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Semantic Actions

 A compiler must do more than recognise whether a 
sentence belongs to the language of a grammar – it 
must do something useful with that sentence !!

 The semantic actions of a parser can do useful 
things with the phrases that are parsed.

 In a recursive-descent parser, semantic action code is 
interspersed with the control flow of the parsing actions. 
In JavaCC, semantic actions are fragments of Java 
program code attached to the grammar productions.



Semantic Actions (ii) 

 For a rule A -> B C D, the semantic action must 
return a value whose type is the one associated 
with the non-terminal A. 

 It will build it's value from the values associated 
with the matched terminals and non-terminals B,C 
and D.

 It is possible to construct an entire compiler that 
fits within the semantic actions phrases of JavaCC, 
however such a compiler would be difficult to read 
and maintain.  Hence abstract syntax trees ...



Abstract Syntax Tree (i) 

 To improve modularity it is better to separate 
issues of syntax (parsing) from issues of semantics 
(type-checking and translation to machine code) 

 One way to do this is for the compiler to produce a 
parse tree then an abstract syntax tree– a data 
structure that later phases of the compiler will 
traverse.

 Parse tree has exactly one leaf for each token of 
the input and one internal node for each grammar 
rule reduced during the parse.



Abstract Syntax Trees (ii) 

 Factoring, elimination of left recursion and 
ambiguity should be confined to the parsing phase. 

 The abstract syntax tree conveys the phrase 
structure of the source program, with all parsing 
issues resolved but without any semantic 
interpretation.

 Punctuation tokens may be removed since they 
convey no information in an abstract syntax tree.



Abstract Syntax of expressions

 E -> E + E
 E -> E – E
 E -> E * E
 E -> E / E
 E -> id
 E -> num

 Note that this grammar is completely impractical for 
parsing. The grammar is ambiguous since the 
precedence of the operators is not specified.

 The semantic analysis phase takes this abstract syntax 
tree; it is not bothered by the ambiguity of the grammar, 
since it already has the parse tree.



Data structures for Abstract Syntax Trees (let us look 
at some code ... !!) 

 Compiler needs to represent and manipulate 
abstract syntax trees as data structures.

 Typically a (Java) compiler would have an 
abstract class for each non-terminal and a sub-
class for each production ... 

 The next slide gives an implementation of the 
abstract class Exp together with some of it's 
productions.

 On the slide after that one, there's the JavaCC 
specification file which generates the abstract 
syntax tree !!



Code for Exp class 



JavaCC code to construct Abstract Syntax Tree



Semantic Analysis (i) 

 The semantic analysis phase of a compiler 
 connects variable definitions to their uses, 
 checks that each expression has a correct type, 

and
 translates the abstract syntax into a simpler 

representation suitable for generating machine 
code.

 This phase is characterised by the maintenance of 
the symbol tables !!



Semantic Analysis (ii) 

 Each local variable in a program has a scope in 
which it is visible.

 In a typical programming language, in a method m, 
all formal parameters and local variables declared 
in m are visible only until the end of m.

 As the semantic analysis reaches the end of each 
scope, the identifier bindings local to that scope are 
discarded.



Semantic Analysis - Environments(iii) 

 An environment is a set of bindings denoted by 
the ├ symbol (should be an arrow |-> ) 

 For example, we could say that the environment 
(sigma 0) contains the bindings { g ├ string, 
a├ int }, meaning that the identifier a is an 
integer and g is a string variable.

 Consider the small Java program in the next 
slide. The environment of the program changes 
from one set to another ... 1 = 0 + { a├ int, 
b├ int, c├ int } then 2 = 1 + { j├ int } and 
then 3 = 2 + { a├ String } 



Java Sample



Precedence in scoping tables

 In the previous example we wanted  {a├String} 
to take precedence.

 One very simple strategy is to say that bindings 
in the right of the table override those on the 
left.

 Note that at the end of the previous method we 
need to discard 3 and go back to 1.

 And at the end of the program we go back to 
0.



How do we implement the symbol table? (i) 

 In the imperative style we modify 1 until it 
becomes 2. In a way it is a destructive 
(destroys 1) update ...

 We need a way of undoing changes so that from 
2 we can go back to 1

 A single global variable s becomes at different 
times 0, 1, 2, 3, 1, 0.

 We use an “undo stack” with enough 
information to remove the destructive updates. 



How do we implement the symbol table? (ii) 

 Imperative-style environments are usually implemented 
using hash tables (because they are very efficient) 

 The idea is to have a hashtable (possibly per symbol 
table) in which the keys are the variable names and the 
values point to an ordered list (stack like) with the 
different scope bindings.

