
Compiler Theory

(Syntax Analysis – Parsing)

004

The role of syntax analysis



For well-formed programs, the parser
constructs a parse tree and passes it
to the rest of the compiler for further
processing.



Three general types


Universal (can parse any grammar)



Top-down



Bottom-up

Grammars for Exp



We shall focus on expressions because
these present more of a challenge because
of,


Associativity of operators



Precedence of operators



Statements that begin with for e.g. While
are typically easier to parse, because the
keyword guides the choice of which
grammar rule to use to match the input.

A grammar to capture expressions



E ->


E + T


T


T ->


T * F


F


F ->


(E)


id



Note that this grammar cannot
be parsed using a top down
parse. Why ?



But it is suitable to be parsed
used a bottom-up parser.



The next slide gives you an
alternative grammar which can
be parsed top-down.

A grammar to capture expressions (ii)



E


T E'


E'


+ T E' | ε


T


F T '


T '


* F T ' | ε


F


(E) | id



Left recursion has
been removed.



The grammar
(which is equivalent
to the one before)
can now be fed into
a top-down parser.

Lexical versus Syntactic Analysis



We know that everything that can be described by a
regular grammar can be described by a context-free
grammar …

so you could ask why don’t we use context-

 free grammars to define lexical rules as well. Here are
some reasons:


It is good practise to separate the syntactic structure of a
language into lexical and non-lexical parts mainly for
modularisation of the front-end



Lexical rules are normally quite simple to describe …

and
don’t require a notation as powerful and expressive as a CF
grammar



Regular expressions generally provide a more concise and
easy-to-understand notation



More efficient lexers

can be constructed from RegExprs

Syntax-Error Handling (i)



A compiler is expected to help the programmer
in locating and tracking down errors !



Lexical Errors


e.g. Misspellings of ids, keywords and missing
quotes around text intended as a string



Syntactic Errors


e.g. Misplaced semi-colons, extra or missing
braces { }

Syntax-Error Handling (ii)



A compiler is expected to help the programmer
in locating and tracking down errors !



Semantic Errors


e.g. Type mismatches between operator and
operands.



Logical Errors


e.g. Incorrect reasoning, = instead of ==.
Program may be well-formed but not what the
programmer wants.

Goals of Error-handler in Parser



Report the presence of errors clearly and
accurately



Recover from each error quickly enough to
detect subsequent errors



Add minimal overhead to the processing of
correct programs



The error handler should at least inform the
programmer of the offending line in the source

Error-Recovery Strategies (i)



Simplest possible approach


quit on first error


Panic-Mode Recovery


Synchronizing tokens –

upon discovering an
error, the parser discards input symbols one at a
time until a synch token is matched. e.h. ; or }



Phrase-Level Recovery


When discovering an error the parser might try
some local correction. e.g. Replace comma with
semi-colon, insert or delete semi-colon, etc

Error-Recovery Strategies (ii)



Error Productions


Tries to anticipate common errors and
actually includes them in the grammar so
that the parser generates appropriate
error diagnostics about the erroneous
construct. Not common.



Global Correction


Tries to infer the closest correct program
, however this is very expensive and not
practical. Only of theoretical interest.

Derivations (i)



E


E + E | E * E | -E | (E) | id



A derivation of -(id) from E is the
sequence of replacements



E-E-(E) -(id)

Derivations – Leftmost (ii)



Leftmost derivation


The leftmost non-terminal in each
sentential is always chosen.



E -E -(E) -(E+E) -(id+E) -(id+id)

Derivations – Rightmost (iii)



Rightmost derivation


The rightmost non-terminal is always chosen.



E -E -(E) -(E+E) -(E+id) -(id+id)



Now …. A parse tree is a graphical representation of a derivation that
filters out the order in which productions are applied to replace non-

 terminals. The parse tree (final step in derivation) on the next

slide
results from the derivation above and the one on the previous slide. The
sequence however maps the LeftMost

derivation.



Each interior node represents the application of a production.

Sequence of Parse Trees for derivations

Ambiguity (i), Two Leftmost derivations !!



E => E + E
=> id + E
=> id + E * E
=> id + id * E
=> id + id * id



E => E * E
=> E + E * E
=> id + E * E
=> id + id * E
=> id + id * id

Ambiguity (ii)



An ambiguous grammar is one that produces more that
one leftmost derivation or more than one rightmost
derivation

Eliminating Ambiguity (i)



Sometimes it is possible to eliminate
ambiguity in grammars.



stmt


if expr then stmt



if expr then stmt else stmt



other

If E1 then if E2 then S1 else S2 ...

Eliminating Ambiguity (iii)



Problem here is the dangling else !!


The idea is that a statement appearing
between a then an and else must be
matched.



The grammar in the next slide makes
sure that, for the 'if' statement in the
previous slide, there is only one parse
tree.

