
Page 1 of 8

CSA2201 – Compiling Techniques
Course Assignment 2011 – 2012

Department of Computer Science. University of MALTA.

Sandro Spina / Gordon Mangion

This is the description for the assignment of unit CSA2201, Compiling Techniques. This
assignment is worth 15% of the total mark for this unit. The assignment has to be carried
out on an individual basis. Under no circumstances should code be shared among students.
Please remember that plagiarism will not be tolerated; the final submission must be entirely
your work.

Deliverables

You will submit your project source code, executable files and a DOC/DOCX/PDF file
containing the project documentation/report on optical medium. Note that assignment
binaries must run straight from CD/DVD-ROM without the need for any installation unless
specified in the accompanying document, in which case a detailed installation guide must
also be provided.

Description

In this assignment you are to develop a compiler which will translate source files of a simple
language called SL (Simple Language) into S-Machine (a simple stack-based virtual machine)
programs. The S-Machine and its instruction-set are described in a later section. Below is
the definition in Extended Backus-Naur Form (EBNF) of the SL language. The starting point
of the grammar is the “program” non-terminal at the bottom of the definition.

Letter ::= [“a“-“z“ “A“-“z“]

Digit ::= [“0“-“9“]

Type ::= “int“

IntegerLiteral ::= [“0“-“9“] { [“0“-“9“] }

Identifier ::= (“_” | Letter) { “_” | Letter | Digit }

RelationOp ::= "<" | ">" | "==" | "!=" | "<=" | ">="

AdditiveOp ::= "+" | "-"

MultiplicativeOp ::= "*" | "/"

AssignmentOp ::= "="

Factor ::= "(" Expression ")"

| Literal
| Identifier
| FunctionCall

Page 2 of 8

ActualParameters ::= Expression { “,” Expression }

FunctionCall ::= Identifier "(" [ActualParameters] ")"

Term ::= Factor [MultiplicativeOp Factor]

SimpleExpression ::= Term { AdditiveOp Term }

Expression ::= SimpleExpression [RelationOp

SimpleExpression]

DeclarationStatement ::=

"var" Type Identifier ["="
IntegerLiteral] ";"

AssignmentStatement ::= Identifier AssignmentOp Expression ";"

IfStatement ::= "if" "(" Expression ")" StatementBlock [
"else" StatementBlock]

WhileStatement ::= "while""("Expression")" StatementBlock";"

ReadStatement ::= "read" Identifier ";"

WriteStatement ::= "write" (IntegerLiteral | Identifier) ";"

ReturnStatement ::= "return" [Expression] ";"

HaltStatement ::= "halt" ";"

FormalParameter ::= Type Identifier

FormalParameters ::= FormalParameter { “,” FormalParameter }

FunctionDeclaration ::= Type Identifier “(“ [FormalParameters]
“)” StatementBlock

Statement AssignmentStatement
| DeclarationStatement
| IfStatement
| WhileStatement
| ReadStatement
| WriteStatement
| ReturnStatement
| HaltStatement
| StatementBlock

StatementBlock ::= "{" { Statement } "}"

Program ::= { FunctionDeclaration } { Statement }

Task Breakdown

The assignment is broken down into four tasks. Below is a description of each task
accompanied with the assigned mark.

Task 1 - Create Javacc grammar file

In this first task you are to create the Javacc grammar file for the SL definition given above.
You are free to modify the production rules as long as the changes are documented in the

Page 3 of 8

report and that the source language (SL) remains unaltered. Should you prefer to use an
alternative to JJTree pre-processor in order to build the parse tree please go ahead.

[Marks: 20%]

Task 2 - Parse Tree Generation

You should enhance the parser developed in Task 1 to output a textual (or graphical if you
prefer) representation of the generated parse tree.

[Marks: 5%]

Task 3 - Semantic Analysis and Code Generation

In this task you are to use the visitor design pattern (or any method you deem suitable) to
traverse the parse tree to perform type checking and code generation.

[Marks: 30%]

Task 4 Sample programs

Together with the above, you are to design and implement short sample source programs to
test the outcome of your compiler. In your report, state what you are testing for, insert the
programs’ parse tree, the resulting code generated and the outcome of your test.

[Marks: 20%]

The Report

In addition to the source and class files, you are to deliver a report. In your report include
any deviations from the original EBNF, the salient points on how you developed the
compiler (and reasons behind any decisions you took) including semantic rules and code
generation, and any sample SL programs you developed for testing.

[Marks: 25%]

Page 4 of 8

S-Machine
The S-Machine (SM) is a simple Stack-based virtual machine. The main components of this

virtual machine are its CodeArea (where the programs are loaded), the Stack (where the

data resides and is manipulated) and the VCPU (Virtual CPU).

