
Compiler Theory

(A Simple Syntax-Directed Translator)

002

Lecture Outline

 We shall look at a simple programming language and
describe the initial phases of compilation.

 We start off by creating a ‘simple’ syntax directed
translator that maps infix arithmetic to postfix
arithmetic.

 This translator is then extended to cater for more
elaborate programs such as (check page 39 Aho)

 While (true) { x=a[i]; a[i]=a[j]; a[j]=x; }

 Which generates simplified intermediate code (as on
pg40 Aho)

Two Main Phases (Analysis and Synthesis)

 Analysis Phase :- Breaks up a source program into
constituent pieces and produces an internal
representation of it called intermediate code.

 Synthesis Phase :- translates the intermediate code
into the target program.

 During this lecture we shall focus on the analysis
phase (compiler front end … see figure next slide)

A model of a compiler front end

Syntax vs Semantics

 The syntax of a programming language
describes the proper form of its programs

 The semantics of the language defines
what its programs mean.

 e.g. fact n = if (n==0) 1 else n*fact (n-1)

A note on Grammars (context-free) !!

 Consider the Maltese grammar. It specifies how correct
Maltese sentences should be.

 A formal grammar is used to specify the syntax of a formal
language (for example a programming language like C,
Java)

 Here grammar describes the structure (usually hierarchical)
of programming languages.

 For e.g. in Java an IF statement should fit in
 if (expression) statement else statement

 statement -> if (expression) statement else statement

 Note the recursive nature of statement.

A CFG has four components …

 A set of terminal symbols, sometimes referred to as
‘tokens’. The terminals are the elementary symbols of
the language defined by the grammar.

 A set of non-terminals, sometimes called ‘syntactic
variables’. Each non-terminal represents a set of
strings of terminals.

 A set of productions (LHS RHS), where each
production consists of a non-terminal (LHS) and a
sequence of terminals and/or non-terminals (RHS)

 A designation of one of the non-terminals as the start
symbol

A Grammar for ‘list of digits separated by + or –’

 list list + digit
list list – digit
list digit
digit 0 | 1 | … | 9

 Accepts strings such as 9-5+2, 3-1, or 7.

 list and digit are non-terminals
 0 | 1 | … | 9, +, - are the terminal symbols

Parsing … and derivations

 Parsing is the problem of taking a string of
terminals and figuring out how to derive it from
the start symbol of the grammar,

 A grammar derives strings by beginning with
the start symbol and repeatedly replacing a
non-terminal by the body of a production,

 If it cannot be derived from the start symbol
then reporting syntax errors within the string.

Parse Trees (and their Ambiguities)

 A parse tree pictorially shows how the start symbol of
a grammar derives a string in the language

 A grammar can have more than one parse tree
generating a given string of terminals (thus making it
ambiguous);

 If we did not distinguish between digits and lists in the
previous grammar then we would end up with
ambiguous parse trees; (9-5)+2 and 9-(5+2)

 Check grammar below :
 string string + string | string – string | 0 … 9

Operator Associativity and Precedence

 To resolve some of the ambiguity with grammars that
have operators we use:

 Operator associativity :- in most programming
languages arithmetic operators have left
associativity.
 Eg 9+5-2 = (9+5)-2
 However = has right associativity, i.e.

 a=b=c is equivalent to a=(b=c)

 Operator Precedence :- if an operator has higher
precedence then it will bind to it’s operands first.
 eg. * has higher precedence then +, therefore
 9+5*2 is equivalent to 9+(5*2)

A grammar for a subset of Java statements

 stmt id = expression;
| if (expression) stmt
| if (expression) stmt else stmt
| while (expression) stmt
| do stmt while (expression);
| { stmts }

stmts stmts stmt
| e

Syntax Directed Translation (Rules)

 Done by attaching rules (or program fragments) to
productions in a grammar.

