Compiler Theory

(A Simple Syntax-Directed Translator)
002

Lecture Outline

- We shall look at a simple programming language and describe the initial phases of compilation.
- We start off by creating a 'simple' syntax directed translator that maps infix arithmetic to postfix arithmetic.
- This translator is then extended to cater for more elaborate programs such as (check page 39 Aho)
- While (true) $\{x=a[i] ; a[i]=a[j] ; a[j]=x ;\}$
- Which generates simplified intermediate code (as on pg40 Aho)

Two Main Phases (Analysis and Synthesis)

- Analysis Phase :- Breaks up a source program into constituent pieces and produces an internal representation of it called intermediate code.
- Synthesis Phase :- translates the intermediate code into the target program.
- During this lecture we shall focus on the analysis phase (compiler front end ... see figure next slide)

A model of a compiler front end

Figure 2.3: A model of a compiler front end

Syntax vs Semantics

- The syntax of a programming language describes the proper form of its programs
\square The semantics of the language defines what its programs mean.

ㅁ e.g. fact $n=$ if $(n==0) 1$ else n *fact $(n-1)$

A note on Grammars (context-free) !!

- Consider the Maltese grammar. It specifies how correct Maltese sentences should be.
- A formal grammar is used to specify the syntax of a formal language (for example a programming language like C, Java)
- Here grammar describes the structure (usually hierarchical) of programming languages.
- For e.g. in Java an IF statement should fit in - if (expression) statement else statement
- statement -> if (expression) statement else statement
- Note the recursive nature of statement.

A CFG has four components ...

- A set of terminal symbols, sometimes referred to as 'tokens'. The terminals are the elementary symbols of the language defined by the grammar.
- A set of non-terminals, sometimes called 'syntactic variables'. Each non-terminal represents a set of strings of terminals.
- A set of productions (LHS \rightarrow RHS), where each production consists of a non-terminal (LHS) and a sequence of terminals and/or non-terminals (RHS)
- A designation of one of the non-terminals as the start symbol

A Grammar for 'list of digits separated by + or -'

- list \rightarrow list + digit list \rightarrow list - digit
list \rightarrow digit
digit $\rightarrow 0|1| \ldots \mid 9$
\square Accepts strings such as $9-5+2,3-1$, or 7 .
- list and digit are non-terminals
- $0|1| \ldots \mid 9,+$, - are the terminal symbols

Parsing . . . and derivations

- Parsing is the problem of taking a string of terminals and figuring out how to derive it from the start symbol of the grammar,
- A grammar derives strings by beginning with the start symbol and repeatedly replacing a non-terminal by the body of a production,
- If it cannot be derived from the start symbol then reporting syntax errors within the string.

Parse Trees (and their Ambiguities)

- A parse tree pictorially shows how the start symbol of a grammar derives a string in the language
- A grammar can have more than one parse tree generating a given string of terminals (thus making it ambiguous);
- If we did not distinguish between digits and lists in the previous grammar then we would end up with ambiguous parse trees; (9-5)+2 and 9-(5+2)
- Check grammar below :
- string \rightarrow string + string | string - string | 0 ... 9

Operator Associativity and Precedence

- To resolve some of the ambiguity with grammars that have operators we use:
- Operator associativity :- in most programming languages arithmetic operators have left associativity.
- Eg 9+5-2 = (9+5)-2
- However = has right associativity, i.e.
- $a=b=c$ is equivalent to $a=(b=c)$
- Operator Precedence :- if an operator has higher precedence then it will bind to it's operands first.
\square eg. * has higher precedence then + , therefore
- $9+5 * 2$ is equivalent to $9+(5 * 2)$

A grammar for a subset of Java statements

- stmt \rightarrow id $=$ expression;
| if (expression) stmt
| if (expression) stmt else stmt
| while (expression) stmt
| do stmt while (expression);
| \{ stmts \}
stmts \rightarrow stmts stmt
| e

Syntax Directed Translation (Rules)

- Done by attaching rules (or program fragments) to productions in a grammar.
- E.g. With expr -> expr1 + term ,
- one would apply rules
- translate expr1, then
- translate term and finally
- Handle +
- Syntax Directed translation will be used here to translate infix expressions into postfix notation, to evaluate expressions, and to build syntax trees for programming constructs.

Postfix Notation (defined for E)

- If E is a variable or constant, then the postfix notation for E is E itself.
- If E is an expression of the form E1 op E2, where op is any binary operator, then the postfix notation for E is E1' E2' op, where E1' and E2' are the postfix notations for E1 and E2, respectively.
- If E is a parenthesized expression of the form (E1), then the postfix notation for E is the same as the postfix notation for E1.

