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Lecture Outline

 We shall look at a simple programming language and 
describe the initial phases of compilation.

 We start off by creating a ‘simple’ syntax directed 
translator that maps infix arithmetic to postfix 
arithmetic.

 This translator is then extended to cater for more 
elaborate programs such as (check page 39 Aho) 

 While (true) { x=a[i]; a[i]=a[j]; a[j]=x; }

 Which generates simplified intermediate code (as on 
pg40 Aho) 



Two Main Phases (Analysis and Synthesis) 

 Analysis Phase :- Breaks up a source program into 
constituent pieces and produces an internal 
representation of it called intermediate code.

 Synthesis Phase :- translates the intermediate code 
into the target program. 

 During this lecture we shall focus on the analysis 
phase (compiler front end … see figure next slide) 



A model of a compiler front end



Syntax vs Semantics

 The syntax of a programming language 
describes the proper form of its programs

 The semantics of the language defines 
what its programs mean.

 e.g. fact n = if (n==0) 1 else n*fact (n-1)



A note on Grammars (context-free) !! 

 Consider the Maltese grammar. It specifies how correct 
Maltese sentences should be. 

 A formal grammar is used to specify the syntax of a formal 
language (for example a programming language like C, 
Java) 

 Here grammar describes the structure (usually hierarchical) 
of programming languages.

 For e.g. in Java an IF statement should fit in 
 if ( expression ) statement else statement   

 statement -> if ( expression ) statement else statement  

 Note the recursive nature of statement.



A CFG has four components …

 A set of terminal symbols, sometimes referred to as 
‘tokens’. The terminals are the elementary symbols of 
the language defined by the grammar.

 A set of non-terminals, sometimes called ‘syntactic 
variables’. Each non-terminal represents a set of 
strings of terminals.

 A set of productions (LHS  RHS), where each 
production consists of a non-terminal (LHS) and a 
sequence of terminals and/or non-terminals (RHS) 

 A designation of one of the non-terminals as the start
symbol



A Grammar for ‘list of digits separated by + or –’

 list  list + digit
list  list – digit
list  digit
digit  0 | 1 | … | 9

 Accepts strings such as 9-5+2, 3-1, or 7. 

 list and digit are non-terminals
 0 | 1 | … | 9, +, - are the terminal symbols



Parsing … and derivations

 Parsing is the problem of taking a string of 
terminals and figuring out how to derive it from 
the start symbol of the grammar,

 A grammar derives strings by beginning with 
the start symbol and repeatedly replacing a 
non-terminal by the body of a production,

 If it cannot be derived from the start symbol 
then reporting syntax errors within the string.



Parse Trees ( and their Ambiguities) 

 A parse tree pictorially shows how the start symbol of 
a grammar derives a string in the language

 A grammar can have more than one parse tree 
generating a given string of terminals (thus making it 
ambiguous);

 If we did not distinguish between digits and lists in the 
previous grammar then we would end up with 
ambiguous parse trees; (9-5)+2 and 9-(5+2) 

 Check grammar below :
 string  string + string | string – string | 0 … 9



Operator Associativity and Precedence

 To resolve some of the ambiguity with grammars that 
have operators we use:

 Operator associativity :- in most programming 
languages arithmetic operators have left 
associativity. 
 Eg 9+5-2 = (9+5)-2
 However = has right associativity, i.e.

 a=b=c is equivalent to a=(b=c) 

 Operator Precedence :- if an operator has higher 
precedence then it will bind to it’s operands first.
 eg. * has higher precedence then +, therefore
 9+5*2 is equivalent to 9+(5*2) 



A grammar for a subset of Java statements

 stmt  id = expression;
| if ( expression ) stmt
| if ( expression ) stmt else stmt
| while (expression ) stmt
| do stmt while ( expression );
| { stmts }

stmts  stmts stmt
| e



Syntax Directed Translation (Rules) 

 Done by attaching rules (or program fragments) to 
productions in a grammar.

 E.g. With expr -> expr1 + term , 
 one would apply rules 

 translate expr1, then
 translate term and finally 
 Handle +

 Syntax Directed translation will be used here to translate infix
expressions into postfix notation, to evaluate expressions, and 
to build syntax trees for programming constructs.