Eliminating Ambiguity (iv)

Elimination of Left Recursion (i)



Top-down parsing methods cannot
handle left recursion.



We've already seen how to remove LR
in previous lectures...problem is we've
only looked at immediate LR (A->Aa).



In the next slides we shall look at the
general algorithm to remove left
recursion …

(A -+> Aa)

Elimination of Left Recursion (ii)



A -> A1

| A2

| …

| Am

| 1

| 2

| …

| n



Changes to



A -> 1

A’

| 2

A’

| …

| n

A’


A’

-> 1

A’

| 2

A’

| …

| m

A’

| e



However check this grammar ….


S -> Aa

| b



A -> Ac | Sd

| 

Elimination of Left Recursion (iii)

Left Factoring (i)



Grammar transformation useful for
predictive or top-down parsing.



The idea is to delay the decision of which
production to use until enough of the input is
seen so that we can make the correct
choice.



stmt


if expr then stmt else stmt



if expr then stmt

Left Factoring (ii)



In general, if we have

A


1 | 2



We change this to

A


A'

A'


1

| 2

Top-Down Parsing (i)



Start from the root and create nodes for the
parse tree in pre-order (depth-first)



Finds a leftmost derivation for an input string


At each step of a top-down parse


Determine the production to be applied for a
non-terminal



And try to match terminal symbols in the
production body with the input string



We have already seen Predictive parsing, which
is a special case of recursive-descent parsing.

Top-Down Parsing (ii)

Recursive-Descent Parsing Program



Consists of a set of procedures, one for each non-terminal. In
general it may require backtracking (which is not included in the
code below). A Left Recursive grammar may cause a recursive-

 descent parser to go into an infinite loop.

FIRST {set} ... then FOLLOW



FIRST and FOLLOW are two important functions
(which return sets) which aid in the construction
on both top-down and bottom-up parsers.



They will help in determining which production
rule to apply, based on the next input symbol.



FOLLOW is also used in panic-mode error
recovery to generate the synchronisation tokens

First let us define FIRST



First(), where 

is any string of grammar symbols



Set of terminals that begin strings derived from 



If  * , then 

is also in FIRST()



Recall how in a predictive parser we require that for A -> 

|
, then FIRST() is disjoint from FIRST()



The main idea here is that if the next non-terminal is in
FIRST() then the parser should follow the production rule A
-> 

other if the non-terminal is in FIRST() then it should

follow the production rule A -> 

In general FIRST



If X is a terminal, then FIRST(X) = {X}


If X is a non-terminal and X Y1

Y2

...Yk is a
production for some k >=1, then place a in FIRST(X)
if for some i, a is in FIRST(Yi

), and 

is in all of
FIRST(Y1

),...,FIRST(Yi-1

).


If X 

is a production then add 

to FIRST(X).



e.g if Y * , then we add FIRST(Y2

) in FIRST(X)

FOLLOW definition



FOLLOW(A), for non-terminal A



The set of terminals a that can appear
immediately to the right of A in some
sentential form, alternatively



The set of terminals a such that there
exists a derivation of the form S * Aa



Note that in between A and a (above) there could be
other non-terminals which can derive 

and

disappear

compute FOLLOW



Place $ in FOLLOW(S), where S is the start
symbol, and $ is the input right end marker



If there is a production A  B, then
everything in FIRST() except 

is in FOLLOW(B)



If there is a production A  B, or a production
A  B

where FIRST() contains , then

everything in FOLLOW(A) is in FOLLOW(B).

Examples of FIRST and FOLLOW



Pg 222 of Aho contains various examples for
computed FIRST and FOLLOW sets ... make
sure you go through them.

LL(1) Grammars (i)



First L stands for Left to Right scan of input


Second L stands for Left-most derivation


1 stands for 1 symbol lookahead at each step to
make parsing decisions.



Can be parsed with a predictive parser (i.e. a
recursive descent parser with no backtracking)



Make sure that grammar is not left-recursive or
ambiguous. These cannot be LL(1) grammars.

LL(1) Grammars Formally (ii)



A grammar G is LL(1) if and only if whenever
A 

| 

are two disjoint productions of G, the

following conditions hold:


For no terminal a do both 

and 

derive
strings beginning with a,



At most one of 

and 

can derive ,

An LL(1) grammar for statements



Stmt -> if (expr

) stmt else stmt


Stmt -> while (expr

) stmt



Stmt -> { stmt_list

}

Parsing Table - Predictive



Non-terminals across y-axis and terminal symbols (+ $)
across the X-axis.



Construction Algorithm


For each production A -> , do


For each terminal a in FIRST(A), add A -> 

to
M[A,a]



If 

is in FIRST(), then for each terminal b in
FOLLOW(A), add A -> 

to M[A,b]. If 

is in

FIRST() and $ is in FOLLOW(A), add A -> 

to
M[A,$] as well.



