
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – General Purpose GPUs

GPGPUs

Sandro Spina 
Computer Graphics and Simulation Group

Computer Science Department
University of Malta



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – General Purpose GPUs

GPU Computing – A Short History of ...

 For over 3 decades computer scientists/engineers have 

been working hard on methods intended to re-create the 

3D-world around us on a 2D screen. 

 This manipulation of 3D models inside a computer 

requires a huge number of mathematical calculations ...

 ... and the need to update in real-time (30 frames per 

second) means that operations must occur very rapidly

 To address these unique 3D computational requirements 

specialised equipment (GPUs) with enormous number-

crunching capabilities were developed



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – General Purpose GPUs

GPU Computing – A Short History of ...

 Over the years GPUs continued to advance ... These chips were 

optimised to handle the floating-point matrix math used to manipulate 

and render objects inside the computer’s 3D subsystem.

 These improvements can be witnessed just by looking at the current 

generation of computer games. At how these are becoming ever more 

realistic in terms of geometry detail and lighting calculations.

 As GPUs continued to bulk up their number-crunching capabilities in the 

pursuit of increased 3D realism, a group of scientists saw an 

opportunity to tap these now impressively advanced capabilities for 

rapid calculations to accelerate the non-graphical application software.

 This insight saw the advent of General Purpose GPU (GPGPU) 

computing.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – General Purpose GPUs

GPU Computing – A Short History of ...

General Purpose CPU

Intel,AMD,etc...

Specialised GPU

ATI, Nvidia, etc...

General Purpuse C/GPU

ATI, Nvidia, Intel, etc...



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – General Purpose GPUs

GPU vs CPU Comparison GLOPS/s

Source: NVIDIA_CUDA_Programming_Guide v2.0



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – General Purpose GPUs

GPU vs CPU  Bandwidth Comparison

Source: NVIDIA_CUDA_Programming_Guide v2.0



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – General Purpose GPUs

GPU Characteristics ....

Source: NVIDIA_CUDA_Programming_Guide v2.0

The GPU is specialised for compute-intensive, highly parallel computation 

(necessary for real-time rendering) and therefore designed in such a way 

that more transistors are devoted to data processing rather than data caching

and flow control ...



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – General Purpose GPUs

Data Parallelism – S(I|P)MD model

 Shared Instruction (or Program) Multiple Data

 GPUs are highly optimised to address problems that can be 

expressed as data-parallel computations.

 i.e. The same instruction or program (chunk of instructions) is 

executed on many data elements in parallel.

 Ex. The Map Operator in an array, Image Processing

 Data parallel processing maps data elements to parallel 

processing threads.

 Egs. Video Encoding, pattern recognition, physics simulations



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – General Purpose GPUs

NVIDIA Compute Unified Device Architecture - CUDA

 NVIDIA started off their effort into GPGPU computing with the 

introduction of the CUDA architecture in 2006.

 It first appeared with the launch of the GeForce 8800.

 Simplifies the use of their GPUs for computational, as opposed to graphical applications

 Provide libraries that allow programmers writing in C to access GPU features.

 The second iteration of CUDA 

 First appeared in the GTX200 series (GTX260/280)

 Huge boost in performance

 64-bit floating point support

 Broader set of software development tools to access these features

 Over the past two years, CUDA has evolved from a set of C extensions 

to a software and hardware abstraction layer that supports a host of 

programming languages and APIs (ex OpenCL, DirectCompute)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – General Purpose GPUs

CUDA Abstractions .... For SIMD parallelism

 CUDA  is essentially a scalable parallel programming 

model ... Exposing three major abstractions:

A Hierarchy of Thread Groups

Shared Memories

Barrier Synchronisation



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – General Purpose GPUs

Kernels (CUDA and in general)

 Kernels are programs written 

specifically to be executed in parallel.

 ‘C for CUDA’ extends C by allowing 

the programmer to define kernels (C 

functions) that when called, 

 Are executed N times in parallel

 By N different CUDA threads



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – General Purpose GPUs

CUDA Kernel definition and invocation

Definition:
__global__ void sum(float *a1, float *a2, float *a3)

{ … }

Invocation:

int main() 

{ …

sum <<<1,N>>> (a1,a2,a3);

… }



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – General Purpose GPUs

CUDA threadIdx

 Is a 3-component vector

 The intention here is to give easier 

access to 1,2 and 3 dimensional data

 1 Dimension – Vector

 2 Dimension – Matrix

 3 dimension – Field 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – General Purpose GPUs

Threads, Blocks and Grids

Thread Hierarchy 

 A set of threads make up a Block

 A set of blocks made up a Grid

 This hierarchy is also visible in other GPGPU languages which 

simply introduce a further layer of abstraction over the 

hardware. 

