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The role of syntax analysis


 

For well-formed programs, the parser 
constructs a parse tree and passes it 
to the rest of the compiler for further 
processing.


 

Three general types


 
Universal (can parse any grammar)



 
Top-down



 
Bottom-up



Grammars for Exp



 
We shall focus on expressions because 
these present more of a challenge because 
of,


 
Associativity of operators



 
Precedence of operators



 
Statements that begin with for e.g. While 
are typically easier to parse, because the 
keyword guides the choice of which 
grammar rule to use to match the input. 



A grammar to capture expressions



 

E ->


 

E + T 


 

T


 

T ->


 

T * F


 

F


 

F ->


 

( E ) 


 

id



 

Note that this grammar cannot 
be parsed using a top down 
parse. Why ?



 

But it is suitable to be parsed 
used a bottom-up parser.



 

The next slide gives you an 
alternative grammar which can 
be parsed top-down.



A grammar to capture expressions (ii) 



 

E


 

T E'


 

E'


 

+ T E' | ε


 

T


 

F T '


 

T '


 

* F T ' | ε


 

F


 

( E ) | id



 

Left recursion has 
been removed.



 

The grammar 
(which is equivalent 
to the one before) 
can now be fed into 
a top-down parser.



Lexical versus Syntactic Analysis



 

We know that everything that can be described by a 
regular grammar can be described by a context-free 
grammar …

 
so you could ask why don’t we use context-

 free grammars to define lexical rules as well. Here are 
some reasons:


 

It is good practise to separate the syntactic structure of a 
language into lexical and non-lexical parts mainly for 
modularisation of the front-end



 

Lexical rules are normally quite simple to describe …
 

and 
don’t require a notation as powerful and expressive as a CF 
grammar



 

Regular expressions generally provide a more concise and 
easy-to-understand notation



 

More efficient lexers
 

can be constructed from RegExprs



Syntax-Error Handling (i) 



 

A compiler is expected to help the programmer 
in locating and tracking down errors !



 

Lexical Errors


 

e.g. Misspellings of ids, keywords and missing 
quotes around text intended as a string



 

Syntactic Errors


 

e.g. Misplaced semi-colons, extra or missing 
braces { }



Syntax-Error Handling (ii) 



 

A compiler is expected to help the programmer 
in locating and tracking down errors !



 

Semantic Errors


 

e.g. Type mismatches between operator and 
operands. 



 

Logical Errors


 

e.g. Incorrect reasoning, = instead of ==. 
Program may be well-formed but not what the 
programmer wants.



Goals of Error-handler in Parser



 
Report the presence of errors clearly and 
accurately



 
Recover from each error quickly enough to 
detect subsequent errors



 
Add minimal overhead to the processing of 
correct programs



 

The error handler should at least inform the 
programmer of the offending line in the source



Error-Recovery Strategies (i) 



 

Simplest possible approach


 

quit on first error


 

Panic-Mode Recovery


 

Synchronizing tokens –
 

upon discovering an 
error, the parser discards input symbols one at a 
time until a synch token is matched. e.h. ; or }



 

Phrase-Level Recovery


 

When discovering an error the parser might try 
some local correction. e.g. Replace comma with 
semi-colon, insert or delete semi-colon, etc



Error-Recovery Strategies (ii) 


 

Error Productions


 
Tries to anticipate common errors and 
actually includes them in the grammar so 
that the parser generates appropriate 
error diagnostics about the erroneous 
construct. Not common.


 

Global Correction


 
Tries to infer the closest correct program 
, however this is very expensive and not 
practical. Only of theoretical interest.



Derivations (i) 


 

E


 
E + E | E * E | -E | (E) | id



 
A derivation of -(id) from E is the 
sequence of replacements



 
E-E-(E) -(id) 



Derivations – Leftmost (ii) 


 

Leftmost derivation


 
The leftmost non-terminal in each 
sentential is always chosen.



 

E -E -(E) -(E+E) -(id+E) -(id+id) 



Derivations – Rightmost (iii) 



 

Rightmost derivation


 

The rightmost non-terminal is always chosen.



 

E -E -(E) -(E+E) -(E+id) -(id+id) 



 

Now …. A parse tree is a graphical representation of a derivation that 
filters out the order in which productions are applied to replace non-

 terminals. The parse tree (final step in derivation) on the next

 

slide 
results from the derivation above and the one on the previous slide. The 
sequence however maps the LeftMost

 

derivation.



 

Each interior node represents the application of a production. 



Sequence of Parse Trees for derivations



Ambiguity (i), Two Leftmost derivations !!