 E.g. With expr -> expr1 + term ,
 one would apply rules

 translate expr1, then
 translate term and finally
 Handle +

 Syntax Directed translation will be used here to translate infix
expressions into postfix notation, to evaluate expressions, and
to build syntax trees for programming constructs.

Postfix Notation (defined for E)

 If E is a variable or constant, then the postfix
notation for E is E itself.

 If E is an expression of the form E1 op E2, where op
is any binary operator, then the postfix notation for E
is E1' E2' op, where E1' and E2' are the postfix
notations for E1 and E2, respectively.

 If E is a parenthesized expression of the form (E1),
then the postfix notation for E is the same as the
postfix notation for E1.

Synthesised Attributes (i)

 Associate attributes with non-terminals and
terminals in a grammar.

 Then, attach rules to the productions of the grammar
which describe how the attributes are computed.

 Syntax-directed definition associates
 A set of attributes with each grammar symbol
 A set of semantic rules for computing the values

of the attributes associated with the symbols
appearing in the production.

Synthesised Attributes (ii)

 Suppose node N is labelled by grammar symbol X
 X.a denotes the value of attribute a of X at that node.

 expr.t = 95-2+ (attribute value at the root of parse tree
for 9-5+2.

 Check parse tree for 9-5+2 (page 54 Aho)

 An attribute is said to be synthesised if its value at a
parse-tree node N is determined from attribute values of
the children of N and at N itself.

 Therefore , if this is the case for every attribute, we can
evaluate a parse tree in a single bottom-up traversal.

 Eventually we shall discuss “inherited” attributes as well.

Semantic Rules for infix to postfix

 The annotated parse tree of 9-5+2 is based on the
following syntax directed definition. || represents string
concatenation.

Tree Traversals

 A traversal of a tree starts at the root and visits each
node of the tree in some order.

 Breadth First
 Depth First

 Preorder traversal of node N consists of N,
followed by the pre-orders of the subtrees of each
of its children, if any, from the left.

 Postorder traversal of node N consists of the
postorders of each of the subtrees for the children
of N, if any, from the left, followed by N itself.

Actions translating 9-5+2 into 95-2+

Translation Schemes

 Instead of attaching strings as attributes to the nodes we can
execute program fragments (and not manipulate strings)

 Semantic Actions : program fragments embedded within
production bodies

 The position at which an action is to be executed is shown by
enclosing it between curly braces.

 e.g. (check pg59 Aho for full grammar)
 Expr -> expr1 + term {print('+')}
 Expr -> term
 Expr -> 1 {print('1')}

 Check next slide for parse tree ... postorder traversal gives us
the required postfix translation (95-2+)

Parsing

 Parsing is the process of determining how a string of
terminals can be generated by a grammar.

 Recursive descent parsing : technique which can be
used both to parse and to implement syntax-directed
translators.

 Two classes :-
 Bottom-up, where construction starts at the

leaves and proceeds towards the root;
 Top-down, where construction starts at the root

and proceeds towards the leaves.

Top-Down parsing (i)

 Let us first look at a simplified (abstracted) C/Java
grammar.

 stmt ->
 expr;
 if (expr) stmt
 for (optexpr; optexpr; optexpr) stmt
 other

 optexpr ->
 ε
 expr

Top-Down parsing (ii)

 Construction of the parse tree is carried out by
starting from the root (call it node N), labelled
with the starting non-terminal stmt,
 At node N, labelled with a non-terminal A, select one of

the productions for A and construct children at N for
the symbols in the production body,

 Find the next node at which a sub-tree is to be
constructed, typically the leftmost unexpanded non-
terminal of the tree and repeat step 1.

 Next slide shows the parse tree for statement
 for (; expr ; expr) other

Top-down parsing while scanning the input from
left to right (Aho pg 63) – Using Lookahead

Predictive Parsing (top-down)

 In general choosing which production to expand is trial
and error where backtracking might be used.

 But not in predictive parsing ! (which is a simple form of
recursive-descent parsing)

 The lookahead symbol unambiguously determines the
flow of control through the procedure body of each non-
terminal.