 For example (as we shall see later) OpenCL uses the terms 

workItem and workGroup to address this thread hierarchy.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – General Purpose GPUs

Threads, Blocks and Grids (Nvidia)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – General Purpose GPUs

CUDA threadIdx

 Is a 3-component vector

 The intention here is to give easier access to 

1,2 and 3 dimensional data

 1 Dimension – Vector

 2 Dimension – Matrix

 3 dimension – Field 

 Suppose you want to carry out matrix 

operations … you would use the 2D components 

of threadIDX + <<<1, (N,N)>>>



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – General Purpose GPUs

CUDA Memory Model



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – General Purpose GPUs

CUDA Memory Model (ii)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – General Purpose GPUs

CUDA threadIdx Example 2D

__global__ void matAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

// Kernel invocation

dim3 dimBlock(N, N);

matAdd <<<1, dimBlock>>>(A, B, C);

}

 Code Source: Nvidia CUDA Programming Guide v2.0



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – General Purpose GPUs

CUDA saxpy example ...



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – General Purpose GPUs

CUDA’s Compilation Process 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – General Purpose GPUs

CUDA’s Compilation Process 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – General Purpose GPUs

CUDA Threads and Warps (i)

 Distinguish between CPU and GPU threads. 

 The main difference lies in the thread scheduler ... 

 CPU threads are executed independently ... Where this is 

not the case with GPU threads.

 GPU threads are scheduled in groups of warps.

 The threads within a warp are executed in a lock-step 

way (Single Instruction Multiple Thread).  



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – General Purpose GPUs

CUDA Threads and Warps (ii)

 Individual threads (in the warp) start together at the same 

program address and move forward in lock step.

 A warp executes one common instruction at a time.

 Note that if for some reason (data dependant conditional 

branch) the threads diverge then the warp serially executes 

each path taken.

 For eg: if we have 64 threads in a warp and there is a branch 

were 32 threads execute branch A while the rest execute 

branch B, the processor while first execute those threads on 

branch A then those on branch B in sequence (or vice versa). 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – General Purpose GPUs

CUDA Threads and Warps (ii)

 Individual threads (in the warp) start together at the same 

program address and move forward in lock step.

 A warp executes one common instruction at a time.

 Note that if for some reason (data dependant conditional 

branch) the threads diverge then the warp serially executes 

each path taken.

 For eg: if we have 64 threads in a warp and there is a branch 

were 32 threads execute branch A while the rest execute 

branch B, the processor while first execute those threads on 

branch A then those on branch B in sequence (or vice versa). 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – General Purpose GPUs

OpenCL (Khronos Group)

 Open Compute Language is a Khronos group effort into 

coming up with an open standards parallel computational 

model.

 Very good industry support ...

 Abstracts all computational resources in a system.

 CPUs, GPUs

 Programming based on C99

 A group of devices are contained in a host



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – General Purpose GPUs

OpenCL (Execution Model)

 Kernel

 Basic unit of executable code

 Program

 Collection of Kernels and other functions

 Analogous to a dynamic library

 Applications queue kernel execution instances

 Queued in order

 Executed in-order or out-of-order

 Queues are used to submit work to the devices ... It is the CUDA to launching 
a kernel using the <<< >>> notation. 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – General Purpose GPUs

OpenCL Work (Groups | Items)

 Kernels are executed across a global 

domain of work-items … i.e. one 

work-item per computation executed 

in parallel

 Work-items are grouped in local 

workgroups which have shared local 

memory and synchronisation.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – General Purpose GPUs

OpenCL Work-Item Identifiers

 Each work-item is aware of what 

element of the problem it is working on 

… each work-item can query it’s own 

local and global id.

