Compiler Theory

001 - Introduction and Course Outline
Sandro Spina
Department of Computer Science

Books (needed during this course)

o My slides are based on the three books:
= Compilers: Principles, techniques and tools.
o Aho, Lam, Sethi, Ullman
= Engineering a Compiler, 2nd Edition.
o Keith Cooper and Linda Torczon
= Modern compiler implementation in Java.
o Andrew Appel

o but there are other very good books on compiler theory

o As always, the Internet is another great source of
information ...

Course Sequence

o Compiling Theory ... (with practice)

s Front end

s Back end

o Assignment — You shall be building parts of
a compiler (it is very important that you
have good programming skills)

Computing

o Computers are everywhere ... not just in server rooms
and offices 11!

o On automobiles, telephones (mobiles), televisions,
musical instruments, traffic lights, etc.

o The software that runs on them provides services such
as communication, security, entertainment (eg gaming),
amongst others.

o Fundumentally everything is based on the theory of
computation.

Heterogeneous Computing

o Computing hardware has evolved along many directions.

o Today we speak about multi-core micro processors,
traditional CPUs, FPGAs (reconfigurable hardware),
GPUs.

o Application software can either be
m Control intensive (eg searching, parsing)
m Data intensive (eg image processing, data mining)
= A mix of both !l (most often)

o Nowadays software needs to execute across a range of
hardware devices.

What is a compiler?

o Itis a language processor !!

o It is a program that can read a program in one
language (Java, C, Lisp, C#, Pascal, C for CUDA,
OpenCL, GLSL, HLSL, etc.) — the source language -
and translate it into an equivalent program in
another language - target language.

o Also - a compiler needs to report any errors in the
source program that it detects during the
translation process. (e.g. a missing semicolon at
the end of a statement)

Brief compiler history (based on Cooper)

o Appeared first in the 1950s for FORTRAN.
o Early 1960s - Algol 60

o Complex machine instruction sets were created in order
to mimic closely programming language features. CISC
architectures.

o RISC architectures (1980s) shifted this balance towards
the compiler.

o Both architectures are still widely used today ... E.qg.
Ipad is based on RISC and Intel’s x86 on CISC.

Compiler Fundamental Principle (Cooper)

What is an interpreter?

o An interpreter is also a language processor

o However - instead of producing a target
program, it directly executes the operations
specified in the source program on inputs
supplied by the user.

o A typical example of an interpreter is the JVM.

m Java compiler translates Java source code into byte
code ... which is then interpreted by a virtual machine

(JIT compilers which can during runtime compile to
machine code directly)

Two blocks !!

o Clearly a compiler must understand the syntax
(valid forms) and semantics (meaning) of the input
language.

o It also needs to understand the rules, syntax and
meaning of the output language.

FRONT END DEALS BACK END DEALS
WITH SOURCE MAPPING WITH TARGET
LANGUAGE LANGUAGE

Stages of a compiler (in brief) ...

o Source Program (Character Stream)
= Lexical Analysis

o Tokens (Token Stream)
s Parser, Syntax Analyzer

o Abstract Syntax (Syntax Tree)
= Semantic Analysis — Symbol Table

Stages of a compiler (in brief) ...

o Syntax Tree
s Intermediate Code Generator

o Intermediate Representation
= Machine independent Optimisations

o Intermediate Representation
s Code Generator > Target Machine Code

Eg from Aho showing compiler phases

o IMAGE FROM AHO Pg5/7

o Expression (in source code)
m position = initial + rate * 60

Lexical Analysis (scanning)

o The 15t phase of the compiler is lexical analysis (scanning)

o It reads a stream of characters (source program) and
roups the characters into meaningful sequences called
exemes.

o For each lexeme, the lexical analyzer produces output
tokens of the form
m < token-name, attribute-value>
m Eg <id, 1> <=> <id,2> <+> <id,3> <*> <60>

o id indicates to the syntax analysis phase that we have an
identifier (variable) and it’s value it located in symbol table
at position 1.

Syntax Analysis (parsing)

o The parser uses the first component of the
tokens produced by the lexical analyzer to
create a tree-like intermediate
representation that depicts the grammatical
structure of the token stream.

o Syntax trees are usually used where each
interior node represents an operation and
the children of the node represent the
arguments of the operation.

Semantic Analysis

o The semantic analyzer uses the syntax tree
and the information in the symbol table to
check the source program for semantic
consistency with the language definition.

o Type Checking !!

o Type conversions (coercions) ... eg if operator
is applied to int and float, the compiler may
convert (coerce) the integer into a floating-
point.

Intermediate Code Generation

o Many compilers generate an explicit low-level
(machine-like) intermediate representation.

o Properties
m FEasy to produce
m Easy to translate into target machine

o Eg. Three-address code (linear representation)
m <X=yopz> format
= T2 =id3 *til
s T3 =id2 + t2

o We'll see how this step is useful for code optimization

Code Optimization (i)

o This stage of compilation attempts to improve the
intermediate code so that better target code is
generated.

o Better = faster, smaller !!

o But could also mean that target consumes less power
(eg mobile phone, pda apps)

o We shall eventually look at machine-dependent and
machine-independent optimizations in some detail.

Code Optimization (ii)

o Compiler optimization must meet the
following design objectives:

It must be correct, that is, preserve the
meaning of the compiled program.

It must improve the performance of
many programs (not just a few !!)