 

E => E + E
=> id + E
=> id + E * E
=> id + id * E
=> id + id * id


 

E => E * E
=> E + E * E
=> id + E * E
=> id + id * E
=> id + id * id



Ambiguity (ii)



 

An ambiguous grammar is one that produces more that 
one leftmost derivation or more than one rightmost 
derivation 



Eliminating Ambiguity (i) 


 

Sometimes it is possible to eliminate 
ambiguity in grammars.


 

stmt


 
if expr then stmt



 
if expr then stmt else stmt



 
other



If E1 then if E2 then S1 else S2 ...



Eliminating Ambiguity (iii) 


 

Problem here is the dangling else !!


 
The idea is that a statement appearing 
between a then an and else must be 
matched.


 

The grammar in the next slide makes 
sure that, for the 'if' statement in the 
previous slide, there is only one parse 
tree. 



Eliminating Ambiguity (iv) 



Elimination of Left Recursion (i) 


 

Top-down parsing methods cannot 
handle left recursion.


 

We've already seen how to remove LR 
in previous lectures...problem is we've 
only looked at immediate LR (A->Aa). 


 

In the next slides we shall look at the 
general algorithm to remove left 
recursion …

 
(A -+> Aa)



Elimination of Left Recursion (ii) 



 

A -> A1

 

| A2

 

| …
 

| Am

 

| 1

 

| 2

 

| …
 

| n



 

Changes to



 

A -> 1

 

A’
 

| 2

 

A’
 

| …
 

| n

 

A’


 

A’
 

-> 1

 

A’
 

| 2

 

A’
 

| …
 

| m

 

A’
 

| e 



 

However check this grammar ….


 

S -> Aa
 

| b



 

A -> Ac | Sd
 

| 



Elimination of Left Recursion (iii) 



Left Factoring (i) 



 
Grammar transformation useful for 
predictive or top-down parsing.



 
The idea is to delay the decision of which 
production to use until enough of the input is 
seen so that we can make the correct 
choice.



 
stmt


 
if expr then stmt else stmt



 
if expr then stmt



Left Factoring (ii) 



 

In general, if we have

A


 
1   |  2



 

We change this to

A


 
A'

A'


 
1

 

| 2



Top-Down Parsing (i) 



 

Start from the root and create nodes for the 
parse tree in pre-order (depth-first) 



 

Finds a leftmost derivation for an input string


 

At each step of a top-down parse


 

Determine the production to be applied for a 
non-terminal



 

And try to match terminal symbols in the 
production body with the input string



 

We have already seen Predictive parsing, which 
is a special case of recursive-descent parsing.



Top-Down Parsing (ii) 



Recursive-Descent Parsing Program



 

Consists of a set of procedures, one for each non-terminal. In 
general it may require backtracking (which is not included in the 
code below). A Left Recursive grammar may cause a recursive-

 descent parser to go into an infinite loop.



FIRST {set} ... then FOLLOW



 

FIRST and FOLLOW are two  important functions 
(which return sets) which aid in the construction 
on both top-down and bottom-up parsers.



 

They will help in determining which production 
rule to apply, based on the next input symbol.



 

FOLLOW is also used in panic-mode error 
recovery to generate the synchronisation tokens



First let us define FIRST



 

First(), where 

 

is any string of grammar symbols



 

Set of terminals that begin strings derived from 



 

If  * , then 
 

is also in FIRST() 



 

Recall how in a predictive parser we require that for A -> 
 

| 
, then FIRST() is disjoint from FIRST() 



 

The main idea here is that if the next non-terminal is in 
FIRST() then the parser should follow the production rule A 
-> 

 
other if the non-terminal is in FIRST() then it should 

follow the production rule A -> 



In general .... FIRST 



 

If X is a terminal, then FIRST(X) = {X}


 

If X is a non-terminal and X Y1

 

Y2

 

...Yk is a 
production for some k >=1, then place a in FIRST(X) 
if for some i, a is in FIRST(Yi

 

), and 
 

is in all of 
FIRST(Y1

 

),...,FIRST(Yi-1

 

).


 

If X 
 

is a production then add 
 

to FIRST(X).



 

e.g if Y * , then we add FIRST(Y2

 

) in FIRST(X) 



FOLLOW definition


 

FOLLOW(A), for non-terminal A



 
The set of terminals a that can appear 
immediately to the right of A in some 
sentential form, alternatively



 
The set of terminals a such that there 
exists a derivation of the form S * Aa



 

Note that in between A and a (above) there could be 
other non-terminals which can derive 

 
and 

disappear



compute .... FOLLOW



 

Place $ in FOLLOW(S), where S is the start 
symbol, and $ is the input right end marker



 

If there is a production A  B, then 
everything in FIRST() except 

 
is in FOLLOW(B) 



 

If there is a production A  B, or a production 
A  B

 
where FIRST() contains , then 

everything in FOLLOW(A) is in FOLLOW(B).