 Each work-item (and work-group) can 

be identified within the kernel

 Check next example using get_global_id



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – General Purpose GPUs

Kernel Basic Example (using openCL)

 __kernel void

Sum(__global const float *a1,

__global const float *a2,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a1[xid] + a2[xid]

}



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – General Purpose GPUs

OpenCL (imp) Functions 

 clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device, NULL)

 clGetDeviceInfo(device, CL_DEVICE_VENDOR, sizeof(vendor_name), 

vendor_name, &returned_size)

 clBuildProgram(program[0], 0, NULL, NULL, NULL, NULL)

 mem = clCreateBuffer(context, CL_MEM_READ_ONLY, buffer_size, 

NULL, NULL)

 clEnqueueWriteBuffer(cmd_queue, mem, CL_TRUE, 0, buffer_size, 

(void*)a, NULL, NULL);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – General Purpose GPUs

OpenCL (imp) Functions cont ...

 clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &mem);

 clEnqueueNDRangeKernel(cmd_queue, kernel[0], 1, NULL, 

&global_work_size, NULL, 0, NULL, NULL);

 clEnqueueReadBuffer(cmd_queue, ans_mem, CL_TRUE, 0, buffer_size, 

results, 0, NULL, NULL)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – General Purpose GPUs

OpenCL example (code start -> end)

 As an example let’s assume that we are going to be 

carrying some calculation (filters) on a 2d image.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – General Purpose GPUs

OpenCL example (code start -> end)

 Alignment the workgroups and work- items ....



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – General Purpose GPUs

Program Structure (macresearch.org)

//variable declarations

cl_int err;

cl_context context;

cl_device_id devices;

cl_command_queue cmd_queue;

//Initialisation of structures

err = clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &devices, NULL);

context = clCreateContext(0, 1, &devices, NULL, NULL, &err);

cmd_queue = clCreateCommandQueue(context, devices, 0, NULL);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – General Purpose GPUs

Program Structure (macresearch.org)

//create the memory buffer ... Set it to READ_ONLY

cl_mem ax_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,

atom_buffer_size, NULL, NULL);

//copy the buffer to the device global memory

err = clEnqueueWriteBuffer(cmd_queue, ax_mem, CL_TRUE, 0,

atom_buffer_size, (void*)ax, 0,NULL,NULL);

//make sure data is updated.

clFinish(cmd_queue);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

37CGSG – General Purpose GPUs

Program Structure (macresearch.org)

//Load the program from source ... 

program[0] = clCreateProgramWithSource(context,1,

(const char**)&program_source, NULL, &err);

//compile the program ... 

err = clBuildProgram(program[0], 0, NULL, NULL, NULL, NULL);

//associate the compiled binary

kernel[0] = clCreateKernel(program[0], "mdh", &err);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

38CGSG – General Purpose GPUs

Program Structure (macresearch.org)

//declare the global and local dimensions

size_t global_work_size[2], local_work_size[2];

//set the dimensions ... 

global_work_size[0] = nx; global_work_size[1] = ny;

local_work_size[0] = nx/2; local_work_size[1] = ny/2;

// and the arguments to the kernel ... i.e. The memory locations from where to read

err = clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &ax_mem);

// add to the compute queue ...

err = clEnqueueNDRangeKernel(cmd_queue, kernel[0], 2, NULL,

&global_work_size, &local_work_size,

0, NULL, NULL);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

39CGSG – General Purpose GPUs

Program Structure (macresearch.org)

//read back the results 

err = clEnqueueReadBuffer(cmd_queue, val_mem, CL_TRUE, 0, grid_buffer_size, val, 0, NULL, 

NULL);

//and clean up memory

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(cmd_queue);

clReleaseContext(context);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

40CGSG – General Purpose GPUs

N-Body Simulation (i)

 One of your assignments ... Is perfectly suited for deployment on a 

GPGPU (CUDA/OpenCL/DirectCompute)

 Recall the n-body simulation which simulates the evolution of a system 

of bodies in which each body interacts and effects every other body. 

 In particular the O(N2) component of the algorithm (near field all-pairs 

brute force comparison between bodies) really lends itself to 

parallelisation. 

 Let’s take N to be 20,000 bodies ... And assume that 20flops are 

required to determine the interaction between two bodies. In order to 

perform a real time simulation we need (20000) (20000) (20) = 8Mn 

flops / simulation step. This means that if we want RT at 30FPS then we 

need to perform 8Mn * 30 =  240Giga flops / second



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

41CGSG – General Purpose GPUs

N-Body Simulation (ii)

 Recall the formula used to calculate the gravitational attractive potential 

between two bodies i and j :

 Where fij represents the force vector on body i caused by 

gravitational attraction to body j,

 mi and mj represent the masses of i and j respectively,

 rij  represents the distance vector between bodies i and j,

 G is the gravitational constant

 Note that f and r are both vectors. The right part of the equation gives 

the direction (unit vector) of the force.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

42CGSG – General Purpose GPUs

N-Body Simulation (iii)

 Hence, given this formula one can calculate the total force (Fi) applied 

on a body i by the rest of the N-1 bodies ... 