 Insert : ' =  + {a├ } is implemented by inserting  in 
the hash table with key a.

 At the end of a's scope we need to restore , with a call to 
pop(a).

 Note that this is a very simple implementation !!



Multiple Symbol Tables !!

 Check out this Java code ...
 There can be several active 

environments at once. 

 1 = { a ├ int }

 2 = { E ├ 1 }

 3 = { b ├ int, a ├ int}

 4 = { N ├ 3 }

 5 = { d ├ int }

 6 = { D ├ 5 }

 7 = 2 + 4 + 6



Symbol Table Content (i)

 With what should a symbol table be filled – that 
is, what is a binding?

 It should contain all declared type information
 Each variable name and formal-parameter 

name should be bound to its type;
 Each method name should be bound to its  

parameters, result type, and local variables; 
and

 Each class should be bound to its variable 
and method declarations.



Symbol Table Contents (ii) 

 B and C are 
mapped to two 
tables for fields and 
methods

 Each method is 
then mapped to 
both its result type, 
tables with formal 
parameters and 
local variables



Type Checking ...

 Two phase process
 First finish off building the symbol table, 
 Then type-check statements and expressions

 It is best (for example in Java) to first build the 
symbol table because in the code we would 
normally have classes which are mutually 
recursive. 

 So we want everything to be in the symbol table 
before we start type checking.



Type Checking (ii) ...

 Can take two forms
 Type Synthesis builds up the type of an expression 

from the types of its sub-expressions. It requires 
names to be declared before they are used. 

 Type Inference determines the type of a language 
construct from the way it is used. e.g. In ML
A typical rule for type inference has the form
if f(x) is an expression,
then for some  and , f has type  ->  and x has 

type 



Type Synthesis and Conversions

 Suppose that in our language integers are 
converted to floats when necessary,

 We can use rules to type check and if 
necessary convert an int to a float

 For e.g. For an expression E = E1 + E2
 If (E1.type = integer and E2.type = integer) 

E.type = integer
 Else  if (E1.type = float and E2.type = integer) ...
 ....



Run-time Environment – Stack Allocation of Space

 Each time a procedure is called, space for its 
local variables is pushed onto a stack. 

 When the procedure terminates, that space 
is popped off the stack.

 Note that this arrangement only works for 
procedure calls whose duration do not 
overlap in time.

 We shall refer to procedure calls as 
activations.



Recursive procedure calls - Activation Trees

 e.g. a quicksort implementation
 Procedure activations are nested in time, i.e. If an 

activation of procedure p calls procedure q, then that 
activation of q must end before the activation of p can 
end.

 If  the activation of q terminates normally, then control 
resumes just after the point of p at which the call to q was 
made.

 We can represent the activation of procedures during the 
running of an entire program by a tree called an 
activation tree.



Activation Tree 



Activation Records (i) 

 We know that functions may have 
local variables that are created upon 
entry to a function.

 We also know that several invocations 
of the same function (method) may 
exist at the same time.

 Each invocation must have its own 
instantiations of local variables



Activation Records (ii) 

 A new instantiation of 
x is created (and 
initialized by f's caller) 
each time that f is 
called.

 Because of recursion, 
many of these x's 
exist simultaneously

 Similarly, a new 
instantiation of y is 
created each time the 
body of f is entered.



Activation Records (iii) 

 Each live activation 
(function or 
procedure) has an 
activation record 
(sometimes called a 
frame) located in the 
stack which stores 
local variables, 
parameters, return 
addresses and other 
temporary data.



Activation Records – Contents (iv) 

 Saved machine status stores info about
 State of the machine just before the call to the 

procedure – return address (value of program 
counter, to which the called procedure must 
return) 

 Contents of registers prior to call so that they are 
restored when the procedure returns

 Control Link
 Pointing to the activation record of the caller

 Local Data – belonging to the procedure whose 
activation record this is.



Run-time updates on stack of activation records for 
quicksort



Explanation of previous slide !

 Procedure r (readArray) is activated first ... it's activation 
record (AR) is pushed onto the stack,

 When control returns its AR is popped, leaving just the 
record for main on the stack,

 Control then goes to q (quicksort) with parameters 1 and 
9. An AR for this call is placed on the top of the stack,

 Several activations occur between the last two snapshots
 A recursive call to q(1,3) was made
 p(1,3) and q(1,0) have begun and ended during the 

lifetime of q(1,3) 
 The last snapshot shows control returning to q(1,3) 