Postfix Notation (defined for E) 

 If E is a variable or constant, then the postfix 
notation for E is E itself.

 If E is an expression of the form E1 op E2, where op 
is any binary operator, then the postfix notation for E 
is E1' E2' op, where E1' and E2' are the postfix 
notations for E1 and E2, respectively.

 If E is a parenthesized expression of the form (E1), 
then the postfix notation for E is the same as the 
postfix notation for E1.



Synthesised Attributes (i) 

 Associate attributes with non-terminals and 
terminals in a grammar.

 Then, attach rules to the productions of the grammar 
which describe how the attributes are computed.

 Syntax-directed definition associates
 A set of attributes with each grammar symbol
 A set of semantic rules for computing the values 

of the attributes associated with the symbols 
appearing in the production.



Synthesised Attributes (ii) 

 Suppose node N is labelled by grammar symbol X
 X.a denotes the value of attribute a of X at that node.

 expr.t = 95-2+ (attribute value at the root of parse tree 
for 9-5+2.

 Check parse tree for 9-5+2 (page 54 Aho) 

 An attribute is said to be synthesised if its value at a 
parse-tree node N is determined from attribute values of 
the children of N and at N itself.

 Therefore , if this is the case for every attribute, we can 
evaluate a parse tree in a single bottom-up traversal.

 Eventually we shall discuss “inherited” attributes as well. 



Semantic Rules for infix to postfix

 The annotated parse tree of 9-5+2 is based on the 
following syntax directed definition. || represents string 
concatenation.



Tree Traversals

 A traversal of a tree starts at the root and visits each 
node of the tree in some order.

 Breadth First
 Depth First

 Preorder traversal of node N consists of N, 
followed by the pre-orders of the subtrees of each 
of its children, if any, from the left.

 Postorder traversal of node N consists of the 
postorders of each of the subtrees for the children 
of N, if any, from the left, followed by N itself. 



Actions translating 9-5+2 into 95-2+



Translation Schemes

 Instead of attaching strings as attributes to the nodes we can 
execute program fragments (and not manipulate strings) 

 Semantic Actions : program fragments embedded within 
production bodies

 The position at which an action is to be executed is shown by 
enclosing it between curly braces.

 e.g. (check pg59 Aho for full grammar) 
 Expr -> expr1 + term {print('+')}
 Expr -> term
 Expr -> 1 {print('1')}

 Check next slide for parse tree ... postorder traversal gives us
the required postfix translation (95-2+) 



Parsing

 Parsing is the process of determining how a string of 
terminals can be generated by a grammar.

 Recursive descent parsing : technique which can be 
used both to parse and to implement syntax-directed 
translators.

 Two classes :-
 Bottom-up, where construction starts at the 

leaves and proceeds towards the root;
 Top-down, where construction starts at the root 

and proceeds towards the leaves.



Top-Down parsing (i) 

 Let us first look at a simplified (abstracted) C/Java 
grammar.

 stmt -> 
 expr;
 if (expr) stmt
 for (optexpr; optexpr; optexpr) stmt
 other

 optexpr ->
 ε
 expr



Top-Down parsing (ii) 

 Construction of the parse tree is carried out by 
starting from the root (call it node N), labelled 
with the starting non-terminal stmt,
 At node N, labelled with a non-terminal A, select one of 

the productions for A and construct children at N for 
the symbols in the production body,

 Find the next node at which a sub-tree is to be 
constructed, typically the leftmost unexpanded non-
terminal of the tree and repeat step 1.

 Next slide shows the parse tree for statement
 for ( ; expr ; expr ) other



Top-down parsing while scanning the input from 
left to right (Aho pg 63) – Using Lookahead



Predictive Parsing (top-down) 

 In general choosing which production to expand is trial 
and error where backtracking might be used.

 But not in predictive parsing ! (which is a simple form of 
recursive-descent parsing) 

 The lookahead symbol unambiguously determines the 
flow of control through the procedure body of each non-
terminal. 

