
Compiler Theory

(Intermediate Code Generation –
Abstract S yntax + 3 Address Code)

006

Why intermediate code ?

 Details of the source language are confined to the front-
end (analysis phase) of a compiler, while details of the
target machine are confined to the back-end (synthesis)
part.

 This saves a considerable amount of effort since with m
front-ends and n back-ends we have m*n compilers.

Intermediate representations

 Syntax Trees
 Code is represented in the form of a tree where

nodes represent constructs in the source program;
the children of a node represent the meaningful
components of a construct.

 Three-Address Code
 Made up of instructions of the general form x=y op z
 X, y and z are the three addresses.

 C
 Often used as an intermediate representation. e.g.

LOTOS language

Directed Acyclic Graphs (i)

 Nodes in a syntax tree represent constructs
in the source program

 A DAG is used to identify common sub-
expressions. e.g. a+a*(b-c)+(b-c)*d

 By doing so it gives the compiler important
hints on how to generate efficient code to
evaluate the expressions.

DAG for a+a*(b-c)+(b-c)*d

Three Address Code (TAC)

 An alternative form of intermediate (lower level)
representation.

 x+y*x becomes
 t1 = y * z

 t2 = x + t1

 For expressions TAC is very similar to syntax
trees.

 For statements it would produce labels and
jumps in a similar fashion to machine code.

TAC for a+a*(b-c)+(b-c)*d

Addresses and Instructions

 An address can be
 A name : source program names

 In an implementation we would have these
as pointers pointing towards the symbol
table.

 A constant
 A compiler-generated temporary

 To store temporary results

Addresses and Instructions (i)

 Assignment instructions
 x = y op z where op is binary
 x = op y where op is unary (-, !, type casting)

 Copy Instructions
 x = y

 Jumps
 Unconditional : goto L
 Conditional :

 if x goto L
 ifFalse x goto L
 if x relop y goto L

Addresses and Instructions (ii)

 Procedure Calls and returns
 Parameters : param x
 Procedure with n params: call p,n
 Function with n params : y = call f,n

 Indexed Array[] Access
 x = y[i]
 x[i] = y

 Address and Pointer Assignments (no need to be covered)
 x = &y
 x = *y
 *x = y

do i = i+1; while (a[i] < v);

Quadruples and Triples

 Data structures to hold three address
code instructions.

 A Quadruple has four fields (x = y+z)
 Op (+)
 Arg1 (y)
 Arg2 (z)
 Result (x)

An example ...

 Note that in an actual implementation a,b and c should be
pointers to the symbol table.

Triples

 Omit result field.
 Instead of a result field we can use

pointers to the triple structure itself.
 This makes DAG and triple

representation practically identical,
since we are pointing to a node.

 In next example (n) indicates position
n in the triple structure

An example ...

 Note similarity ...

Code Generation

 This is the final phase of a compiler
 Takes an intermediate representation and generates

the equivalent target program
 Code optimisation (if any) occurs between the

intermediate and target code generation
 We require that the code

 is correct and
 effectively uses the resources on the target

machine
 Is itself efficient in generating code

Code Generation

 Whoever is designing the code generator must have
a very good knowledge of the architecture of the
target hardware and operating system.

 Should keep in mind
 Memory management
 Instruction selection
 Register allocation
 Evaluation order

 We shall look at generic issues

Input to the Code Generator

 Consists of
 Intermediate Code produced by front end
 Symbol Table to determine the runtime addresses

of the data objects denoted by the names in the
intermediate representation

 The underlying machine memory is byte-addressable
and would have a number (say n) of general-purpose
registers.

Assembly Language Instructions

 Most instructions consist of an operator,
followed by a target, followed by a list of
source operands.

 A label may precede an instruction

 We the next few slides we shall look at a
number of different instruction classes.

Load Operations

 LD dst, addr
 Loads the value in location addr into

location dst.
 dst = addr
 LD r, x loads the value at addr x into r
 LD r1, r2 loads the contents of register r2

into register r1

Store operations

 ST x, r
 Stored the value in register r into the

location x.
 This instruction denotes the assignment

x = r.
 Note difference from LD

Computation Operators

 OP dst, src1, src2
 OP would be ADD, SUB etc
 dst, src1, src2 are locations
 Applies operation OP to the values in

locations src1 and src2, and place the
result of this operation in location dst

 ADD r1, r2, r3 computes r1=r2+r3
 Unary OP do not have src2

Unconditional Jumps

 BR L
 Causes control to branch to the machine

instruction with label L
 BR stands for branch

Conditional Jumps

 Bcond r, L
 Where r is a register and L is a label
 Cond stands for any of the of the common

tests on values eg. LT, GT, etc
 BLTZ r, L causes a jump to label L if the

value in register r is less than zero, and
allows control to pass to the next machine
instruction if not.

3AC to machine code (x=y-z)

 LD R1, y
 LD R2, z
 SUB R1, R1, R2
 ST x, R1

// R1 = y

// R2 = z

// R1 = R1 - R2

// x = R1

3AC to machine code (if x<y goto L)

 LD R1, x // R1 = x
 LD R2, y // R2 = y
 SUB R1, R1, R2 // R1 = R1 - R2
 BLTZ R1, M // if R1<0 jump M

Instruction Selection

 Instruction selection effects
 Execution speed and
 Size

 A rich instruction set may provide
several ways to perform any given
operation.

 Typical e.g. ... INC x instruction
replaces ADD x + 1;

Register Allocation

 Instructions involving registry operands are usually
shorter and much faster than those involving memory
operands. For this reason utilization of registers is
important in generating fast code.

 The use of registers is often subdivided into two problems
 During register allocation, we select the set of

variables that will reside in registers at a point in the
program

 During subsequent register assignments, we pick the
specific register that the variable will be stored in

 Optimal assignment of registers is NP-complete ... hence
some heuristics have to be used.

Standard code optimizations (i)

 Common Sub Expression
 An expression E is called a common sub-expression if

E was previously computed and the values of the
variables in E have not changed. In such cases we can
use the previously computed value of E.

 Copy Propagation
 Reorganises assignment statements so that:

 x = y
 z = x

 Becomes
 x = y
 z = y

Standard code optimizations (ii)

 Dead Code Elimination
 A variable is 'live' at a point in a program if its value

can be used subsequently, otherwise it is 'dead'.
Statements may compute values that are never used
in a program.

 e.g. Computing expressions values which are never
assigned

 e.g. If (debug) then print ... and someone (using data
flow analysis) the compiler can deduce that debug is
always false. Check and print code can be removed.

Standard code optimizations (iii)

 copy propagations + dead code elimination
 x = t3

 a[t2] = t5

 a[t4] = x

 goto b2

 Elimination of copy propagation
 x= t3

 a[t2] = t5

 a[t4] = t3

 goto b5

 Elimination of dead code
 a[t2] = t5

 a[t4] = t3

 goto b5

Standard code optimizations (iii)

 Loop optimisation
 Loops are an important place where optimisations may

occur. Clearly we try to reduce the number of
instructions inside the loop ! One option is to use code
motion (and maintain semantics)

 This transformation takes out of the loop any
expressions that have the same evaluation
independent of the number of times the loop executes
(loop-invariant computation) and places it before the
loop.

 e.g. while (i <= (limit-1)) limit – 1 can be
computed before the loop !! i <= t where t = limit-1