 Which is a summation of vectors:

 In order to avoid collisions between bodies a softening factor     in the 

denominator is added. (details not shown above).

 Recall also that to integrate over time we use Fi = mi ai in order to 

calculate the acceleration which will give us the new position of i.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

43CGSG – General Purpose GPUs

N-Body Simulation (iv)

 Rearranging the formula to calculate acceleration a gives us : 

 In the next slide we shall see how to implement the computation of aij

which gives us an update in acceleration given the interaction between 

bodies i and j .... For any body i ... Acceleration a is updat N-1 times.  

G is multiplied at a later stage (not in the kernel code)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

44CGSG – General Purpose GPUs

Code (from Paper in GPU Gems 3)

__device__ float3 bodyBodyInteraction(float4 bi, float4 bj, float3 ai) {

float3 r;

// r_ij [3 FLOPS]

r.x = bj.x - bi.x; r.y = bj.y - bi.y; r.z = bj.z - bi.z;

// distSqr = dot(r_ij, r_ij) + EPS^2 [6 FLOPS]

float distSqr = r.x * r.x + r.y * r.y + r.z * r.z + EPS2;

// invDistCube =1/distSqr^(3/2) [4 FLOPS (2 mul, 1 sqrt, 1 inv)]

float distSixth = distSqr * distSqr * distSqr;

float invDistCube = 1.0f/sqrtf(distSixth);

// s = m_j * invDistCube [1 FLOP]

float s = bj.w * invDistCube;

// a_i = a_i + s * r_ij [6 FLOPS]

ai.x += r.x * s; ai.y += r.y * s; ai.z += r.z * s;

return ai;

}



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

45CGSG – General Purpose GPUs

N-Body Simulation (strategy)

 We can use a grid of NxN locations to store all pair-wise forces. The 

total F for i can then be calculated by summing the elements in their 

respective row i.

 This approach requires O(N2) memory. Possible but performance would 

be hindered by memory bandwidth (between global and local)!!

 In order to achieve some memory reuse (in the block) we need to 

serialise some of the computation.

 To increase the reuse of data (in the shared memory), one 

approach is to arrange computation in such a way as to 

evaluate each row sequentially (updating the acceleration), and 

separate rows are evaluated in parallel. 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

46CGSG – General Purpose GPUs

N-Body Simulation (strategy -ii)

Source: Chapter 31 GPU Gems 3 – Nvidia

• A tile is evaluated by p threads performing the same sequence of operations (

using different data)

• Each thread updates the acceleration of one body as a result of its interactions 

with p other bodies



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

47CGSG – General Purpose GPUs

N-Body Simulation (strategy -iii)

__device__ float3 tile_calculation(float4 myPosition, float3 accel)

{

int i;

extern __shared__ float4[] shPosition;

for (i = 0; i < blockDim.x; i++) {

accel = bodyBodyInteraction(myPosition, shPosition[i], accel);

}

return accel;

}

 This code will compute the accelerations for a tile (pxp). 

Note the for loop which is essentially forcing a sequence 

on the computation.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

48CGSG – General Purpose GPUs

CUDA kernel (ii)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

49CGSG – General Purpose GPUs

CUDA kernel (i)

__global__ void

calculate_forces(void *devX, void *devA)

{

extern __shared__ float4[] shPosition;

float4 *globalX = (float4 *)devX;

float4 *globalA = (float4 *)devA;

float4 myPosition;

int i, tile;

float3 acc = {0.0f, 0.0f, 0.0f};

int gtid = blockIdx.x * blockDim.x + threadIdx.x;

myPosition = globalX[gtid];

( .... Continued on next slide )



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

50CGSG – General Purpose GPUs

CUDA kernel (ii)

(...continued from previous slide)

for (i = 0, tile = 0; i < N; i += p, tile++) {

int idx = tile * blockDim.x + threadIdx.x;

shPosition[threadIdx.x] = globalX[idx];

__syncthreads();

acc = tile_calculation(myPosition, acc);

__syncthreads();

}

// Save the result in global memory for the integration step.

float4 acc4 = {acc.x, acc.y, acc.z, 0.0f};

globalA[gtid] = acc4;

}



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

51CGSG – General Purpose GPUs

Conclusions

 Parallelisation and GPGPU will over the next 

couple of years take a central role in 

computing.

 The aim of these lectures was to inform you of 

what GPGPU is all about and perhaps get you 

interested in the area.

 There are many applications that will benfit 

from the GPGPU model of computation ... 

Mostly of a scientific nature but not just that.