Synthesised Attributes (i)

- Associate attributes with non-terminals and terminals in a grammar.
- Then, attach rules to the productions of the grammar which describe how the attributes are computed.
- Syntax-directed definition associates
- A set of attributes with each grammar symbol
- A set of semantic rules for computing the values of the attributes associated with the symbols appearing in the production.

Synthesised Attributes (ii)

- Suppose node N is labelled by grammar symbol X
- X.a denotes the value of attribute a of X at that node.
- expr.t $=95-2+$ (attribute value at the root of parse tree for 9-5+2.
- Check parse tree for 9-5+2 (page 54 Aho)
- An attribute is said to be synthesised if its value at a parse-tree node N is determined from attribute values of the children of N and at N itself.
- Therefore, if this is the case for every attribute, we can evaluate a parse tree in a single bottom-up traversal.
- Eventually we shall discuss "inherited" attributes as well.

Semantic Rules for infix to postfix

- The annotated parse tree of 9-5+2 is based on the following syntax directed definition. || represents string concatenation.

Fig. 2.5. Syntax-directed definition for infix to postfix translation.

Tree Traversals

- A traversal of a tree starts at the root and visits each node of the tree in some order.
- Breadth First
- Depth First
- Preorder traversal of node N consists of N , followed by the pre-orders of the subtrees of each of its children, if any, from the left.
- Postorder traversal of node N consists of the postorders of each of the subtrees for the children of N, if any, from the left, followed by N itself.

Actions translating 9-5+2 into 95-2+

Fig. 2.14. Actions Iranslating 9-5+2 into 95-2+.

Translation Schemes

- Instead of attaching strings as attributes to the nodes we can execute program fragments (and not manipulate strings)
- Semantic Actions : program fragments embedded within production bodies
- The position at which an action is to be executed is shown by enclosing it between curly braces.
- e.g. (check pg59 Aho for full grammar)
- Expr -> expr1 + term \{print('+')\}
- Expr -> term
- Expr -> 1 \{print('1')\}
- Check next slide for parse tree ... postorder traversal gives us the required postfix translation (95-2+)

Parsing

- Parsing is the process of determining how a string of terminals can be generated by a grammar.
- Recursive descent parsing : technique which can be used both to parse and to implement syntax-directed translators.
- Two classes :-
- Bottom-up, where construction starts at the leaves and proceeds towards the root;
- Top-down, where construction starts at the root and proceeds towards the leaves.

Top-Down parsing (i)

- Let us first look at a simplified (abstracted) C/Java grammar.
- stmt ->
- expr;
- if (expr) stmt
- for (optexpr; optexpr; optexpr) stmt
- other
- optexpr ->
- ε
- expr

Top-Down parsing (ii)

- Construction of the parse tree is carried out by starting from the root (call it node N), labelled with the starting non-terminal stmt,
- At node N, labelled with a non-terminal A, select one of the productions for A and construct children at N for the symbols in the production body,
- Find the next node at which a sub-tree is to be constructed, typically the leftmost unexpanded nonterminal of the tree and repeat step 1.
- Next slide shows the parse tree for statement
- for (; expr ; expr) other

Top-down parsing while scanning the input from left to right (Aho pg 63) - Using Lookahead

Figure 2.18: Top-down parsing while scanning the input from left to right

Predictive Parsing (top-down)

- In general choosing which production to expand is trial and error where backtracking might be used.
- But not in predictive parsing! (which is a simple form of recursive-descent parsing)
- The lookahead symbol unambiguously determines the flow of control through the procedure body of each nonterminal.
$\square \quad$ The sequence of procedure calls during the analysis of an input string implicitly defines the parse tree for the input.

Predictive Parser (pseudo code)

```
void stmt() {
    switch (lookahead) {
    case expr:
    match(expr); match(';'); break;
    case if:
        match(if); match(' ('); match(expr); match(')'); stmt();
        break;
    case for:
        match(for); match('(');
        optexpr(); match(';'); optexpr (); match(' ''); optexpr ();
        match(')'); stmt(); break;
    case other;
        match(other); break;
    default:
        report("syntax error");
    }
}
```


Predictive Parser (pseudo code)

```
void optexpr() {
    if (lookahead == expr ) match(expr);
}
void match(terminal t) {
    if (lookahead == t) lookahead = nextTerminal;
    else report("syntax error");
}
```

Figure 2.19: Pseudocode for a predictive parser

Predictive parsing (iii)

- Let a be a string of grammar symbols (terminals and/or non-terminals)
- Let First(a) be the set of terminals that appear as the first symbols of one or more strings of terminals generated from a. e.g. First(stmt) $=$ \{expr, if, for, other $\}$. First (expr;) = \{expr\}
- Given any two productions in the grammar $A->a$ and $A-$ $>\beta$, then a predictive parser requires that First (a) is disjoint from First(β).
- We shall see how $\operatorname{First}(a)$ is computed later on.
- The lookahead symbol determines which production to expand. Lookahead changes when a terminal is matched.