SM’s VCPU has just 3 registers (see list below) because its operations rely heavily on the

machine’s stack.

 PC – Program Counter; Points to the next instruction in memory

 SP – Stack Pointer; Points to the top of Stack

 FP – Frame Pointer; Points to the current Stack Frame

Each S-Machine instruction takes exactly four bytes (32 bits). This makes it easier to

generate code for the instruction set since each instruction is aligned at a 32 bit boundary.

This means that you can calculate exactly the offset of the nth instruction (= n*4 bytes).

The instruction-set of S-Machine is illustrated in the table below:

Opcode (Hex) Mnemonic Description Semantics
00 00 00 00 NOP No operation PC = PC + 1;

01 00 nn nn LDC n Load integer constant n onto
top of stack

SP = SP + 1;
Stack(SP) = n;
PC = PC + 1;

02 ll nn nn LD l, n Load value onto top of stack
from variable level l, offset n

SP = SP + 1;
Stack(SP)=
Stack(F(FP,l)+n);
PC = PC + 1;

03 ll nn nn STORE l, n Store value from top of stack
into variable level l, offset n

Stack(F(FP,l)+n)=Stack(SP);
SP = SP - 1;
PC = PC + 1;

04 00 00 00 DUP Duplicate top of stack item SP = SP + 1;
Stack(SP) = Stack(SP-1);
PC = PC + 1;

05 00 00 00 POP Pop item from stack SP = SP - 1;
PC = PC + 1;

06 00 nn nn JMP n Jump to location n PC = n;

07 00 nn nn JZ n Jump if zero If(Stack(SP) == 0)
 PC = n;
else
 PC = PC + 1;
SP = SP – 1;

08 00 nn nn JNZ n Jump if not-zero If(Stack(SP) != 0)
 PC = n;
else
 PC = PC + 1;
SP = SP – 1;

09 00 00 00 HALT Stop program execution

0A 00 nn nn ENTER n Enter a stack frame SP = SP + 1;
Stack(SP) = FP;
FP = SP;
SP = SP + n;
PC = PC + 1;

0B 00 00 00 LEAVE Leave stack frame SP = SP – FP;
FP = Stack(SP);
PC = PC + 1;

Page 5 of 8

0C 00 nn nn CALL n Call function at location n Stack(SP) = PC + 1;
PC = n;

0D 00 00 00 RET Return from Call PC = Stack(SP);
SP = SP – 1;

0E 00 nn nn RETN n Pop n items from stack and
return from Call

PC = Stack(SP);
SP = SP – (n+1);

0F 00 00 00 ADD Addition Stack(SP-1) = Stack(SP-1) +
Stack(SP);
SP = SP - 1;
PC = PC + 1;

10 00 00 00 SUB Subtraction Stack(SP-1) = Stack(SP-1) -
Stack(SP);
SP = SP - 1;
PC = PC + 1;

11 00 00 00 MUL Multiplication Stack(SP-1) = Stack(SP-1) *
Stack(SP);
SP = SP - 1;
PC = PC + 1;

12 00 00 00 DIV Division Stack(SP-1) = Stack(SP-1) /
Stack(SP);
SP = SP - 1;
PC = PC + 1;

13 00 00 00 MOD Modulus Stack(SP-1) = Stack(SP-1) %
Stack(SP);
SP = SP - 1;
PC = PC + 1;

14 00 00 00 EQ Equal Stack(SP-1) = Stack(SP-1)
== Stack(SP);
SP = SP - 1;
PC = PC + 1;

15 00 00 00 NE Not Equal Stack(SP-1) = Stack(SP-1)
!= Stack(SP);
SP = SP - 1;
PC = PC + 1;

16 00 00 00 LT Less Than Stack(SP-1) = Stack(SP-1) <
Stack(SP);
SP = SP - 1;
PC = PC + 1;

17 00 00 00 GT Greater Than Stack(SP-1) = Stack(SP-1) >
Stack(SP);
SP = SP - 1;
PC = PC + 1;

18 00 00 00 LE Less Than or Equal To Stack(SP-1) = Stack(SP-1)
<= Stack(SP);
SP = SP - 1;
PC = PC + 1;

19 00 00 00 GE Greater Than or Equal To Stack(SP-1) = Stack(SP-1)
>= Stack(SP);
SP = SP - 1;
PC = PC + 1;

1A ll nn nn READ l, n Read an integer input from
console

Stack(F(FP,l)+n) = Input;
PC = PC + 1;

1B 00 00 00 WRITE Write an integer to console
output

Output = Stack(SP);
SP = SP - 1;
PC = PC + 1;

Where: F(FP, l) = if (l == 0) then FP else F(Stack(FP), l-1)

For further details on S-Machine please refer to the S-Machine tutorial/lecture slides.