 The sequence of procedure calls during the analysis of an
input string implicitly defines the parse tree for the input.

Predictive Parser (pseudo code)

Predictive Parser (pseudo code)

Predictive parsing (iii)

 Let α be a string of grammar symbols (terminals and/or
non-terminals)

 Let First(α) be the set of terminals that appear as the first
symbols of one or more strings of terminals generated
from α. e.g. First(stmt) = {expr, if, for, other}. First
(expr ;) = {expr}

 Given any two productions in the grammar A->α and A-
>β, then a predictive parser requires that First(α) is
disjoint from First(β).

 We shall see how First(α) is computed later on.

 The lookahead symbol determines which production to
expand. Lookahead changes when a terminal is matched.

Predictive parsing (iv)

 When to use ε production ??

 When you've got no other rule to match.

 If we had
 Optexpr -> expr | ε

 If the lookahead symbol is not in First(expr) then the
ε-production is used !

Left Recursion (i)

 expr -> expr + term

 Productions like the above make it possible for a
recursive-descent parser to loop forever, since
the leftmost symbol of the body is the same as
the non-terminal at the head of the production.

 Since the lookahead symbol changes only when
a terminal is matched, no change to the input
takes place between recursive calls of expr.

Left Recursion (and how to avoid it)

 A -> Aα | β
 (note that Aα may be derived through

intermediate productions)
 A new non-terminal R is required to remove

left recursion ...
 A -> βR
 R -> αR | ε

 Check out derivation for βααα...αα (pg 68)

Postfix to infix removal of Left Recursion in
Translation Scheme

 expr ->

 expr + term { print('+') }

 expr – term { print('-') }

 Term

 term ->

 0 { print('0') }

 9 { print('9') }

--

 expr -> term rest

 rest ->

 + term { print('+') } rest

 – term { print('-') } rest

 ε

 term ->

 0 { print('0') }

 9 { print('9') }

--

 A -> Aa | Ab | y

 This will always start with a 'y'
and end with an 'a' or a 'b'.

 A -> yR

 R -> aR | bR | ε

New Parse Tree for 95-2+ (pg 71)

Abstract and Concrete Syntax Trees

 In an abstract syntax tree, each interior node
represents an operator (programming
constructs); the children of the node represent
the operands of the operator

 In a concrete syntax tree (parse tree) the
interior nodes represent non-terminals in the
grammar.

 Ideally our parse tree go as close to abstract
syntax trees as possible.

Lexical Analysis

 Consider
 Factor -> (expr) | num | id

 A lexer will not find terminals num and id in the input.

 These range over a number of inputs which the lexer must
recognise.

 Attribute num.value stores the value of the number

 Attribute id.lexeme stores the string of the id

Reading Ahead – Input Buffer

 Is it '>' or '>=' ? ... The lexer needs to read one character in
order to decide what token to return to the parser.

 One-character read ahead usually suffices, so a simple solution
is to use a variable, call it peek, to hold the next input character.

 If (peek holds a digit) {

 v = 0;

 Do {
v = v * 10 + integer value of digit peek;
Peek = next input character;

 } while (peek holds a digit);

 Return token <num, v>

 Simulate parsing some number e.g. 256

Recognising keywords and identifiers

 <id, 'count'> <=> <id, 'count'> <+> <id, 'inc'> <;>
 We can identify between keywords and identifiers by

creating a table and initializing it with the keywords and
their tokens. When matching the input the lexical analyser
return the tokens stored in this table (for keywords)
otherwise creates a new one and returns token <id, 'cnt'>

 Dragon book has a Java implementation of a lexer using
this technique. (pg 83 and 84)

Symbol Table(s)

 Data structures that are used by compilers to
hold information about the source-program
constructs.

 Information is collected incrementally
throughout the analysis phase and used for the
synthesis phase.

