recompilation because a two-

stage process is carried out … compilation and linking

Compiling then linking …

� In the first stage the source file is compiled without creating an
executable.

� The result is referred to as an object file, and has the extension .o
when using gcc compiler.

� In the second stage, the object files are merged together by a separate
program called a linker.

� The linker combines all the object files together to create an
executable.

� Essentially, an object file contains machine code where any references
to the memory addresses of functions (or variables) in other files are
left undefined.

� This allows source files to be compiled without direct reference to each
other.

� The linker fills in these missing addresses when it produces the
executable.

Creating object files from source files

� $ gcc –Wall –c main.c

� Produces an object file ‘main.o’ containing the
machine code for the main function with a reference
to the external function hello.

� The corresponding memory address is left undefined
at this stage

� $ gcc main.o hello_fn.o –o hello

� gcc uses the GNU linker ld

� It should be noted that linking is effectively an
unambiguous process which either succeeds or fails
(and it fails only if there are references which cannot
be resolved)

� Warnings flag is useless here of course!

Linking with external libraries

� A library is a collection of precompiled object files
which can be linked into programs. Eg. Math library
libm.a

� Static libraries: They are created from object files with
GNU archiver tool ar, and are used by the linker to
resolve references to functions at compile-time.

� $ gcc –Wall add.c –lm –o add

� -l is used to link against libraries. –lm for math one.

� Shared libraries: libraries are loaded and references
are resolved at run-time.

Linking with shared libraries

� When a program is linked against a static library, the machine code from
any external functions used by the program is copied from the library into
the final executable (increasing it’s size)

� With shared libraries a more advanced from of linking is performed, which
makes the executables smaller.

� Shared library ext. is ‘.so’ for shared objects

� Instead of complete machine code of functions the executable would
contain a small table of the functions it requires.

� Before executable starts running, the machine code of the external
functions is copied into memory from the shared library – dynamic linking

� Dynamic linking makes executables smaller.

Compilation warning options -Wall

� -Wcomment (inc. in –Wall)

� This options warns about nested comments eg. /* …
/* … */ … */ which may become a source of
confusion.

� -Wformat (inc. in –Wall)

� This option warns about the incorrect use of format
strings in the functions such as printf, where the
format specified (eg. %f) does not agree with the
type of the argument.

� -Wunused (inc. in –Wall)

� This option warns about unused variables. Could be
an error or could be genuinely not needed.

Compilation warning options -Wall

� -Wimplicit (inc. in –Wall)

� This options warns about any functions which are used without
being declared. Usually you’re missing the #include header
file.

� -Wreturn-type (inc. in –Wall)

� This option warns about functions which are declared without a
return type but not declared void. It also catches empty return
statements in functions that are not declared void. It is usually
good to avoid ambiguity (eg. Use ‘return 0’ not just ‘return’).

� Any compiler warning can be taken as an indication of a
potentially serious problem. Good compiler implementations
try an pinpoints these cases.

Warnings not in -Wall

� There are cases where one would want the compiler
to warn him of “suspicious” code, which might be
good but might also indicate potential problems.
Check this piece of code: what’s wrong here?

� int foo (unsigned int x)

{

if (x < 0)

return 0

else

return 1

}

-W gcc compiler option

� The ‘-W’ is a general option which warns about a
selection of common programming errors, such as
functions which can return without a value and
comparisons between signed and unsigned values.

� From the previous example the compiler outputs:

� $ gcc –W –c example.c

Example.c: In function ‘foo’

Example.c:4: warning: comparison of unsigned
expressions < 0 is always false

-W specific options

� -Wconversion

� This option warns about implicit type

conversions that could cause unexpected

results. For eg. unsigned int x = -1;

� -Wshadow

� The option warns about the redeclaration of a

variable name in a scope where it has already

been declared. This is referred to as variable

shadowing. Check code in next slide.

-Wshadow

� double test (double x)

{

double y = 1.0;

{

double y;

y = x;

}

return y;

}

� This is clearly a valid piece of code but some people

might think that the return value of y = x when it’s 1.

Preprocessor - cpp

� It is automatically called whenever gcc processes a c
or c++ file. Recently it can been inbuilt in the
compiler itself. Cpp still exists.

� Used mainly to expand macros.

� For eg … #ifdef:

� #ifdef TEST

� Printf(“Test Mode … \n“);

� #endif

� The gcc option ‘-DNAME’ defines a preprocessor
macro NAME from the command line. In the program
above if we want to compile in test mode, the
command line option ‘-DTEST’ is used.

Macros with values

� In addition to being defined, a macro can also be
assigned a value. Clearly this value is inserted in the
source code at each point where the macro occurs.

� -DNAME=value … eg –DNUM=100 would replace the
occurrences of macro NUM with 100 in the program

� $gcc –Wall –DNUM=100 test.c

� $gcc –Wall –DNUM=“50+50” test.c

� The above a equivalent gcc calls.

� Macros can also be defined inside the code using the
#define command. Eg

� #define SIZE 100

� int table1[SIZE]

Compiling with optimisation

� GCC is an optimised compiler, i.e. it

provides a number of options which either

increase the speed of an executable or else

decrease it’s size (or both)

� Source-level optimisation

� Common subexpression elimination

� Function inlining (especially important when

small functions are continuously invoked). Eg

double sq(double x) { return x*x; }

Consider this function inside a loop!

Compiling with optimisation (ii)

� Speed-space tradeoffs

� One can produce faster code at the

expense of size. Eg. Loop Unrolling

� Increases the speed of loops by

eliminating the “end of loop” condition in

each iteration. Eg

� For (i=0; i<8; i++) { y[i] = i; }

� Is replaced with …

� y[0] = 0; y[1] = 1; etc …

Compiling with optimisation (iii)

� Scheduling:

� The lowest level of optimisation in which the compiler
determines the best ordering of individual
instructions.

� Pipelining, in which multiple instructions execute in
parallel on the same CPU.

� The compiler tries to optimise this amount of
parallelisation.

� Increases speed of executable but takes longer to
compiler due to its complexity!

Optimisation Levels (i)

� GCC provides a range of general
optimisation levels, numbered 0-3 (using –
OLEVEL), as well as options for specific
optimisations.

� -O0 (default): Does not perform any
optimisations. Best for debugging.

� -O1 : Turns on the most common forms of
optimisation that do not require any speed-
space tradeoffs.

Optimisation Levels (ii)

� -O2 : Turns on O1 plus instruction scheduling. It will
not increase the executable size but will take longer to
compile. Best for release versions.

� -O3 : Turns on speed-space optimisations such as
unfolding of loops.

� -funroll-loops : specific optimisation

� -Os: Turns on optimisations which should decrease
the size of the executable.

Summary …

� A single invocation of GCC consists of

the following stages:

� Preprocessing (to expand macros)

� Compilation (from source code to

assembly language)

� Assembly (from assembly language to

machine code)

� Linking (to create the final executable)

References

An Introduction to GCC

� Brian Gough

