
Compiler Theory

(Semantic Analysis and Run-Time Environments)

005

Semantic Actions

 A compiler must do more than recognise whether a
sentence belongs to the language of a grammar – it
must do something useful with that sentence !!

 The semantic actions of a parser can do useful
things with the phrases that are parsed.

 In a recursive-descent parser, semantic action code is
interspersed with the control flow of the parsing actions.
In JavaCC, semantic actions are fragments of Java
program code attached to the grammar productions.

Semantic Actions (ii)

 For a rule A -> B C D, the semantic action must
return a value whose type is the one associated
with the non-terminal A.

 It will build it's value from the values associated
with the matched terminals and non-terminals B,C
and D.

 It is possible to construct an entire compiler that
fits within the semantic actions phrases of JavaCC,
however such a compiler would be difficult to read
and maintain. Hence abstract syntax trees ...

Abstract Syntax Tree (i)

 To improve modularity it is better to separate
issues of syntax (parsing) from issues of semantics
(type-checking and translation to machine code)

 One way to do this is for the compiler to produce a
parse tree then an abstract syntax tree– a data
structure that later phases of the compiler will
traverse.

 Parse tree has exactly one leaf for each token of
the input and one internal node for each grammar
rule reduced during the parse.

Abstract Syntax Trees (ii)

 Factoring, elimination of left recursion and
ambiguity should be confined to the parsing phase.

 The abstract syntax tree conveys the phrase
structure of the source program, with all parsing
issues resolved but without any semantic
interpretation.

 Punctuation tokens may be removed since they
convey no information in an abstract syntax tree.

Abstract Syntax of expressions

 E -> E + E
 E -> E – E
 E -> E * E
 E -> E / E
 E -> id
 E -> num

 Note that this grammar is completely impractical for
parsing. The grammar is ambiguous since the
precedence of the operators is not specified.

 The semantic analysis phase takes this abstract syntax
tree; it is not bothered by the ambiguity of the grammar,
since it already has the parse tree.

Data structures for Abstract Syntax Trees (let us look
at some code ... !!)

 Compiler needs to represent and manipulate
abstract syntax trees as data structures.

 Typically a (Java) compiler would have an
abstract class for each non-terminal and a sub-
class for each production ...

 The next slide gives an implementation of the
abstract class Exp together with some of it's
productions.

 On the slide after that one, there's the JavaCC
specification file which generates the abstract
syntax tree !!

Code for Exp class

JavaCC code to construct Abstract Syntax Tree

Semantic Analysis (i)

 The semantic analysis phase of a compiler
 connects variable definitions to their uses,
 checks that each expression has a correct type,

and
 translates the abstract syntax into a simpler

representation suitable for generating machine
code.

 This phase is characterised by the maintenance of
the symbol tables !!

Semantic Analysis (ii)

 Each local variable in a program has a scope in
which it is visible.

 In a typical programming language, in a method m,
all formal parameters and local variables declared
in m are visible only until the end of m.

 As the semantic analysis reaches the end of each
scope, the identifier bindings local to that scope are
discarded.

Semantic Analysis - Environments(iii)

 An environment is a set of bindings denoted by
the ├ symbol (should be an arrow |->)

 For example, we could say that the environment
(sigma 0) contains the bindings { g ├ string,
a├ int }, meaning that the identifier a is an
integer and g is a string variable.

 Consider the small Java program in the next
slide. The environment of the program changes
from one set to another ... 1 = 0 + { a├ int,
b├ int, c├ int } then 2 = 1 + { j├ int } and
then 3 = 2 + { a├ String }

Java Sample

Precedence in scoping tables

 In the previous example we wanted {a├String}
to take precedence.

 One very simple strategy is to say that bindings
in the right of the table override those on the
left.

 Note that at the end of the previous method we
need to discard 3 and go back to 1.

 And at the end of the program we go back to
0.

How do we implement the symbol table? (i)

 In the imperative style we modify 1 until it
becomes 2. In a way it is a destructive
(destroys 1) update ...

 We need a way of undoing changes so that from
2 we can go back to 1

 A single global variable s becomes at different
times 0, 1, 2, 3, 1, 0.

 We use an “undo stack” with enough
information to remove the destructive updates.

How do we implement the symbol table? (ii)

 Imperative-style environments are usually implemented
using hash tables (because they are very efficient)

 The idea is to have a hashtable (possibly per symbol
table) in which the keys are the variable names and the
values point to an ordered list (stack like) with the
different scope bindings.