The remaining empty cells indicate an error state !!

Parsing Table for LL(1) grammar in slide 5

Parsing Table (some entries)



For production E -> T E'


FIRST(TE') = FIRST(T) = {(,id}


Production is added to M[E,(] and M[E,id]



For production E' -> + T E'


FIRST(+TE') = {+}


Production is added to M[E',+]

Bottom-Up Parsing (i)



Constructs a parse tree for an input
string beginning at the leaves and
working up towards the root.

Bottom-Up Parsing (ii)



Bottom-up parsing is the process of reducing a
string w to the start symbol of the grammar.
Derivation in reverse !!



At each reduction step, a specific substring
matching the body of a production is replaced
by the non terminal at the head of that
production.



The parser needs to decide when to reduce and
what production to apply.



id*id 

F*id 

T*id 

T*F 

T 

E

Bottom-Up Parsing Handles



Informally, a handle is a sub-string that
matches the body of a production



Its reduction represents one step along the
reverse of a rightmost derivation.

Shift-Reduce Parsing (i)



Uses a stack to hold grammar symbols and an input
buffer to hold the rest of the string to be parsed.



We'll see that the handle will always appear at the
top of the stack just before it is identified as a
handle.



$ is used to mark the bottom of the stack

Shift-Reduce Parsing (ii)



During a left to right scan of the input string,
the parser shifts zero or more input symbols
onto the stack, until it is ready to reduce.



This continues until either an error is discovered
or when the top of the stack contains the start
symbol.



Important : we use a stack because the handle
will always appear on top of it ... never inside!

Shift-Reduce Parsing (iii)

Shift-Reduce Parsing Operations



Shift : shift the next input symbol onto the top of
the stack



Reduce : The right end of the string to be reduced
must be at the top of the stack. Locate the left end
of the string within the stack and decide with what
non-terminal to replace the string



Accept : Announce successful completion of parsing



Error : Discover a syntax error and call an error
recovery routine

Conflict During Shift-Reduce Parsing



There are context-free grammars for
which shift-reduce parsing cannot be
used.



Shift/Reduce conflict


Parser cannot decide whether to shift or
to reduce



Reduce/Reduce conflict


Parser cannot decide which rule to reduce

LR(k) Parsing



“L”

is for left-to-right scanning of the input


“R”

is for constructing a rightmost derivation in
reverse



“k”

stands for the number of input symbols of
lookahead that are used in making parsing
decisions. For practical interest we have k=0 or
1.



Efficient parser generators exist for LR
grammars. (for eg

YACC but not JavaCC which is

LL)

Summary



Top-down parsing



Bottom up parsing



Parser generators (e.g. JavaCC generates
LL(k) parsers)

	Compiler Theory
	The role of syntax analysis
	Grammars for Exp
	A grammar to capture expressions
	A grammar to capture expressions (ii)‏
	Lexical versus Syntactic Analysis
	Syntax-Error Handling (i)‏
	Syntax-Error Handling (ii)‏
	Goals of Error-handler in Parser
	Error-Recovery Strategies (i)‏
	Error-Recovery Strategies (ii)‏
	Derivations (i)‏
	Derivations – Leftmost (ii)‏
	Derivations – Rightmost (iii)‏
	Sequence of Parse Trees for derivations
	Ambiguity (i), Two Leftmost derivations !!
	Ambiguity (ii)
	Eliminating Ambiguity (i)‏
	If E1 then if E2 then S1 else S2 ...
	Eliminating Ambiguity (iii)‏
	Eliminating Ambiguity (iv)‏
	Elimination of Left Recursion (i)‏
	Elimination of Left Recursion (ii)‏
	Elimination of Left Recursion (iii)‏
	Left Factoring (i)‏
	Left Factoring (ii)‏
	Top-Down Parsing (i)‏
	Top-Down Parsing (ii)‏
	Recursive-Descent Parsing Program
	FIRST {set} ... then FOLLOW
	First let us define FIRST
	In general FIRST
	FOLLOW definition
	compute FOLLOW
	Examples of FIRST and FOLLOW
	LL(1) Grammars (i)
	LL(1) Grammars Formally (ii)‏
	An LL(1) grammar for statements
	Parsing Table - Predictive
	Parsing Table for LL(1) grammar in slide 5
	Parsing Table (some entries)‏
	Bottom-Up Parsing (i)‏
	Bottom-Up Parsing (ii)‏
	Bottom-Up Parsing Handles‏
	Shift-Reduce Parsing (i)‏
	Shift-Reduce Parsing (ii)‏
	Shift-Reduce Parsing (iii)‏
	Shift-Reduce Parsing Operations
	Conflict During Shift-Reduce Parsing
	LR(k) Parsing
	Summary