Examples of FIRST and FOLLOW



 
Pg 222 of Aho contains various examples for 
computed FIRST and FOLLOW sets ... make 
sure you go through them.



LL(1) Grammars (i) 



 

First L stands for Left to Right scan of input


 

Second L stands for Left-most derivation


 

1 stands for 1 symbol lookahead at each step to 
make parsing decisions.



 

Can be parsed with a predictive parser (i.e. a 
recursive descent parser with no backtracking) 



 

Make sure that grammar is not left-recursive or 
ambiguous. These cannot be LL(1) grammars.



LL(1) Grammars Formally (ii) 



 

A grammar G is LL(1) if and only if whenever           
A 

 
| 

 
are two disjoint productions of G, the 

following conditions hold:


 

For no terminal a do both 
 

and 
 

derive 
strings beginning with a,



 

At most one of 
 

and 
 

can derive ,



An LL(1) grammar for statements


 

Stmt -> if ( expr
 

) stmt else stmt


 
Stmt -> while ( expr

 
) stmt


 

Stmt -> { stmt_list
 

}



Parsing Table - Predictive 



 

Non-terminals across y-axis and terminal symbols (+ $) 
across the X-axis.



 

Construction Algorithm


 

For each production A -> , do


 

For each terminal a in FIRST(A), add A -> 
 

to 
M[A,a]



 

If 
 

is in FIRST(), then for each terminal b in 
FOLLOW(A), add A -> 

 
to M[A,b]. If 

 
is in 

FIRST() and $ is in FOLLOW(A), add A -> 
 

to 
M[A,$] as well.



 

The remaining empty cells indicate an error state !!



Parsing Table for LL(1) grammar in slide 5



Parsing Table (some entries) 


 

For production E -> T E'


 

FIRST(TE') = FIRST(T) = {(,id}


 

Production is added to M[E,(] and M[E,id]


 

For production E' -> + T E'


 

FIRST(+TE') = {+}


 

Production is added to M[E',+]



Bottom-Up Parsing (i) 


 

Constructs a parse tree for an input 
string beginning at the leaves and 
working up towards the root.



Bottom-Up Parsing (ii) 



 

Bottom-up parsing is the process of reducing a 
string w to the start symbol of the grammar. 
Derivation in reverse !!



 

At each reduction step, a specific substring 
matching the body of a production is replaced 
by the non terminal at the head of that 
production.



 

The parser needs to decide when to reduce and 
what production to apply.



 

id*id 
 

F*id 
 

T*id 
 

T*F 
 

T 
 

E



Bottom-Up Parsing Handles 



 

Informally, a handle is a sub-string that 
matches the body of a production



 

Its reduction represents one step along the 
reverse of a rightmost derivation.



Shift-Reduce Parsing (i) 



 

Uses a stack to hold grammar symbols and an input 
buffer to hold the rest of the string to be parsed.



 

We'll see that the handle will always appear at the 
top of the stack just before it is identified as a 
handle.



 

$ is used to mark the bottom of the stack



Shift-Reduce Parsing (ii) 



 

During a left to right scan of the input string, 
the parser shifts zero or more input symbols 
onto the stack, until it is ready to reduce.



 

This continues until either an error is discovered 
or when the top of the stack contains the start 
symbol.



 

Important : we use a stack because the handle 
will always appear on top of it ... never inside!



Shift-Reduce Parsing (iii) 



Shift-Reduce Parsing Operations



 

Shift : shift the next input symbol onto the top of 
the stack



 

Reduce : The right end of the string to be reduced 
must be at the top of the stack. Locate the left end 
of the string within the stack and decide with what 
non-terminal to replace the string



 

Accept : Announce successful completion of parsing



 

Error : Discover a syntax error and call an error 
recovery routine



Conflict During Shift-Reduce Parsing


 

There are context-free grammars for 
which shift-reduce parsing cannot be 
used. 


 

Shift/Reduce conflict


 
Parser cannot decide whether to shift or 
to reduce


 

Reduce/Reduce conflict


 
Parser cannot decide which rule to reduce



LR(k) Parsing



 

“L”
 

is for left-to-right scanning of the input


 

“R”
 

is for constructing a rightmost derivation in 
reverse



 

“k”
 

stands for the number of input symbols of 
lookahead that are used in making parsing 
decisions. For practical interest we have k=0 or 
1.



 

Efficient parser generators exist for LR 
grammars. (for eg

 
YACC but not JavaCC which is 

LL) 



Summary



 
Top-down parsing



 
Bottom up parsing



 
Parser generators ( e.g. JavaCC generates 
LL(k) parsers ) 
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