 One symbol table per scope (of declaration)...
 { int x; char y; { bool y; x; y; } x; y; }

 { { x:int; y:bool; } x:int; y:char; }

Intermediate Code Generation

 The front end of a compiler constructs an intermediate
representation of the source program from which the back
end generates the target program.

 Let us (just for now) consider only expressions and
statements.

 Two main options
 Trees, including parse trees + (abstract) syntax trees
 Linear representation, mainly “three-address code”

Syntax Trees

 Pg 94 (Aho) describes a translation scheme that
constructs syntax trees. This is then modified to emit
three-address code.

 stmt -> while (expr) stmt

 { stmt.n = new While(expr.n, stmt.n }

 n is a node in the syntax tree

 stmts -> stmts1 stmt

 { stmts.n = new Seq(stmts1.n, stmt.n); }

expr stmt

while

Part of a syntax tree

Syntax Trees for Expressions

 term -> term1 * factor
 { term.n = new Op('*', term1.n, factor.n); }

 Class Op can implement operators +, -, *, /, %.

 Note how in the syntax tree we loose information
from the parse tree ... as in term, term1, etc.

 The parameter to Op (e.g. '*' identifies the actual
operator, in addition to the nodes term1.n and
factor.n for the sub-expressions.

Three Address Code

 Now that we have a syntax tree ...
 We can write functions, which process it and as a side-

effect, emit the necessary three-address code.

 x = y op z (instructions in a three-address code)
 Executed in a numerical sequence unless a jump is

encountered. e.g. ifFalse/ifTrue x goto L, goto L

 Arrays
 x [y] = z
 x = y [z]

 Copy value
 x = y

Translation of Statements

 Use jump instructions
to implement the flow
of control through the
statement.

 The statements 'if expr
then stmt' can be
represented in 3-
address code using,
 ifFalse x goto after

Translation of Expressions

 Expressions contain binary operators, array
accesses, assignments, constants and identifiers.

 We can take the simple approach of generating one
three-address instruction for each operator node in
the syntax tree of an expression.

 Expression: i-j+k translates into
 t1 = i-j
 t2 = t1+k

 Expression: 2 * a[i] translates into
 t1 = a [i]
 t2 = s * t1

Functions lvalue(x:Expr) and rvalue(x:Expr)

 In a = a + 1, a is computed differently on the LHS and the
RFS of the instruction

 Hence we need a way to distinguish between (L|R)HS

 The simple approach is to use two functions:
 Rvalue, which when applied to a nonleaf node x,

generates the instructions to compute x into a
temporary var, and returns a new node representing
the temporary var.

 Lvalue, which when applied to a nonleaf, generates
instructions to compute the subtrees below x, and
returns a node representing the “address” for x

 R-values is what we usually think of as “values” while L-
values are “locations”

lvalue(x:Expr) -> Expr

 x = identifier e.g. a
 return x

 x = array access e.g. a[i]
 Return Access(y, rvalue(z)), where

 y = name of array
 z = index in array

 Note call to rvalue(z) in order to generate instructions, if
needed, to compute the r-value of z

 e.g. If x is a[2*k] then lvalue(x) first generates the
instruction “t = 2 * k” which computes the index and then
returns a new node x' representing the l-value a[t]

rvalue(x:Expr) -> Expr

 x = constant or identifier
 return x

 x = y op z
 First compute y' = rvalue(y) and z' = rvalue(z), then

generates an instruction t = y' op z'. Return new node
for temporary t

 x = y[z]
 Similar to lvalue

 x = y=z
 First compute z' = rvalue(z), then generate instruction

for lvalue(y) = z' (this is like a side-condition) and
finally return z'. e.g. a = b = 7

e.g. a[i] = 2 * a[j-k]

 rvalue(a[i] = 2* a[j-k])

 t3 = j – k
 t2 = a [t3]
 t1 = 2 * t2
 a[i] = t1

 Check out pg 104 (and the rvalue pseudo-code) in you
have difficulties understanding how the instructions have
been generated.

Two possible translations of a statement

