
Compiler Theory

001 - Introduction and Course Outline
Sandro Spina

Department of Computer Science

Books (needed during this course)‏

 My slides are based on the three books:
 Compilers: Principles, techniques and tools.

 Aho, Lam, Sethi, Ullman
 Engineering a Compiler, 2nd Edition.

 Keith Cooper and Linda Torczon

 Modern compiler implementation in Java.
 Andrew Appel

 but there are other very good books on compiler theory

 As always, the Internet is another great source of

information ...

Course Sequence

 Compiling Theory ... (with practice)‏

 Front end

 Back end

 Assignment – You shall be building parts of
a compiler (it is very important that you
have good programming skills)

Computing

 Computers are everywhere ... not just in server rooms
and offices !!!

 On automobiles, telephones (mobiles), televisions,
musical instruments, traffic lights, etc.

 The software that runs on them provides services such
as communication, security, entertainment (eg gaming),
amongst others.

 Fundumentally everything is based on the theory of
computation.

Heterogeneous Computing

 Computing hardware has evolved along many directions.

 Today we speak about multi-core micro processors,
traditional CPUs, FPGAs (reconfigurable hardware),
GPUs.

 Application software can either be

 Control intensive (eg searching, parsing)

 Data intensive (eg image processing, data mining)

 A mix of both !! (most often)

 Nowadays software needs to execute across a range of
hardware devices.

What is a compiler?

 It is a language processor !!

 It is a program that can read a program in one
language (Java, C, Lisp, C#, Pascal, C for CUDA,
OpenCL, GLSL, HLSL, etc.) – the source language –
and translate it into an equivalent program in
another language – target language.

 Also - a compiler needs to report any errors in the
source program that it detects during the
translation process. (e.g. a missing semicolon at
the end of a statement)‏

Brief compiler history (based on Cooper)

 Appeared first in the 1950s for FORTRAN.

 Early 1960s – Algol 60

 Complex machine instruction sets were created in order
to mimic closely programming language features. CISC
architectures.

 RISC architectures (1980s) shifted this balance towards
the compiler.

 Both architectures are still widely used today ... E.g.
Ipad is based on RISC and Intel’s x86 on CISC.

Compiler Fundamental Principle (Cooper)

What is an interpreter?

 An interpreter is also a language processor

 However - instead of producing a target
program, it directly executes the operations
specified in the source program on inputs
supplied by the user.

 A typical example of an interpreter is the JVM.
 Java compiler translates Java source code into byte

code … which is then interpreted by a virtual machine
(JIT compilers which can during runtime compile to
machine code directly)‏

Two blocks !!

 Clearly a compiler must understand the syntax
(valid forms) and semantics (meaning) of the input
language.

 It also needs to understand the rules, syntax and
meaning of the output language.

Stages of a compiler (in brief) …

 Source Program (Character Stream)

 Lexical Analysis

 Tokens (Token Stream)‏

 Parser, Syntax Analyzer

 Abstract Syntax (Syntax Tree)‏

 Semantic Analysis – Symbol Table

Stages of a compiler (in brief) …

 Syntax Tree

 Intermediate Code Generator

 Intermediate Representation

 Machine independent Optimisations

 Intermediate Representation

 Code Generator > Target Machine Code

Eg from Aho showing compiler phases

 IMAGE FROM AHO Pg5/7

 Expression (in source code)

 position = initial + rate * 60

Lexical Analysis (scanning)‏

 The 1st phase of the compiler is lexical analysis (scanning)‏

 It reads a stream of characters (source program) and
groups the characters into meaningful sequences called
lexemes.

 For each lexeme, the lexical analyzer produces output
tokens of the form
 < token-name, attribute-value>
 Eg <id,1> <=> <id,2> <+> <id,3> <*> <60>

 id indicates to the syntax analysis phase that we have an
identifier (variable) and it’s value it located in symbol table
at position 1.

Syntax Analysis (parsing)‏

 The parser uses the first component of the
tokens produced by the lexical analyzer to
create a tree-like intermediate
representation that depicts the grammatical
structure of the token stream.

 Syntax trees are usually used where each
interior node represents an operation and
the children of the node represent the
arguments of the operation.

Semantic Analysis

 The semantic analyzer uses the syntax tree
and the information in the symbol table to
check the source program for semantic
consistency with the language definition.

 Type Checking !!

 Type conversions (coercions) … eg if operator
is applied to int and float, the compiler may
convert (coerce) the integer into a floating-
point.

Intermediate Code Generation

 Many compilers generate an explicit low-level
(machine-like) intermediate representation.

 Properties

 Easy to produce
 Easy to translate into target machine

 Eg. Three-address code (linear representation)‏
 < X = y op z > format
 T2 = id3 * t1
 T3 = id2 + t2

 We’ll see how this step is useful for code optimization

Code Optimization (i)‏

 This stage of compilation attempts to improve the
intermediate code so that better target code is
generated.

 Better = faster, smaller !!

 But could also mean that target consumes less power
(eg mobile phone, pda apps)‏

 We shall eventually look at machine-dependent and
machine-independent optimizations in some detail.

Code Optimization (ii)‏

 Compiler optimization must meet the
following design objectives:
 It must be correct, that is, preserve the

meaning of the compiled program.

 It must improve the performance of
many programs (not just a few !!)‏

 Compilation time must be kept
reasonable, and

 Engineering effort required must be
manageable

Code Generation

 The code generator takes as input an intermediate
representation of the source program and maps it into
the target language.