 The sequence of procedure calls during the analysis of an 
input string implicitly defines the parse tree for the input.



Predictive Parser (pseudo code) 



Predictive Parser (pseudo code) 



Predictive parsing (iii) 

 Let α be a string of grammar symbols (terminals and/or 
non-terminals) 

 Let First(α) be the set of terminals that appear as the first 
symbols of one or more strings of terminals generated 
from α. e.g. First(stmt) = {expr, if, for, other}. First 
(expr ;) = {expr}

 Given any two productions in the grammar A->α and     A-
>β, then a predictive parser requires that First(α) is 
disjoint from First(β).

 We shall see how First(α) is computed later on.

 The lookahead symbol determines which production to 
expand. Lookahead changes when a terminal is matched.



Predictive parsing (iv) 

 When to use ε production ??

 When you've got no other rule to match.

 If we had 
 Optexpr -> expr | ε

 If the lookahead symbol is not in First(expr) then the 
ε-production is used !



Left Recursion (i) 

 expr -> expr + term

 Productions like the above make it possible for a 
recursive-descent parser to loop forever, since 
the leftmost symbol of the body is the same as 
the non-terminal at the head of the production.

 Since the lookahead symbol changes only when 
a terminal is matched, no change to the input 
takes place between recursive calls of expr.



Left Recursion (and how to avoid it) 

 A -> Aα | β
 (note that Aα may be derived through 

intermediate productions) 
 A new non-terminal R is required to remove 

left recursion ... 
 A -> βR
 R -> αR | ε

 Check out derivation for βααα...αα (pg 68) 



Postfix to infix removal of Left Recursion in 
Translation Scheme

 expr -> 

 expr + term { print('+') }

 expr – term { print('-') }

 Term

 term ->

 0 { print('0') } ....

 9 { print('9') }

----------------------------------------

 expr -> term rest

 rest -> 

 + term { print('+') } rest

 – term { print('-') } rest

 ε

 term ->

 0 { print('0') } ....

 9 { print('9') }

----------------------------------------

 A -> Aa | Ab | y

 This will always start with a 'y' 
and end with an 'a' or a 'b'.

 A -> yR

 R -> aR | bR | ε



New Parse Tree for 95-2+ (pg 71) 



Abstract and Concrete Syntax Trees

 In an abstract syntax tree, each interior node 
represents an operator (programming 
constructs); the children of the node represent 
the operands of the operator

 In a concrete syntax tree (parse tree) the 
interior nodes represent non-terminals in the 
grammar.

 Ideally our parse tree go as close to abstract 
syntax trees as possible.



Lexical Analysis

 Consider 
 Factor -> ( expr ) | num | id

 A lexer will not find terminals num and id in the input.

 These range over a number of inputs which the lexer must 
recognise. 

 Attribute num.value stores the value of the number

 Attribute id.lexeme stores the string of the id



Reading Ahead – Input Buffer

 Is it '>' or '>=' ? ... The lexer needs to read one character in
order to decide what token to return to the parser.

 One-character read ahead usually suffices, so a simple solution 
is to use a variable, call it peek, to hold the next input character.

 If ( peek holds a digit) {

 v = 0;

 Do {
v = v * 10 + integer value of digit peek;
Peek = next input character;

 } while ( peek holds a digit );

 Return token <num, v>

 Simulate parsing some number .... e.g. 256



Recognising keywords and identifiers

 <id, 'count'> <=> <id, 'count'> <+> <id, 'inc'> <;>
 We can identify between keywords and identifiers by 

creating a table and initializing it with the keywords and 
their tokens. When matching the input the lexical analyser 
return the tokens stored in this table (for keywords) 
otherwise creates a new one and returns token <id, 'cnt'>

 Dragon book has a Java implementation of a lexer using 
this technique. (pg 83 and 84) 



Symbol Table(s) 

 Data structures that are used by compilers to 
hold information about the source-program 
constructs. 

 Information is collected incrementally 
throughout the analysis phase and used for the 
synthesis phase.