Compilation time must be kept
reasonable, and

Engineering effort required must be
manageable

Code Generation

o The code generator takes as input an intermediate
representation of the source program and maps it into
the target language.

o If target language is machine code, registers or
memory locations are selected for each of the
variables ... the assignment of registers to hold
variables is very important!

o Output might look like :
= [DF R2, id3
m MULF R2, RZ2, #60.0 (# means 60.0 is a constant)
= [DF R1, id2
s ADDF R1, RI1, R2

Instruction Scheduling

O

An important task during code generation is instruction
scheduling.

This is because the execution time of different operations can
vary according to the target machine’s specific performance
constraints.

Clearly, an operation cannot begin to execute until its operands
are ready ... But can start multiple new operations which do
not need the result of currently executing operations.

The intuition here is that by re-ordering certain operations, the
compiler minimizes the number of cycles wasted waiting for
operands ...

E.g. [load r1, add r1, load r2, mult r2, load r3, add r3] can be
reordered to [load r1, load r2, load r3, add r1, mult r2, add r3]

Some important concepts (i)

o So far we have seen (very very
briefly) the phases of a compiler !!

o In the next few slides we shall look at
important concepts you should be
aware of with respect to
programming languages + compilers

Some important concepts (if) — Symbol Table

O

Compilers need to record the variable names used in
the source program together with various attributes of
each name (eg type, storage allocated, scope)

Procedure names are also stored together with
attributes such as number of parameters, type of
arguments and method of passing each argument (by
value or by reference)

It is ‘clearly’ very important that the data structure
which stores this information is efficient in terms of
retrieval and storage of data.

Concepts (lii) — Parameter Passing

o Al pr%gramming languages have a notion of a
procedure (in Java we have methods, functions in C)

o Most programming languages use either call by value,
call by reference or both

o Call by Value :- the actual parameter is evaluated (if
it is an expression) or copied (if it is a variable). Both
C and Java use call by value however with C we can
pass a pointer to a variable and with Java many

variables are really references (pointers) to arrays,
strings and objects !!

Concepts (iv) — Parameter Passing

o All programming languages have a notion

of a procedure (in Java we have methods,
functions in C)

o Call by reference is usually an option in

many programming languages (call by
value is much more used)

o Call by Reference - Changes to the formal

parameter appear as changes in the actual
parameter !l Eg Pascal incr (var x ! int)

Concepts (v) — Memory Hierarchies

o A memory hierarchy consists of several levels of storage
with different speeds and sizes, with the levels closest to
the p/)/rocessor registers, caches) being the fastest but
smallest.

o A processor usually has a small number of registers
consisting of hundreds of bytes, several levels of caches
containing kilobytes to megabytes, physical memory
containing megabytes to gigabytes and beyond.

o Using registers effectively is probably the single most
important problem in optimizing a program.

o The compiler can improve the effectiveness of the memory
hierarchy by changing the layout of the data.

Concepts (vi) — Software Tools

o Lexical Analysis — LeX, FLeX, JLeX
o Syntax Anaysis — JavaCC, SableCC
o Semantic Analysis — JavaCC, SableCC

o MiniJava programming language
(Appel Book)

The language of straight-line programs !

o Check Appel Pg 7

o Made up of simple statements and
expressions (no loops or if stmts)

o Bottom up:
= Binop,
s EXp,
s EXplist,
= Stm.

An embedded compiler !

o We know what a compiler is.

o Embedding with respect to language ... for example one
can easily embed a parser in Haskell or Java.

o A compiler would ‘slightly’ be more hairy to embed
because you would need to generate executable at run-
time using it.

o We usually think of compile-time and run-time are two
separate stages but really one can be compiling at run-
time !!!

o Let’s take for example Janino ... (next slide)

Janino - The embedded Java compiler ... eg

O ExpressionEvaluator ee = new ExpressionEvaluator(
"e>d?c:d" // expression
int.class, // expressionType

new String[] { "c", "d" }, // parameterNames
new Class[] { int.class, int.class } // parameterTypes
)i
// Evaluate it with varying parameter values; very fast.
Integer res = (Integer) ee.evaluate(
new Object[] { // parameterValues
new Integer(10),
new Integer(11),

)

System.out.printin("res = " + res);

Janino embedded in Sunflow (GI Rendering Engine)

o Janino is used in Sunflow in order to compile shaders at run-
time.

o Different shaders describing different reflection models can be
loaded at run-time ... then compiled using Janino ... and executed
in the same memory space of the currently executing VM.

o DirectX and OpenGL also have compilers which compile at run-
time vertex and pixel shaders before loading them on the GPU.

o The point to understand here is that compilers have an
extremely vast range of applicability. Not just the traditional
source -> compile -> execute trace.

o Although we’'ll be looking mainly at those because the main
concepts remain the same.

Compiler Construction Topics

O

O

Compiler construction is a complex task !!! It combines
together many aspects of Computer Science

= fFormal language theory

m Artificial intelligence (greedy algorithms and heuristic technigues)
s Computer architecture

We shall cover many aspects, but will focus mostly on
the front end.

At the end of this course you will be able to take a
formal specification of a language (using e.g. EBNF) and
be able to use tools (compiler compilers) to generate a
source-to-source compiler.

Next ...

o Chapter 2 from Dragon Book

o A simple syntax-directed translator
will be used to briefly introduce
s Lexical Analysis
s Syntax Analysis
m Parsing
s Intermediate Code