Page 6 of 8

Final Notes

As an example, the SL source program below:

// Factorial Function
int fact(int n)
{
 if(n==1)
 {
 return 1;
 }
 else
 {
 return n * fact(n-1);
 }
}

var int n = 4;
n = fact(5);
write n;
halt;

Should generate an S-Machine program along the lines of the code below:

00: ENTER 0, 1
01: JMP 0, 22
02: ENTER 0, 0
03: LD 0, -2
04: LDC 0, 1
05: EQ 0, 0
06: JZ 0, 12
07: LDC 0, 1
08: STORE 0, -3
09: LEAVE 0, 0
10: RETN 0, 1
11: JMP 0, 22
12: LD 0, -2
13: LDC 0, 0
14: LD 0, -2
15: LDC 0, 1
16: SUB 0, 0
17: CALL 0, 2
18: MUL 0, 0
19: STORE 0, -3
20: LEAVE 0, 0
21: RETN 0, 1
22: LDC 0, 4
23: STORE 0, 1
24: LDC 0, 0
25: LDC 0, 5
26: CALL 0, 2
27: STORE 0, 1
28: LD 0, 1
29: WRITE 0, 0
30: HALT 0, 0
31: LEAVE 0, 0

// Prepare 1 data variable
// Jump to main code
// Start of fact function, prepare 0 local variables
// Load value of n param on stack
// Load/Push constant 1 on stack
// n == 1
// Jump if false(0) to instruction at location 12
// Load/Push constant 1 on stack
// Store it in the return value location
// Leave the scope
// Return and pop 1 argument
// Jump to instruction at location 22
// Load value of param n (at scope 1)
// Load/Push constant 0 on stack
// Load value of param n (at scope 1)
// Load constant 1 on stack
// Subtract top two stack items and push the result
// Call subroutine at location 2
// Multiply top two stack items and push the result
// Store result in the return value location
// Leave the scope
// Return and pop 1 argument
// Load/Push constant 4 on stack
// Store it in the variable n (scope 0) location
// Load/Push constant 0 on stack
// Load/Push constant 5 on stack
// Call subroutine at location 2
// Store it in the variable n (scope 0) location
// Load value of variable n (at scope 0)
// Output value on top of stack (result)
// Halt machine execution
// Leave the scope

Page 7 of 8

The above is a textual representation of the code generated. The actual file written to disk
should look like the following (the numbers below show the file dumb in hexadecimal base,
this means that the file is actually a sequence of bytes 0a, 00, 00, 01, 06, 00, …);

0a 00 00 01
06 00 00 16
0a 00 00 00
02 00 ff fe
01 00 00 01
14 00 00 00
07 00 00 0c
01 00 00 01
03 00 ff fd
0b 00 00 00
0e 00 00 01
06 00 00 16
02 00 ff fe
01 00 00 00
02 00 ff fe
01 00 00 01
10 00 00 00
0c 00 00 02
11 00 00 00
03 00 ff fd
0b 00 00 00
0e 00 00 01
01 00 00 04
03 00 00 01
01 00 00 00
01 00 00 05
0c 00 00 02
03 00 00 01
02 00 00 01
1b 00 00 00
09 00 00 00
0b 00 00 00

The numbers above are formatted as 4 bytes per line for clarity only and for a one-to-one

correspondence with the generated code dump above. The bytes are in binary format and

consecutive.

The initial state of the S-Machine is as follows:

PC = 0x0000
SP = 0xffff (-1)
FP = 0x0000

The CodeArea and Stack are both empty.

Page 8 of 8

Hints

In general, “if” statements have the following structure when compiled:

SL source Compiled Code

if(Condition)
{
 Then_Block
}

 Code for Condition
 JZ Out_of_Then
 Code for Then_Block
Out_of_Then:

if(Condition)
{
 Then_Block
}
else
{
 Else_Block
}

 Code for Condition
 JZ Location_of_Else
 Code for Then_Block
 JMP Out_Of_If
Location_of_Else:
 Code for Else_Block
Out_Of_If:

Code generated for “while” blocks should look like the snippet below:

SL source Compiled Code

while(Condition)
{
 While_Block
}

Location_of_Condition:
 Code for Condition
 JZ Out_Of_While
 Code for While_Block
 JMP Location_of_Condition
Out_Of_While:

In the code snippets above, the entities in bold are labels and represent memory locations.