 One symbol table per scope (of declaration)...
 { int x; char y; { bool y; x; y; } x; y; }

 { { x:int; y:bool; } x:int; y:char; } 



Intermediate Code Generation

 The front end of a compiler constructs an intermediate 
representation of the source program from which the back 
end generates the target program.

 Let us (just for now) consider only expressions and 
statements.

 Two main options
 Trees, including parse trees + (abstract) syntax trees
 Linear representation, mainly “three-address code”



Syntax Trees

 Pg 94 (Aho) describes a translation scheme that 
constructs syntax trees. This is then modified to emit 
three-address code.

 stmt -> while ( expr ) stmt 

 { stmt.n = new While(expr.n, stmt.n }

 n is a node in the syntax tree

 stmts -> stmts1 stmt

 { stmts.n = new Seq(stmts1.n, stmt.n); }

expr stmt

while



Part of a syntax tree



Syntax Trees for Expressions

 term -> term1 * factor
 { term.n = new Op('*', term1.n, factor.n); }

 Class Op can implement operators +, -, *, /, %.

 Note how in the syntax tree we loose information 
from the parse tree ... as in term, term1, etc.

 The parameter to Op (e.g. '*' identifies the actual 
operator, in addition to the nodes term1.n and 
factor.n for the sub-expressions.



Three Address Code

 Now that we have a syntax tree ...
 We can write functions, which process it and as a side-

effect, emit the necessary three-address code.

 x = y op z (instructions in a three-address code) 
 Executed in a numerical sequence unless a jump is 

encountered. e.g. ifFalse/ifTrue x goto L, goto L 

 Arrays
 x [y] = z
 x = y [z]

 Copy value
 x = y



Translation of Statements

 Use jump instructions 
to implement the flow 
of control through the 
statement.

 The statements 'if expr
then stmt' can be 
represented in 3-
address code using,
 ifFalse x goto after



Translation of Expressions

 Expressions contain binary operators, array 
accesses, assignments, constants and identifiers.

 We can take the simple approach of generating one 
three-address instruction for each operator node in 
the syntax tree of an expression.

 Expression: i-j+k translates into
 t1 = i-j
 t2 = t1+k

 Expression: 2 * a[i] translates into
 t1 = a [ i ]
 t2 = s * t1 



Functions lvalue(x:Expr) and rvalue(x:Expr) 

 In a = a + 1, a is computed differently on the LHS and the 
RFS of the instruction 

 Hence we need a way to distinguish between (L|R)HS

 The simple approach is to use two functions:
 Rvalue, which when applied to a nonleaf node x, 

generates the instructions to compute x into a 
temporary var, and returns a new node representing 
the temporary var.

 Lvalue, which when applied to a nonleaf, generates 
instructions to compute the subtrees below x, and 
returns a node representing the “address” for x

 R-values is what we usually think of as “values” while L-
values are “locations”



lvalue(x:Expr) -> Expr

 x = identifier e.g. a
 return x

 x = array access e.g. a[i]
 Return Access(y, rvalue(z)), where

 y = name of array
 z = index in array

 Note call to rvalue(z) in order to generate instructions, if 
needed, to compute the r-value of z

 e.g. If x is a[2*k] then lvalue(x) first generates the 
instruction “t = 2 * k” which computes the index and then 
returns a new node x' representing the l-value a[t] 



rvalue(x:Expr) -> Expr

 x = constant or identifier
 return x

 x = y op z
 First compute y' = rvalue(y) and z' = rvalue(z), then 

generates an instruction t = y' op z'. Return new node 
for temporary t

 x = y[z] 
 Similar to lvalue

 x = y=z
 First compute z' = rvalue(z), then generate instruction 

for lvalue(y) = z' (this is like a side-condition) and 
finally return z'. e.g. a = b = 7



e.g. a[i] = 2 * a[j-k]

 rvalue(a[i] = 2* a[j-k]) 

 t3 = j – k
 t2 = a [t3]
 t1 = 2 * t2
 a[i] = t1

 Check out pg 104 (and the rvalue pseudo-code) in you 
have difficulties understanding how the instructions have 
been generated.



Two possible translations of a statement