Predictive parsing (iv)

- When to use ε production ??
- When you've got no other rule to match.
- If we had
- Optexpr -> expr| $\boldsymbol{\varepsilon}$
- If the lookahead symbol is not in First(expr) then the $\boldsymbol{\varepsilon}$-production is used!

Left Recursion (i)

- expr-> expr + term
- Productions like the above make it possible for a recursive-descent parser to loop forever, since the leftmost symbol of the body is the same as the non-terminal at the head of the production.
- Since the lookahead symbol changes only when a terminal is matched, no change to the input takes place between recursive calls of expr.

Left Recursion (and how to avoid it)

- $A->A a \mid \beta$
- (note that Aa may be derived through intermediate productions)
- A new non-terminal R is required to remove left recursion ...
- A-> βR
- R-> $\mathrm{a} R \mid \varepsilon$
- Check out derivation for β aaa...aa (pg 68)

Postfix to infix removal of Left Recursion in Translation Scheme

- expr ->
- $\operatorname{expr}+\operatorname{term}\{\operatorname{print}('+')\}$
- expr - term \{ print('-') \}
- Term
- term ->
- $0\left\{\operatorname{print}\left({ }^{\prime} 0 '\right)\right\} \ldots$.
- $9\{\operatorname{print}(' 9 ')\}$
\qquad
- A -> Aa | Ab|y
- This will always start with a 'y' and end with an 'a' or a 'b'.
- expr -> term rest
- rest ->
- + term \{ print('+') \} rest
- - term \{ print('-') \} rest
- $\boldsymbol{\varepsilon}$
- term ->
- $0\left\{\operatorname{print}\left({ }^{\prime} 0^{\prime}\right)\right\} \ldots$.
- $9\left\{\operatorname{print}\left({ }^{\prime} 9 '\right)\right\}$
- A -> yR
- $\mathrm{R}->\mathrm{aR}|\mathrm{bR}| \boldsymbol{\varepsilon}$

New Parse Tree for 95-2+ (pg 71)

Fig. 2.21. Translation of 9-5+2 into 95-24.

Abstract and Concrete Syntax Trees

- In an abstract syntax tree, each interior node represents an operator (programming constructs); the children of the node represent the operands of the operator
- In a concrete syntax tree (parse tree) the interior nodes represent non-terminals in the grammar.
- Ideally our parse tree go as close to abstract syntax trees as possible.

Lexical Analysis

- Consider
- Factor -> (expr) | num |id
- A lexer will not find terminals num and id in the input.
- These range over a number of inputs which the lexer must recognise.
- Attribute num.value stores the value of the number
- Attribute id.lexeme stores the string of the id

Reading Ahead - Input Buffer

- Is it ' $>$ ' or ' $>=$ ' ? ... The lexer needs to read one character in order to decide what token to return to the parser.
- One-character read ahead usually suffices, so a simple solution is to use a variable, call it peek, to hold the next input character.
- If (peek holds a digit) \{
- \quad = 0 ;
- Do \{
$v=v * 10+$ integer value of digit peek;
Peek $=$ next input character;
- $\}$ while (peek holds a digit);
- Return token <num, v>
- Simulate parsing some number e.g. 256

Recognising keywords and identifiers

- <id, 'count'> <=> <id, 'count'> <+> <id, 'inc'> <;>
- We can identify between keywords and identifiers by creating a table and initializing it with the keywords and their tokens. When matching the input the lexical analyser return the tokens stored in this table (for keywords) otherwise creates a new one and returns token <id, 'cnt'>
- Dragon book has a Java implementation of a lexer using this technique. (pg 83 and 84)

Symbol Table(s)

- Data structures that are used by compilers to hold information about the source-program constructs.
- Information is collected incrementally throughout the analysis phase and used for the synthesis phase.
- One symbol table per scope (of declaration)...