 If target language is machine code, registers or

memory locations are selected for each of the
variables … the assignment of registers to hold
variables is very important!

 Output might look like :

 LDF R2, id3
 MULF R2, R2, #60.0 (# means 60.0 is a constant)‏

 LDF R1, id2
 ADDF R1, R1, R2

Instruction Scheduling

 An important task during code generation is instruction
scheduling.

 This is because the execution time of different operations can
vary according to the target machine’s specific performance
constraints.

 Clearly, an operation cannot begin to execute until its operands
are ready ... But can start multiple new operations which do
not need the result of currently executing operations.

 The intuition here is that by re-ordering certain operations, the
compiler minimizes the number of cycles wasted waiting for
operands ...

 E.g. [load r1, add r1, load r2, mult r2, load r3, add r3] can be
reordered to [load r1, load r2, load r3, add r1, mult r2, add r3]

Some important concepts (i)‏

 So far we have seen (very very
briefly) the phases of a compiler !!

 In the next few slides we shall look at
important concepts you should be
aware of with respect to
programming languages + compilers

Some important concepts (ii) – Symbol Table

 Compilers need to record the variable names used in
the source program together with various attributes of
each name (eg type, storage allocated, scope)‏

 Procedure names are also stored together with
attributes such as number of parameters, type of
arguments and method of passing each argument (by
value or by reference)‏

 It is ‘clearly’ very important that the data structure
which stores this information is efficient in terms of
retrieval and storage of data.

Concepts (iii) – Parameter Passing

 All programming languages have a notion of a
procedure (in Java we have methods, functions in C)‏

 Most programming languages use either call by value,

call by reference or both

 Call by Value :- the actual parameter is evaluated (if

it is an expression) or copied (if it is a variable). Both
C and Java use call by value however with C we can
pass a pointer to a variable and with Java many
variables are really references (pointers) to arrays,
strings and objects !!

Concepts (iv) – Parameter Passing

 All programming languages have a notion
of a procedure (in Java we have methods,
functions in C)‏

 Call by reference is usually an option in
many programming languages (call by
value is much more used)‏

 Call by Reference :- Changes to the formal
parameter appear as changes in the actual
parameter !! Eg Pascal incr (var x : int)‏

Concepts (v) – Memory Hierarchies

 A memory hierarchy consists of several levels of storage
with different speeds and sizes, with the levels closest to
the processor (registers, caches) being the fastest but
smallest.

 A processor usually has a small number of registers
consisting of hundreds of bytes, several levels of caches
containing kilobytes to megabytes, physical memory
containing megabytes to gigabytes and beyond.

 Using registers effectively is probably the single most
important problem in optimizing a program.

 The compiler can improve the effectiveness of the memory
hierarchy by changing the layout of the data.

Concepts (vi) – Software Tools

 Lexical Analysis – LeX, FLeX, JLeX

 Syntax Anaysis – JavaCC, SableCC

 Semantic Analysis – JavaCC, SableCC

 MiniJava programming language
(Appel Book)‏

The language of straight-line programs !

 Check Appel Pg 7

 Made up of simple statements and
expressions (no loops or if stmts)‏

 Bottom up:

 Binop,

 Exp,

 ExpList,

 Stm.

An embedded compiler !!

 We know what a compiler is.

 Embedding with respect to language … for example one
can easily embed a parser in Haskell or Java.

 A compiler would ‘slightly’ be more hairy to embed
because you would need to generate executable at run-
time using it.

 We usually think of compile-time and run-time are two
separate stages but really one can be compiling at run-
time !!!

 Let’s take for example Janino … (next slide)

Janino - The embedded Java compiler … eg

 ExpressionEvaluator ee = new ExpressionEvaluator(

 "c > d ? c : d", // expression

 int.class, // expressionType

 new String[] { "c", "d" }, // parameterNames

 new Class[] { int.class, int.class } // parameterTypes

);

// Evaluate it with varying parameter values; very fast.

Integer res = (Integer) ee.evaluate(

 new Object[] { // parameterValues

 new Integer(10),

 new Integer(11),

 }

);

System.out.println("res = " + res);

Janino embedded in Sunflow (GI Rendering Engine)

 Janino is used in Sunflow in order to compile shaders at run-
time.

 Different shaders describing different reflection models can be
loaded at run-time … then compiled using Janino … and executed
in the same memory space of the currently executing VM.

 DirectX and OpenGL also have compilers which compile at run-
time vertex and pixel shaders before loading them on the GPU.

 The point to understand here is that compilers have an
extremely vast range of applicability. Not just the traditional
source -> compile -> execute trace.

 Although we’ll be looking mainly at those because the main
concepts remain the same.

Compiler Construction Topics

 Compiler construction is a complex task !!! It combines
together many aspects of Computer Science

 Formal language theory

 Artificial intelligence (greedy algorithms and heuristic techniques)

 Computer architecture

 We shall cover many aspects, but will focus mostly on
the front end.

 At the end of this course you will be able to take a
formal specification of a language (using e.g. EBNF) and
be able to use tools (compiler compilers) to generate a
source-to-source compiler.

Next ...

 Chapter 2 from Dragon Book

 A simple syntax-directed translator
will be used to briefly introduce

 Lexical Analysis

 Syntax Analysis

 Parsing

 Intermediate Code