 Insert : ' =  + {a├ } is implemented by inserting  in
the hash table with key a.

 At the end of a's scope we need to restore , with a call to
pop(a).

 Note that this is a very simple implementation !!

Multiple Symbol Tables !!

 Check out this Java code ...
 There can be several active

environments at once.

 1 = { a ├ int }

 2 = { E ├ 1 }

 3 = { b ├ int, a ├ int}

 4 = { N ├ 3 }

 5 = { d ├ int }

 6 = { D ├ 5 }

 7 = 2 + 4 + 6

Symbol Table Content (i)

 With what should a symbol table be filled – that
is, what is a binding?

 It should contain all declared type information
 Each variable name and formal-parameter

name should be bound to its type;
 Each method name should be bound to its

parameters, result type, and local variables;
and

 Each class should be bound to its variable
and method declarations.

Symbol Table Contents (ii)

 B and C are
mapped to two
tables for fields and
methods

 Each method is
then mapped to
both its result type,
tables with formal
parameters and
local variables

Type Checking ...

 Two phase process
 First finish off building the symbol table,
 Then type-check statements and expressions

 It is best (for example in Java) to first build the
symbol table because in the code we would
normally have classes which are mutually
recursive.

 So we want everything to be in the symbol table
before we start type checking.

Type Checking (ii) ...

 Can take two forms
 Type Synthesis builds up the type of an expression

from the types of its sub-expressions. It requires
names to be declared before they are used.

 Type Inference determines the type of a language
construct from the way it is used. e.g. In ML
A typical rule for type inference has the form
if f(x) is an expression,
then for some  and , f has type  ->  and x has

type 

Type Synthesis and Conversions

 Suppose that in our language integers are
converted to floats when necessary,

 We can use rules to type check and if
necessary convert an int to a float

 For e.g. For an expression E = E1 + E2
 If (E1.type = integer and E2.type = integer)

E.type = integer
 Else if (E1.type = float and E2.type = integer) ...


Run-time Environment – Stack Allocation of Space

 Each time a procedure is called, space for its
local variables is pushed onto a stack.

 When the procedure terminates, that space
is popped off the stack.

 Note that this arrangement only works for
procedure calls whose duration do not
overlap in time.

 We shall refer to procedure calls as
activations.

Recursive procedure calls - Activation Trees

 e.g. a quicksort implementation
 Procedure activations are nested in time, i.e. If an

activation of procedure p calls procedure q, then that
activation of q must end before the activation of p can
end.

 If the activation of q terminates normally, then control
resumes just after the point of p at which the call to q was
made.

 We can represent the activation of procedures during the
running of an entire program by a tree called an
activation tree.

Activation Tree

Activation Records (i)

 We know that functions may have
local variables that are created upon
entry to a function.

 We also know that several invocations
of the same function (method) may
exist at the same time.

 Each invocation must have its own
instantiations of local variables

Activation Records (ii)

 A new instantiation of
x is created (and
initialized by f's caller)
each time that f is
called.

 Because of recursion,
many of these x's
exist simultaneously

 Similarly, a new
instantiation of y is
created each time the
body of f is entered.

Activation Records (iii)

 Each live activation
(function or
procedure) has an
activation record
(sometimes called a
frame) located in the
stack which stores
local variables,
parameters, return
addresses and other
temporary data.

Activation Records – Contents (iv)

 Saved machine status stores info about
 State of the machine just before the call to the

procedure – return address (value of program
counter, to which the called procedure must
return)

 Contents of registers prior to call so that they are
restored when the procedure returns

 Control Link
 Pointing to the activation record of the caller

 Local Data – belonging to the procedure whose
activation record this is.

Run-time updates on stack of activation records for
quicksort

Explanation of previous slide !

 Procedure r (readArray) is activated first ... it's activation
record (AR) is pushed onto the stack,

 When control returns its AR is popped, leaving just the
record for main on the stack,

 Control then goes to q (quicksort) with parameters 1 and
9. An AR for this call is placed on the top of the stack,

 Several activations occur between the last two snapshots
 A recursive call to q(1,3) was made
 p(1,3) and q(1,0) have begun and ended during the

lifetime of q(1,3)
 The last snapshot shows control returning to q(1,3)