■ \{ int x; char y; \{ bool y; x; y; \} x; y; \}
■ \{ \{ x:int; y:bool; \} x:int; y:char; \}

Intermediate Code Generation

- The front end of a compiler constructs an intermediate representation of the source program from which the back end generates the target program.
- Let us (just for now) consider only expressions and statements.
- Two main options
- Trees, including parse trees + (abstract) syntax trees
- Linear representation, mainly "three-address code"

Syntax Trees

- Pg 94 (Aho) describes a translation scheme that constructs syntax trees. This is then modified to emit three-address code.
- stmt -> while (expr) stmt
- $\quad\{$ stmt. $n=$ new While(expr.n, stmt.n $\}$
$\square \quad \mathrm{n}$ is a node in the syntax tree

- stmts -> stmts ${ }_{1}$ stmt
$\square \quad\left\{\right.$ stmts. $n=$ new $\operatorname{Seq}\left(\right.$ stmts $_{1}$. n, stmt.n); $\}$

Part of a syntax tree

Figure 2.40: Part of a syntax tree for a statement list consisting of an ifstatement and a while-statement

Syntax Trees for Expressions

- term -> term ${ }_{1}$ * factor
- \{ term.n = new Op('*', term ${ }_{1}$. n, factor.n); \}
- Class Op can implement operators +, -, *,/, \%.
- Note how in the syntax tree we loose information from the parse tree \ldots as in term, term ${ }_{1}$, etc.
- The parameter to Op (e.g. '*' identifies the actual operator, in addition to the nodes term ${ }_{1} . n$ and factor.n for the sub-expressions.

Three Address Code

- Now that we have a syntax tree ...
- We can write functions, which process it and as a sideeffect, emit the necessary three-address code.

口 $\quad x=y$ op z (instructions in a three-address code)

- Executed in a numerical sequence unless a jump is encountered. e.g. ifFalse/ifTrue x goto L, goto L
- Arrays
- $x[y]=z$
- $x=y[z]$
- Copy value
- $x=y$

Translation of Statements

- Use jump instructions to implement the flow of control through the statement.
- The statements 'if expr then stmt' can be represented in 3address code using,
- ifFalse x goto after

Figure 2.42: Code layout for if-statements

Translation of Expressions

- Expressions contain binary operators, array accesses, assignments, constants and identifiers.
- We can take the simple approach of generating one three-address instruction for each operator node in the syntax tree of an expression.
- Expression: $i-j+k$ translates into
- $\mathrm{t} 1=\mathrm{i}-\mathrm{j}$
- $\mathrm{t} 2=\mathrm{t} 1+\mathrm{k}$
- Expression: 2 * a[i] translates into
- $\mathrm{t} 1=\mathrm{a}$ [i$]$
- $\mathrm{t} 2=\mathrm{s} * \mathrm{t} 1$

Functions Ivalue(x:Expr) and rvalue(x:Expr)

- In $a=a+1$, a is computed differently on the LHS and the RFS of the instruction
- Hence we need a way to distinguish between (L|R)HS
- The simple approach is to use two functions:
- Rvalue, which when applied to a nonleaf node x , generates the instructions to compute x into a temporary var, and returns a new node representing the temporary var.
- Lvalue, which when applied to a nonleaf, generates instructions to compute the subtrees below x, and returns a node representing the "address" for x
- R-values is what we usually think of as "values" while Lvalues are "locations"

Ivalue(x:Expr) -> Expr

- \quad = identifier e.g. a
- return x

口 $\quad x=$ array access e.g. a[i]

- Return Access(y, rvalue(z)), where
- $y=$ name of array
- \quad = index in array
$\square \quad$ Note call to rvalue(z) in order to generate instructions, if needed, to compute the r-value of z
- e.g. If x is $a[2 * k]$ then Ivalue(x) first generates the instruction " $\mathrm{t}=2 * \mathrm{k}$ " which computes the index and then returns a new node x^{\prime} representing the I -value $\mathrm{a}[\mathrm{t}$]

rvalue(x:Expr) -> Expr

- $\quad \mathrm{x}=$ constant or identifier
- return x

口 $\quad x=y$ op z

- First compute $y^{\prime}=$ rvalue(y) and $z^{\prime}=$ rvalue(z), then generates an instruction $t=y^{\prime}$ op z^{\prime}. Return new node for temporary t
- $\quad x=y[z]$
- Similar to Ivalue
- $x=y=z$
- First compute $z^{\prime}=$ rvalue(z), then generate instruction for Ivalue $(y)=z^{\prime}$ (this is like a side-condition) and finally return z^{\prime}. e.g. $a=b=7$

e.g. $a[i]=2 * a[j-k]$

- rvalue $(a[i]=2 * a[j-k])$
- $\mathrm{t} 3=\mathrm{j}-\mathrm{k}$
- $\mathrm{t} 2=\mathrm{a}$ [t3]
- $\mathrm{t} 1=2$ * t 2
- $a[i]=t 1$
- Check out pg 104 (and the rvalue pseudo-code) in you have difficulties understanding how the instructions have been generated.

Two possible translations of a statement

Figure 2.46: Two possible translations of a statement

